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Abstract

In the last few years, several approaches have been

proposed to perform vulnerability analysis of applica-

tions written in high-level languages. However, little has

been done to automatically identify security-relevant

flaws in binary code.

In this paper, we present a novel approach to the

identification of vulnerabilities in x86 executables in

ELF binary format. Our approach is based on static

analysis and symbolic execution techniques. We im-

plemented our approach in a proof-of-concept tool and

used it to detect taint-style vulnerabilities in binary code.

The results of our evaluation show that our approach is

both practical and effective.

Keywords: Vulnerability analysis, binary static analy-

sis, symbolic execution, taint analysis.

1 Introduction

Vulnerability analysis is the process of determining

if a system contains flaws that could be leveraged by an

attacker to compromise the security of the system or that

of the platform the system runs on. In comparison to

other approaches to security, such as intrusion detection

and prevention, the focus of vulnerability analysis is on

identifying and eventually correcting flaws, rather than

detecting and blocking attacks that exploit a flaw.

Research on vulnerability analysis has produced a

number of different approaches to identify security flaws

in an automatic—or semi-automatic—fashion. Some of

the most promising approaches are based on static anal-

ysis techniques. These techniques predict safe and com-

putable approximations of the set of values, or behav-

iors, that the application could show at run-time [27].

Static analysis techniques represent an appealing

building block for security analysis because they provide

results without having to actually run an application,

thus avoiding risks linked to the execution of malicious

programs. Furthermore, by computing safe approxima-

tions of a program’s behavior, they generally achieve a

low rate of false negatives. In other words, if there is a

vulnerability in the application under test, in most cases

the analysis is able to find it. Finally, static approaches

have no impact on the run-time performance of an ap-

plication and offer the possibility to detect and correct

flaws before its deployment. However, the approximate

nature of the results provided by static analysis makes it

difficult to eliminate false positives. As a consequence,

some of the “vulnerabilities” identified by the analysis

might actually correspond to correct code.

A significant part of recent efforts in static vulner-

ability analysis have been directed towards analyzing

applications written in some high-level language, such

as C, Java, or PHP [34, 21, 36]. However, the appli-

cation of static vulnerability analysis to binary code is

appealing for a number of reasons. First, it is not al-

ways the case that the source code of an application

is available. For example, some proprietary applica-

tions are distributed in binary form only. Second, even

when the source code for compiled languages is avail-

able, the “What You See Is Not What You eXecute”

principle applies [3]. This principle states that the trans-

formations performed by compilers and optimizer tools

may subtly—but significantly—alter the actual behavior



of an application, and, consequently, invalidate the re-

sults of the analysis performed at the source code level.

For example, statements used to overwrite a buffer con-

taining a password may be considered redundant and,

thus, be optimized away. Also, the order of instructions

could be altered, thereby invalidating a security-critical

sequence of events.

In this paper, we explore the problem of performing

vulnerability analysis of binaries by using static analy-

sis techniques. We focus on executables written for the

Intel x86 family of processors because this is the most

widely-used architecture and it presents several charac-

teristics that make our task more challenging.

We restrict our attention to the common class of flaws

that consists of the use of data coming from untrusted

sources (tainted data) in sensitive operations. As an ex-

ample, consider the “tainted-data-to-system” problem.

The system() function, which is provided by the C

standard library, executes the command(s) specified in

its only parameter by invoking a shell to evaluate that

parameter. If an attacker controls the value of the pa-

rameter passed to system(), she is able to execute ar-

bitrary commands with the privileges of the vulnerable

process. The same problem exists with the popen()

function. This vulnerability is, therefore, especially crit-

ical in two scenarios. First, if a SUID application is af-

fected, local users are able to mount local-to-root attacks

or to impersonate other users of the system. Second, if

a network-accessible application (e.g., a CGI program

or a network server) is vulnerable, then remote attackers

can gain local access.

Consider, for example, the simple program shown in

Figure 1. The application is intended to be used as a CGI

program that takes as input the name of a machine, sends

it five ping packets, and returns to the user the transmis-

sion statistics. The invocation of the ping command is

done through the popen() function without perform-

ing any validation of the user input. Therefore, if an at-

tacker invokes the program with the input string “;cat

/etc/passwd”, she will have access to the content of

the password file 1.

In this paper we make the following contributions to

the problem of detecting vulnerabilities in binary pro-

grams through static analysis:

• We propose a novel adaptation of context- and

1A similar vulnerable ASP program was actually present in early

releases of the Linksys WRT54G wireless router.

int main(int argc, char **argv) {

char *site, *query, cmd[128];

FILE *f;

query = getenv("QUERY_STRING");

if ((query &&

(site = strchr(query, ’=’)))) {

site++;

} else {

site = "localhost";

}

snprintf(cmd, sizeof(cmd),

"ping -c 1 %s", site);

f = popen(cmd, "r");

...

Figure 1. Example of a vulnerable pro-

gram.

path-sensitive symbolic execution to detect the

class of vulnerabilities consisting of the use of

tainted data in sensitive operations.

• We present a set of techniques and heuristics that
makes the analysis of x86 binaries more efficient

and practical.

• We implemented a proof-of-concept tool that uses
these techniques to analyze real-world binaries.

• We present experimental results showing that our
approach is both effective and practical.

We wish to emphasize that the goal of this paper is

to present a vulnerability detection technique, as op-

posed to a verification technique. Our approach is nei-

ther sound nor complete, that is, it is possible that pro-

grams are flagged as vulnerable when they are indeed

correct and that actual vulnerabilities are not recognized.

As we will discuss, the main sources of imprecision in

the analysis are the handling of loops, the modeling of

the x86 architecture and instruction set, and the model-

ing of libc functions.

The rest of the paper is organized as follows. In Sec-

tion 2 we discuss work related to ours. In Section 3, we

present the static analysis techniques and models that we



use to analyze x86 binaries. Section 4 contains a discus-

sion of how such techniques and models are leveraged

to detect taint-style vulnerabilities. The results from ex-

periments with the prototype tool that we implemented

are presented in Section 5. Finally, Section 6 concludes

and indicates future work.

2 Related Work

As mentioned earlier, a significant part of recent ef-

forts in static vulnerability analysis have been directed

towards analyzing applications written in some high-

level language. Due to the lack of space and the signif-

icant amount of work done in this direction, we are not

going to discuss this work here. An interested reader can

refer to some of the references provided in Section 1.

The problem of identifying vulnerabilities in binary

code, on the other hand, has been mostly tackled us-

ing dynamic techniques. Within this class of tech-

niques it is possible to distinguish between testing-based

and monitoring-based approaches. Testing-based ap-

proaches try to trigger a vulnerability by exercising an

application with random or malicious inputs, [22, 28].

Monitoring-based approaches, instead, examine the ex-

ecution of an application during normal use, looking for

anomalous behaviors, [24]. In particular, a whole area

of research has focused on ways to detect attacks on the

basis of the analysis of the system call invocations per-

formed by a program [10, 12, 23].

The dynamic analysis approach described in [26] is

more closely related to ours. It describes TaintCheck, a

dynamic taint analysis tool, which can detect overwrite

attacks (e.g., format string attacks, buffer overflows) on

x86 binaries. TaintCheck differs from our approach in a

number of ways, mainly due to fundamental differences

between static and dynamic analysis approaches. For in-

stance, since TaintCheck performs its analysis on a run-

ning program, it covers only those execution paths that

are traversed during a given execution. Our tool achieves

a more complete code coverage since static analysis is

usually applied on all possible inputs and paths. Sec-

ond, TaintCheck detects attacks at runtime, while our

tool finds vulnerabilities without the need of running the

analyzed application. Finally, the dynamic monitoring

performed by TaintCheck may cause a significant degra-

dation of the performance of an analyzed program. In

our tool all analyses are static and, thus, have no influ-

ence on the performance of an application. Our tool, on

the other hand, suffers from a higher false positive rate

due to inherent limitations of static analysis.

While the use of dynamic techniques has been proven

useful for the detection of vulnerabilities and their ex-

ploitation, static techniques provide a set of advantages

that make them appealing. Unfortunately, there are a

number of challenges that have to be overcome by static

binary analysis tools [30], and, as a consequence, there

are only few existing approaches to the static detection

of vulnerabilities in binary programs.

In [5], the authors describe a static method to gener-

ate attack-independent signatures for vulnerabilities in

binary code. Their approach is complementary to ours

in that once a vulnerability is known, they generate a

signature that detects attack attempts. Instead, we focus

on the problem of identifying vulnerabilities.

Static binary analysis techniques are applied to the

detection of malicious code. In [4], the authors describe

an approach to statically detecting malicious code in

executable programs by abstracting the program into a

graph of critical API calls, which is then checked against

a policy automaton to determine if it may cause a viola-

tion.

Static approaches have also been applied to viruses

and worms detection, [7, 8], as well as polymorphic

worms detection, [25, 19]. Static analysis has also

been applied to rootkit detection [20] and to identify-

ing spyware-like behavior [17]. Our technique is similar

to these approaches to malicious code detection in that it

statically extracts information from an executable. How-

ever, we are concernedwith the presence of possible vul-

nerabilities and not with the detection of malicious code

or behavior. Therefore, we use the results of the static

analysis in a different manner.

Our work further relates to general techniques of

static analysis of binary code. This is a very active area

of research and it would be impossible to mention all of

the relevant work here. Thus, we reference the results

that we leveraged in our work when we discuss specific

techniques.

3 Static Analysis of Binaries

Our vulnerability analysis process is logically di-

vided in two phases. We first use several techniques

to statically approximate the state of an application dur-



ing execution. Then, we leverage this information to de-

tect vulnerabilities. In this section, we describe the key

characteristics of our static analysis approach, which is

an extension of the analysis presented in [18]. Our ap-

proach has been implemented in a proof-of-concept tool

whose architecture is presented in Figure 2.

Figure 2. The architecture of our vulnera-

bility detection tool.

Throughout the paper we will use the running exam-

ple given in Figure 1. Note that the example is in a C-like

language for the sake of clarity and simplicity, while our

tool operates on binary code. In particular, we assume

that our tool will be operating on dynamically-linked

x86 executable objects, formatted according to the Exe-

cutable and Linking Format (ELF). We also assume that

the analyzed executable follows a “standard compilation

model” [29]: the executables has procedures, a global

data region, a heap and a runtime stack; global variables

are located at a fixed memory location; local variables

of a procedure are stored at a fixed location in the frame

stack of that procedure; the program follows the cdecl

calling convention, and is not self-modifying.

3.1 Prerequisites

In order to perform our analysis, we must first dis-

assemble the binary file and build data structures that

enable us to navigate the resulting assembly code. Note

that we are able to operate on stripped binaries, i.e., exe-

cutables that lack debugging and other support informa-

tion. We use several of the suggestions presented in [13]

to deal with the peculiarities of stripped code.

First, the binary program is disassembled using an

enhanced version of the basic linear-sweep algorithm as

described in [31], thus providing us with an assembly

level representation of the program. Note that this ver-

sion of the linear-sweep algorithm is resilient to the in-

sertion of jump tables corresponding to switch state-

ments that might have been inserted into the instruction

stream.

Second, we attempt to resolve indirect call and

jump instructions. Resolution of the possible target ad-

dresses helps in the identification of functions and the

derivation of a complete Control Flow Graph (CFG).We

implemented a series of heuristics to determine the tar-

get values of indirect branches in some common cases.

First, to resolve jump-table-based branches, we back-

track in the code until we reach the instructions that set

up the jump table access, thus recovering the base loca-

tion and the number of entries of the table. Our imple-

mentation of this method is compiler-dependent and has

proven to work well in practice. Second, some indirect

branches are resolved by performing a form of intrapro-

cedural constant propagation. More precisely, we sym-

bolically execute the current function to determine a set

of possible targets. Finally, we apply a similar mecha-

nism interprocedurally to resolve indirect branches that

derive, for example, from the presence of functions that

return function pointers.

Third, it is necessary to identify loops and recursive

function calls. To detect loops we use the algorithm

described in [32], which, unlike the classical Tarjan’s

interval-finding algorithm [33], is also able to identify

irreducible loops (i.e., loops with multiple entry points).

Contrary to popular belief, these appear frequently in

optimized binary code. Recursive function calls are

identified by applying a standard topological sort algo-

rithm on the function call graph of the program.

Finally, we need to resolve the name of library func-

tions used in a program in order to correctly model exe-

cution and identify exit points in the CFG. Since we as-

sume we are working with dynamically-linked ELF bi-

naries, we extract library function names by combining

information contained in the Procedure Linkage Table

(PLT) and the relocation table of the binary.



3.2 Symbolic Execution

Our analysis technique is based on symbolic execu-

tion [16]. Symbolic execution consists of interpreta-

tively executing a program by supplying symbols repre-

senting arbitrary values instead of concrete inputs, e.g.,

strings or numbers. The execution is then performed as

in a concrete execution, except that the values processed

by the program can be symbolic expressions over the

input symbols. By doing this, the symbolic execution

approximates all possible concrete executions.

Execution State We extended the concrete execution

semantics of the x86 assembly language to define the ef-

fect of instructions on the execution state of a program.

In the current implementation of our approach, the ex-

ecution state models the content of processor registers

(the general registers eax, ebx, ecx, edx, esi, edi,

and the stack registers esp, ebp) and memory locations

(both stack and heap). Memory locations and registers

can hold both concrete values and symbolic expressions.

In the initial execution state, the program counter con-

tains the address of the first instruction of the main pro-

cedure, the stack registers are initialized to a fixed, con-

crete value, and all the remaining modeled registers and

memory locations are assigned symbolic values.

Symbolic values are introduced in the execution as

the result of reading from registers or memory locations

that have not been assigned a concrete value or after in-

voking library functions that read external input, e.g.,

from files, sockets, and the process environment. In the

example of Figure 1, the call to the getenv() function

introduces a new symbolic value, say v1, which will be

assigned to the register eax.

There are a number of limitations in our symbolic ex-

ecutions. In the current implementation of our approach,

all symbolic values are assumed to represent integers.

We further constrain the expressions to be linear combi-

nations of symbols. Instructions whose effect cannot be

modeled as a linear constraint, e.g., multiplication be-

tween symbolic values, produce as a result the special

symbol unknown, which is used to denote that nothing

can be asserted about the content of the affected register

or memory location.

Branches and Loops While the model described so

far would be sufficient to symbolically execute linear

code, the presence of branch instructions requires the

extension of the execution state with path conditions.

Path conditions are Boolean expressions over the sym-

bolic input values used as parameters in branching in-

structions. More precisely, path conditions represent the

constraints that the symbolic values must satisfy for an

execution to explore the associated path.

In the initial execution state, the set of path con-

ditions is empty. When a branch instruction is exe-

cuted, both its Boolean condition—in general, a sym-

bolic expression—and its negation are evaluated. When

a condition is determined to be feasible, it is added to

the current set of path conditions and the execution is

“forked” to continue along the feasible branch.

In our running example, when the execution reaches

the branch instruction corresponding to the if state-

ment, the symbolic value v1 returned by getenv()

is checked to determine if it is equal to 0. Since the

set of path conditions is empty, both the “true” and

“false” branches are determined to be feasible. There-

fore, the execution is forked, and continues along the

“true” branch with the condition v1 6= 0 and along the

“false” branch with the condition v1 = 0.

To check the feasibility of path conditions, the anal-

ysis has to solve systems of linear expressions. Our cur-

rent prototype uses the Parma Polyhedra Library [1] as

its constraint solver.

The symbolic execution algorithm described so far

would terminate only for programs that contain loops

whose termination condition can be statically deter-

mined. Unfortunately, this is not often the case in prac-

tice. To handle such loops, we then use a simple heuris-

tic: an execution can visit the same loop no more than

three times. At the fourth visit, the execution is inter-

rupted, an approximation of the effects of an arbitrary

number of iterations of the loop is computed, and, fi-

nally, the execution is restarted using the approximated

state. In practice, all registers and memory locations

that were modified in the loop body are assigned the

unknown symbol.

Finally, recursive function calls are terminated imme-

diately, that is, recursive loops are explored only once.

Alias Analysis Two different expressions are said to

be aliases if they point to the same concrete memory

location. Clearly, write operations on the location repre-

sented by an expression should be reflected on all aliased



expressions. Unfortunately, the problem of determining

alias relationships is still open even in high-level lan-

guages [14], and is only exacerbated at the binary code

level. The current prototype takes the optimistic ap-

proach that different expressions refer to different mem-

ory locations. This is supported by the fact that most

compiler-generated code does not in fact use aliased ex-

pressions to point to the same location. A more sophisti-

cated approach could leverage the techniques proposed

in [2, 9] to guarantee sound results without sacrificing

precision, at the cost, however, of a more complex and

expensive analysis.

A related problem is that of write operations on

unknown memory locations. Potentially, any mem-

ory location could be affected by such an operation.

Again, we take the optimistic approach and assume that

no aliasing occurs, i.e., the write operation only affects

a new memory location.

To summarize, the ideal goal of symbolic execution is

to traverse all feasible program execution paths. In prac-

tice, the set of traversed paths will both include infea-

sible paths—e.g., paths for which the constraint solver

cannot statically determine if the associated condition is

infeasible— andmiss feasible paths—e.g., loops that are

not symbolically executed as many times as in a concrete

execution. Nonetheless, symbolic execution is valu-

able in that it provides a framework to implement path-

sensitive and context-sensitive interprocedural analysis.

The precision allowed by symbolic execution comes at

the expense of speed of analysis. We defer to the next

section a discussion of some techniques that we use to

control this problem.

4 Vulnerability Analysis

Our approach uses the information extracted by per-

forming symbolic execution to identify vulnerabilities

in binary code. In particular, we show how taint anal-

ysis can be used to statically detect the use of untrusted

data in sensitive operations. In the current implementa-

tion of our approach, we focus on identifying insecure

uses of the standard C library functions system() and

popen(). Both functions are infamous for being inse-

cure if not used carefully. The problem is that they in-

voke a subshell to execute a command supplied to them

as a string parameter. Thus, if the parameter originates

from an untrusted source and is not carefully sanitized,

system() and popen() can be used to execute arbi-

trary commands.

Despite their issues and constant abuse, system()

and popen() are still widely used. Unfortunately, in-

secure uses of these functions are still common. For ex-

ample, an insecure use of system was recently found

in the scp program of the OpenSSH and Dropbear ap-

plication suites [6].

4.1 Taint Analysis

We approach the problem of identifying insecure uses

of the system() and popen() functions as a gen-

eral taint analysis problem. In taint analysis, data orig-

inating from sources outside of the program’s control is

considered untrusted and is marked as tainted. Then, the

propagation of tainted data through the program is traced

to check whether it can reach security-critical program

points.

Our analysis follows the standard approach to taint

analysis and can be conceptually divided into four main

parts:

1) identification of sources of untrusted data, such as

command line parameters, environment variables, data

read from files, etc.;

2) identification of sensitive sinks (e.g., calls to the

system() and popen() functions);

3) propagation of tainted data;

4) generation of alerts when tainted data reaches a

sensitive sink.

In the current prototype, sources of untrusted data are

identified using various methods. For example, com-

mand line parameters are identified by locating the pa-

rameters passed to the main function. We consider a

parameter of a function to be any memory location that,

within that function, is accessed through a positive dis-

placement from the ebp register. Environment variables

are determined by tracking calls to the getenv() func-

tion provided by the standard C library. Similarly, other

untrusted data, such as the data read from the standard

input, files, or sockets, is identified by tracking calls to

specific library functions, such as read().

In our analysis, we are considering only two sensitive

sinks: the library functions system() and popen().

After library functions have been identified by analyzing

the PLT and the relocation table of a dynamically-linked

binary, any call to the system() or popen() func-



tions can be easily traced. Our tool then raises an alert if

any tainted data is used as a parameter to these functions.

Propagation of tainted data from sources to sinks is

done by using the symbolic execution technique de-

scribed in Section 3.2. In particular, taint propagation

rules determine the effect of each instruction with regard

to the taintedness of its operands. For example, when-

ever a mov instruction is executed with a tainted source

operand, the corresponding destination operand also be-

comes tainted.

Similarly, we model how library functions propagate

taint information; in particular, we specify which param-

eters become tainted after their invocation and whether

their return value is tainted. To identify parameters

passed to library functions we assume that the binary

uses the cdecl calling convention. Then, if the mod-

eled function accepts a well-defined number of parame-

ters, we simply read them from the execution stack. In-

stead, if the function is variadic and accepts a variable

number of parameters, e.g., snprintf(), the analysis

is more complex and relies on a number of simplify-

ing assumptions. First, we assume that the instructions

that move parameters on the stack are all in the same

basic block, i.e., they are not intermixed with branch

instructions. Second, we assume that no parameter is

preserved on the stack between two consequent library

function calls, even if the two calls share all or some of

the parameters. These assumptions hold in our standard

compilation model.

In the current implementation, we have models for

the most frequently used libc functions that may prop-

agate taint information. We taint data read from a

process’ environment (getenv()), from files (e.g.,

read(), fread(), fgets()) and from network

sockets (e.g., recv(), recvfrom()). Since we con-

sider all sources of external data as untrusted, our anal-

ysis is very conservative, thus limiting the possibility of

incurring in false negatives. We also model a number

of functions that can transfer taint information, such as

strdup() and snprintf(). All other library func-

tions are modeled as empty functions that immediately

return after performing the standard function epilogue.

In the example of Figure 1, the analysis identifies

the call instruction corresponding to the invocation of

getenv() as a source and the call instruction corre-

sponding to the invocation of popen() as a sink. The

return value of getenv(), v1, is tainted. We have seen

that the symbolic execution proceeds along three paths.

Along two of these paths the value corresponding to the

variable site, v2, has a concrete value (the address of

the string localhost) and is not tainted. On the re-

maining path, however, taint is propagated from v1 to

v2. The call to snprintf() simply propagates the

taintedness status of its parameters to the symbolic value

associated with the destination buffer, say v3. Finally, v3

is passed as a parameter to the popen() function. Dur-

ing execution of the third path, along which v3 is tainted,

our tool will raise one alert. The other two executions do

not generate any alarm.

The libc library does not provide any well-defined

functions to sanitize user input. From our experience

with C programs, in general, sanitization is done by

developer-written routines that iteratively parse strings

looking for suspicious characters. These routines are of-

ten ad-hoc and error-prone. As a consequence, in our

current implementation we take a conservative approach

and do not model untainting.

4.2 Optimizations

The symbolic execution performed by our tool ex-

plores all possible execution paths in a program. When

performing taint analysis, however, we are only inter-

ested in those paths through which a sensitive sink can

be reached. To this end, examining the remaining paths

would not provide any benefit. To avoid this problemwe

implemented a simple form of program slicing.

Program slicing is a well-known technique that finds

all statements in a programwhich might affect the value

of a given variable at a specific program point [35].

In general, the problem of computing a minimal pro-

gram slice is undecidable. However, there are sophis-

ticated methods that are able to compute highly precise

slices [15]. For our purposes, precision is not the main

issue. Instead, we simply want to conservatively reduce

the number of paths that are explored during taint anal-

ysis.

Therefore, starting from the function main(), we

find all instructions in the binary that are on a path to

a sink (e.g., calls to system() or popen()). We

do this by first constructing the interprocedural CFG of

the analyzed program and subsequently traversing it in

a context-sensitive manner starting from all identified

sinks, terminating when the beginning of main() has

been reached. Even though this technique is not able to



Application
Size (KB) Basic Blocks Basic Blocks Detection Code

after Slicing Time (sec) Coverage

scp 0.47 46.3 1023 599 1 62%

a2ps 4.13 570.6 6403 3499 62 37.4%

ppmcolors 10.33.0 12.0 41 20 1 100%

irexec 0.7.2 7.0 88 36 0.01 100%

autrace 1.0.14 57.7 315 158 - 93%

Table 1. Test Results.

obtain highly precise program slices, in many cases it

prunes execution paths that are not relevant to our anal-

ysis.

This approach, however, has several limitations. A

fundamental precondition of our slicing technique is that

the complete interprocedural CFG for the program be

available. The presence of indirect jumps or calls makes

it harder to satisfy this requirement. While, in general, it

is impossible to statically resolve all indirect transfers of

control, we implemented some heuristics that handle the

most common cases (see Section 3.1 for more details).

If some of the indirect jumps or calls are not resolved,

no slicing is done and the whole program is analyzed.

5 Evaluation

We performed a series of experiments with our proto-

type tool to evaluate its ability to detect taint-style vul-

nerabilities. The test dataset includes two applications

with known taint-style vulnerabilities (Dropbear scp [6]

and GNU a2ps [11]) and a set of utilities that use the

system() and popen() calls. All experiments were

run on a Fedora Core 4 system, equipped with a 3.60

GHz Pentium 4 processor and 2GB RAM. All executa-

bles were obtained using the gcc 4.0.0 compiler using its

standard configuration and the optimization level O2.

Experimental results are shown in Table 1. The table

reports the size of the binaries in KB and in terms of the

number of basic blocks identified by our tool before and

after performing simple slicing. The detection time indi-

cates the time required to identify all code points where

tainted data is used in system() or popen() func-

tions. The coverage column reports the percentage of

basic blocks visited at least once during the first 30 min-

utes of execution. The detection performance results are

reported in Table 2.

When applied to the presented test set, our tool iden-

tifies all uses of tainted data in sensitive operations,

i.e., the false negatives rate is 0%. The tool generates

one false positive in scp, ppmcolors, and irexec.

False positives occur for different reasons. First, our

tool raises an alarm when user-provided input is, by

design, allowed to reach the system() or popen()

functions. Such alarms can be useful to raise the atten-

tion of an analyst or systems administrator on binaries

whose security could be compromised if their intended

use changed (e.g., if they were made accessible to re-

mote, untrusted users). This is the case of the false

positive generated when analyzing scp and irexec.

Second, our tool does not include any form of type in-

ference analysis and, consequently, generates an alert

also when the type of the input prevents a successful at-

tack. In ppmcolors, for example, user input is first

converted to an integer and then used to compose the

command string passed to system(). In this case, an

attacker would not be able to inject a malicious com-

mand in the application. Our tool correctly identifies

autrace as containing no vulnerabilities because the

system() function used in this application does not

utilize any user-provided input.

The symbolic execution technique that underlies our

analysis reconstructs all feasible execution paths in a

program. However, the number of distinct paths in-

creases roughly exponentially with the number of in-

structions and, thus, can be extremely large even in small

programs. Except for the most trivial cases, an exhaus-

tive analysis would then require extremely long execu-

tion time. While this is acceptable in some contexts,

e.g., verification, we believe that a more practical ap-

proach is needed for our detection purposes. Therefore,

we ran our experiments setting a timeout of thirty min-

utes and, in our results, we report only vulnerabilities



Application
Number of Calls

False Positives False Negatives
Total Vulnerable Detected

scp 2 1 2 1 0

a2ps 2 2 2 0 0

ppmcolors 1 0 1 1 0

irexec 1 0 1 1 0

autrace 2 0 0 0 0

Table 2. Analysis Results.

detected during this interval.

In the current prototype of our tool, we have im-

plemented several strategies to explore execution paths

achieving good path coverage and low memory require-

ments. The depth-first search strategy (which consists

of always resuming the last unexplored branch) is op-

timal in terms of memory usage, but can spend signifi-

cant time completely exploring uninteresting paths. The

random selection of unexplored branches has a higher

impact on memory, but covers the search space evenly.

In the reported tests we used a third strategy that com-

bines depth-first and breadth-first search: the execution

proceeds in a depth-first fashion for a given interval of

time. When the time interval elapses, execution resumes

from the branch corresponding to the least executed ba-

sic block in the program and continues in depth-first

mode.

6 Conclusions

We have presented a novel adaptation of binary anal-

ysis techniques to statically detect vulnerabilities in x86

executables. We have described a number of techniques

and heuristics that we use to perform this analysis in

practical cases. We have implemented our approach in

a proof-of-concept tool and evaluated its performances

on a number of real-world programs. The results of our

tests show that the approach is practical and achieves

good detection performances.

In the future, we plan to extend our approach in dif-

ferent directions. First, we intend to include more so-

phisticated analysis, e.g., to better model memory ac-

cesses and the abstraction of loops. Second, we want to

explore the idea of complementing static analysis with

dynamic analysis to detect vulnerabilities in executables.
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