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Abstract. In this paper, we present several weaknesses in the stream cipher RC4.
First, we present a technique to automatically reveal linear correlations in the
PRGA of RC4. With this method, 48 new exploitable correlations have been dis-
covered. Then we bind these new biases in the PRGA with known KSA weak-
nesses to provide practical key recovery attacks. Henceforth, we apply a simi-
lar technique on RC4 as a black box, i.e. the secret key words as input and the
keystream words as output. Our objective is to exhaustively find linear correla-
tions between these elements. Thanks to this technique, 9 new exploitable corre-
lations have been revealed. Finally, we exploit these weaknesses on RC4to some
practical examples, such as the WEP protocol. We show that these correlations
lead to a key recovery attack on WEP with only 9800 encrypted packets (less
than 20 seconds), instead of 24200 for the best previous attack.

1 Introduction

RC4 is a stream cipher designed by Ronald Rivest in 1987. It had initially been a trade
secret until the algorithm was anonymously posted to the Cypherpunks mailing list
in September 1994. Nowadays, RC4 is still widely used: it is the default cipher of
the SSL/TLS protocol and a cryptographic primitive of the WEP(Wired Equivalent
Privacy) and WPA (Wi-Fi Protected Access) protocols. Its popularity probably comes
from its simplicity and the low computational cost of the encryption and decryption
operations. Due to its straightforwardness, RC4 sparked extensive research, revealing
weaknesses in case of misuse. The most famous example is the attack on the WEP
protocol used in IEEE 802.11.

WEP was designed to provide confidentiality on wireless communications by using
RC4. In order to simplify the key set up, WEP uses fixed keys. In wireless communi-
cations, packets may be easily lost. Because of the lack of transport control at the link
level, IEEE 802.11 designers chose to encrypt each packet independently. However,
RC4 is a stream cipher: the same secret key must never be used twice. To prevent any
key repetition, WEP concatenates an initialization vector (IV) to the key, where the IV
is a 24-bit value which is publicly disclosed in the header ofthe protocol. This particu-
lar use of RC4 is subject to many weaknesses. However, RC4 is not generally used with
an IV and almost all the attacks concerning WEP cannot be applied to the plain RC4.
Thus, RC4 is still believed to be secure, even if many weaknesses have been explored.



1.1 Description of RC4

The stream cipher RC4 consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). TheKSA generates an
initial state from a random keyK of ℓ words ofn bits as described in Algorithm 1. It
starts with an array{0,1, . . . ,N−1}, whereN = 2n and swapsN pairs, depending on
the value of the secret keyK. At the end, we obtain the initial stateSN−1.

Algorithm 1 RC4 Key Scheduling Algorithm (KSA)

1: for i = 0 toN−1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 toN−1 do
6: j ← j +S[i]+K[i modℓ] modN
7: swap(S[i],S[ j])
8: end for

Algorithm 2 RC4 Pseudo Random Generator Algorithm (PRGA)

1: i← 0
2: j ← 0
3: loop
4: i← i+1 modN
5: j ← j +S[i] modN
6: swap(S[i],S[ j])
7: keystream wordzi = S[S[i]+S[ j] modN]
8: end loop

Once the initial stateSN−1 is created, it is used by the second algorithm of RC4, the
PRGA. Its role is to generate a keystream of words ofn bits, which will be XORed with
the plaintext to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each
time a new keystream wordzi is needed, according to Algorithm 2. Note that each time
a word of the keystream is generated the internal state of RC4is updated.

Notation. In this paper, we define all the operators such as addition, subtraction and
multiplication in the groupZ/NZ. Thus,x+ y should be read as(x+ y) modN. The
indices of the table respect the C-style programming reference. This means that the first
entry of the table has the index 0. LetSi [k] denote the value of the arrayS at indexk,
after roundi in KSA. S−1 denotes the array whereS[i] = i, wherei = 0,1, . . . ,N−1.
Let S−1

i [p] be the index of the valuep in the arraySafter roundi in KSA. For example,
S−1

i [Si [k]] = k andSi [S
−1
i [p]] = p. Let j i (resp. j ′i ) be the value ofj during the roundi



of KSA (resp. PRGA) where the rounds are indexed with respectto i. Thus, the KSA
has rounds 0,1, . . . ,N−1 and the PRGA has rounds 1,2, . . .. Let S′i denote the arrayS
after theith round of the PRGA (i.e.S′1 is equal toSN−1 with SN−1[1] andSN−1[SN−1[1]]
swapped). We also denoteSN−1 = S′0. In this paper, RC4 is always used withN = 256.
Thus, instead of words we may use bytes, which are equivalent. The keystreamzi is
defined by

zi = S′i [S
′
i [i]+S′i [ j

′
i ] modN] = S′i [S

′
i−1[ j

′
i ]+S′i−1[i] modN] (1)

Let p be an integer andθ = e
2iπ
p . Unless otherwise mentioned,G denotes theZp group.

The Discrete Fourier transform (DFT) of a functionf overGs is defined as

f̂ (c) = ∑
x∈Gs

f (x)θ−c•x

where• is the dot product.

Previous Work. There are two approaches in the study of cryptanalysis of RC4: attacks
based on the weaknesses of the KSA and attacks based on the weaknesses of the PRGA.
Concerning the KSA, one of the first weakness published on RC4was discovered by
Roos [28] in 1995. This correlation binds the secret key bytes to the initial stateS′0.
Roos [28] and Wagner [34] identified classes of weak keys which reveal the secret key
if the first key bytes are known. This property has been largely exploited against WEP
(see [5,9,2,15,16,32,30,29]). Another study of cryptanalysis of the KSA is the secret key
recovery when the initial stateS′0 is known [25,1]. On the PRGA, The analysis has been
largely motivated by distinguishing attacks [7,6,19,21] or initial state reconstruction
from the keystream bytes [8,31,14,22] with complexity of 2241 for the best state recov-
ery attack. Relevant studies of the PRGA reveal biases in thekeystream output bytes
in [20,27]. Mironov in [23] recommends that the first 512 initial keystream bytes must
be discarded to avoid these weaknesses. Jenkins published in 1996 on his website [11]
two biases in the PRGA of RC4. These biases have been generalized by Mantin in his
Master Thesis [18] asuseful states. Paul, Rathi and Maitra [26] discovered in 2008 a
biased output index of the first keystream word generated by the PRGA. Ultimately,
the last bias on the PRGA has been experimentally discoveredby Maitra and Paul [17].
In practice, key recovery attacks on RC4 must bind KSA and PRGA weaknesses to
correlate secret key words to keystream words. Some biases on the PRGA [13,26,17]
have been successfully bound to the Roos correlation [28] toprovide known plaintext
attacks.

Our Contributions. Since, almost all known PRGA correlations have been experimen-
tally found, we propose a method to exhaustively reveal new weaknesses in the PRGA.
From 4 known biases in the PRGA, we have found 48 additional new exploitable cor-
relations thanks to this technique. To provide key recoveryattacks on RC4, we must
bind KSA and PRGA weaknesses, we show that some of these new correlations can
be bound to KSA vulnerabilities and lead to new key recovery attacks. Subsequently,
we present another technique which does not consider the KSAand the PRGA, but



only RC4 as a black box with the secret key words as input and the keystream words
as output. Similar to the previous technique, we exhaustively search for correlations to
rediscover the 3 known biases. Thanks to this technique, we have discovered 9 addi-
tional exploitable correlations between the secret key andthe keystream words. Then,
we exploit the known and new weaknesses against plain RC4 (with 48 first keystream
words known by the attacker) and we obtain a key recovery attack with a complexity of
2122.06 instead of 2128 for RC4 withN = 256 and a key length of 16 bytes.

We also show that some of these correlations can be applied toWEP, decreasing the
number of required encrypted packets to 9800. The best previous key recovery attacks
on WEP needed 24200 encrypted packets [32,29] for the same success probability. This
permits to recover a WEP key of 104 bits with a passive ciphertext only attack in less
than 20 seconds in practice. This new attack is the best key recovery on WEP to our
knowledge.

Structure of the Paper. In Section 2 we briefly explore known correlations in the
PRGA of RC4. Section 3 details the technique used to visuallyrepresent correlations
in the PRGA. Then, we describe the new biases discovered withour technique. In Sec-
tion 4 we bind some of these new PRGA correlations with known KSA weaknesses
to provide practical attacks on RC4. In Section 5 we detail another kind of exhaustive
search where RC4 is a black box with the secret key words as input and the keystream
words as output. Then, we present the new correlations foundwith this technique. Sec-
tion 6 briefly describes a practical application of these biases to RC4 and RC4 with an
IV such as used by WEP and WPA. Finally, we conclude.

2 Known Correlations in the PRGA of RC4

Jenkins Correlation. In 1996, Robert Jenkins described in his website [11] two biased
correlations experimentally found on the PRGA of RC4. The first correlation considers
the case whereS′i [i] +S′i [ j

′
i ] = j ′i . Thus, theith keystream byte given by Equation (1)

becomes

zi = S′i [S
′
i [i]+S′i [ j

′
i ]] = S′i [ j

′
i ] = j ′i −S′i [i] (2)

which holds with probability of 2/N instead of 1/N with i = 1,2, . . .. The second corre-
lation appears whenS′i [i]+S′i [ j

′
i ] = i. In this case, theith byte of the keystream is given

by

zi = S′i [S
′
i [i]+S′i [ j

′
i ]] = S′i [i] = i−S′i [ j

′
i ] (3)

which holds with probability of 2/N.

Mantin and Shamir Correlation. Mantin and Shamir [20] discovered a biased distri-
bution for the second keystream word.

Theorem 1. Assume an initial state S′0 is chosen randomly. The probability that the
second keystream word z2 of RC4 is 0 is approximately2/N instead of1/N.



Paul, Rathi and Maitra Correlation. In 2008, Paul, Rathi and Maitra [26] described a
biased correlation between the three first words of the secret key and the first keystream
wordz1 of RC4.

Theorem 2. Assume that the initial state S′0 is chosen uniformly at random from the set
of all possible permutations of the set{0,1, . . . ,N−1}. Then the probability distribution
of the output index S′1[1]+S′1[S

′
0[1]] = S′−1

1 [z1] that selects the first byte of the keystream
output is given by

P
(

S′1[1]+S′1[ j
′
i ] = x

)

=











1
N for odd x
1
N −

2
N(N−1) for even x6= 2

2
N −

1
N(N−1) for even x= 2

3 Visual Representation of Correlations in the PRGA

In general, the methods used to find correlations in RC4 are either opportunistic or not
given. Papers tend to describe the characteristics of the biases without revealing the
techniques used to discover them. We propose to describe some simple but efficient
techniques to highlight weaknesses in the PRGA through exhaustive search on a subset
of elements.

We define a set of linear equations which contains all the known biased correlations
of the PRGA described in the previous section. Our objectiveis to highlight linear
correlations between the internal values of a round of the PRGA and the keystream word
generated by this round i.e. the subset of elements{i, j ′i ,S

′
i [i],S

′
i [ j
′
i ],zi}. The correlations

previously discovered by Jenkins, Mantin and Shamir and Paul, Rathi and Maitra must
be rediscovered with this method. Surprisingly, some new biases are found as well. We
define the linear equations as

(a0 · i +a1 · j
′
i +a2 ·S

′
i [i]+a3 ·S

′
i [ j
′
i ]+a4 ·zi) modN = b (4)

where theai ’s are elements ofZ/256Z andb is a fixed value inZ/256Z. This defines
248 linear equations. To reduce this number, we decompose theseequations into 256
subgroups. Each of them corresponds to a specific round (i.e.i is fixed). Thus, both
a0 · i andb can be merged into one value and Equation (4) becomes

(c0 · j
′
i +c1 ·S

′
i [i]+c2 ·S

′
i [ j
′
i ]+c3 ·zi) modN = C (5)

whereC = (b−a0 · i) mod 256 andci ’s are elements ofZ/256Z. Since the number of
linear equations is still too large, we limit the coefficients set of theci ’s to {−1,0,1}.
Indeed, this set is enough to include all the previously known biased correlation in the
PRGA. We obtain 256 graphs of 81 linear equations. We compute256 first rounds of
the PRGA with 109 randomly chosen RC4 secret keys of 16 bytes and we verify all the
linear equations described by Equation 5. For every equation, a counter is incremented
when it holds. Subsequently, we represent these counters asa graph to visually illustrate
potential biases. Human brains are very efficient to visually detect anomalies in uniform



EquationsC

Counters

Fig. 1: 3D representation of the equations of the second round of the PRGA according
to C and the counters of the equations. The objective of this graph is to visually detect
biased.

distributions (see Figure 1). Below we give the biased correlations found for the 256
first keystream bytes (fromz1 to z256) generated by the PRGA. Every coefficientci has
been replaced by the corresponding element to provide an easier reading of the table
(i.e. j ′i must be read asc0, S′i [i] asc1, etc.). Correlations withzi (i.e. c3 6= 0) are called
New XXX and biases withoutzi (i.e.c3 = 0) are named Newnoz XXX.

In Figure 2, we confirm the presence of known biases such as theJenkins cor-
relations. More interestingly, new biases in the PRGA appear. Some of them have a
probability of success which depends on the value ofi.

Some rounds of the PRGA provide additional biased correlations. In Figure 3, we
give extra biases which appear in round 1. Figure 4 depicts the additional correlations in
the second round of the PRGA. Finally, Figure 5 describes further biased correlations in
rounds 0 mod 16 of the PRGA. The probability of the biased correlations New001 and
New 002 depends on the round of the PRGA and the value C. In Figure 6we show the
success probability of New001 according toC and the rounds 1, 16, 32, 64, 128, 192
and 256 of the PRGA. Similarly, we compute the evolution of the success probability
of the biased correlations New002 in Figure 8. Figure 7 gives the 3D representation of
the same bias. Figure 9 depicts the same bias for all the first 256 rounds of the PRGA
using a 3D representation.

3.1 Spectral Approach to Derive New Biases

Another systematic method to derive linear relations is to use Fourier transform of the
type f of the distribution that some state bits of RC4 is following.We can use exactly
the same approach to derive a linear relation between the main key bits and the key
stream. Deploying this method overZs

256, we can derive somegoodlinear relations. We
call a linear relation good if the probability of Equation (4) occurring is much higher
than expected (≫ 1

N ). We use the 4-tuple defined above as an example. In fact, we can
use exactly the same method to derive biases for linear relations in Section 5.2 between
the secret key and keystream. To deal with this problem, we assumeG = Z256 and we
query RC4 forN vectorsVt ∈ ( j ′i ,S

′
i [i],S

′
i [ j
′
i ],zi)t ∈G4 for 1≤ t ≤N and we define a



j ′i S′i [i] S′i [ j
′
i ] zi C ProbabilityRemark

1 -1 0 -1 0 2/N Jenkins Equation (2)
0 0 1 1 i 2/N Jenkins Equation (3)
0 1 1 -1 0 1.9/N New 000
0 1 1 -1 1 0.89/N New 001
...

...
...

...
...

...
...

0 1 1 -1 255 1.25/N New 001
0 1 1 1 0 0.95/N New 002
...

...
...

...
...

...
...

0 1 1 1 255 0.95/N New 002
1 1 0 0 0 0.95/N New noz 000
...

...
...

...
...

...
...

1 1 0 0 255 0.95/N New noz 000
1 1 -1 0 i 2/N New noz 001
1 -1 1 0 i 2/N New noz 002
1 -1 0 0 1 0.9/N New noz 003
...

...
...

...
...

...
...

1 -1 0 0 255 1.25/N New noz 003
1 -1 0 0 0 1.9/N New noz 004
0 0 1 0 i+1 1.36/N New noz 005
...

...
...

...
...

...
...

0 0 1 0 255 0.9/N New noz 005
0 0 1 0 i 2.34/N New noz 006

Fig. 2: correlations experimentally observed for rounds 1,2,3, . . . ,256 of the PRGA.
Note that probability of biases New000, Newnoz 005 and Newnoz 006 decrease ac-
cording to i. The probabilities given in this table correspond to round 3(i.e. i = 3).
New noz 004 and Newnoz 006 are not biased wheni = 1.

j ′i S′i [i] S′i [ j
′
i ] zi C ProbabilityRemark

0 1 0 -1 0 0.95/N New 003
0 1 1 0 2 1.95/N Paul, Rathi and Maitra
1 1 0 0 2 1.94/N New noz 014

Fig. 3: Additional biased correlations experimentally observed using Equation (5) in the
first round of the PRGA (i.e.i = 1).

function f as follows.

f (x) = counter(x) =
1
N

N

∑
t=1

1Vt=x



j ′i S′i [i] S′i [ j
′
i ] zi C ProbabilityRemark

0 0 0 1 0 2/N Mantin and Shamir [20]
1 -1 1 -1 0 2/N New 004
1 1 0 -1 even 1.0183/N New 005
1 1 0 -1 odd 1.0316/N New 006
1 0 1 0 6 2.37/N New noz 007
1 0 -1 0 255 0.75/N New noz 008
1 -1 1 0 0 2/N New noz 009
0 -1 1 0 0 0.95/N New noz 010

Fig. 4: Additional biased correlations experimentally observed using Equation (5) in the
second round of the PRGA (i = 2). Note that the probability of success of correlations
New 005 and New006 decreases according to the valueC.

j ′i S′i [i] S′i [ j
′
i ] zi C ProbabilityRemark

0 0 0 1 -i 1.0411/N New 007
0 0 1 -1 i 1.0500/N New 008
0 0 1 1 -i 1.0338/N New 009
0 1 1 0 -i 1.1107/N New noz 011
0 1 0 0 -i 1.1276/N New noz 012
0 1 -1 0 -i 1.1067/N New noz 013

Fig. 5: Additional biased correlations experimentally observed using Equation (5) in
rounds 0 mod 16 of the PRGA. Note that the probability of success of these correla-
tions decreases according to the valuei and become barely exploitable wheni > 48.
Probabilities given in this table come from round 16.

 0.0034

 0.0036

 0.0038

 0.004

 0.0042

 0.0044

 0.0046

 0.0048

 0.005

 0  50  100  150  200  250  300

P
ro

b
a

b
ili

ty
 o

f 
S

u
cc

e
ss

C

Round 001
Round 016
Round 032
Round 064
Round 128
Round 192
Round 256

Fig. 6: Probability of success of biased correlation New001, according the valueC for
some rounds of the PRGA.

wherex ∈ G4. In fact, f is thetypeof the distribution the 4-tuples are following. De-
ploying DFT on f , we have

f̂ (c) = ∑
x

θ−c.x f (x) = ∑
C

∑
x:c.x=C

θ−C f (x) = ∑
C

θ−C. Pr[c . v=C]

Then, we follow this approach: we compute| f̂ (c)|2 for c’s such that this norm is high.
Filtering thosec’s yields ”good”c’s.
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Fig. 7: Probability of biased correlation New001, according the valueC for the first
256 rounds of the PRGA, using a 3D representation.
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Fig. 8: Probability of success of biased correlation New002, according the valueC for
some rounds of the PRGA.
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Fig. 9: Probability of biased correlation New002, according the valueC for the first
256 rounds of the PRGA, using a 3D representation.

We construct the table| f̂ (c)|2 of all linear masks and filter out c’s that leads to small
value for| f̂ (c)|2. This remains us somec’s. Then, we can exhaustively search in thec’s
left and find the goodc′s. This method is much faster than exhaustive search. Assume



we consider the linear relation between the elements of the vector( j ′i ,S
′
i [ j
′
i ],zi) instead

of ( j ′i ,S
′
i [i],S

′
i [ j
′
i ],zi). This already gives us all biases quite fast. This method canbe

easily generalized to the case whenS′i [i] is also involved and it is dramatically faster
than exhaustive search.

The complexity of this method for the triplet case is 3.232, while for exhaustive
search the complexity reaches to 247 if N = 107, which is a reasonable number of sam-
ples we found out experimentally. This will gain us all the biases for the triplet over
Z3

256. Using this method, we found out some new biases. We only listthose which are
not artifact of known biases and which can be bound with biases of KSA. They are listed
in Fig 10. Any time the coefficient ofS′i [ j

′
i ] is one in the table, we can use that equation

to bind it like what would be explained in the next section forbinding New008 and
New 009 biases. This method removes the restriction on coefficients to be only in the
set{−1,0,1}. Using these technique, we can recover all biases inZ4

256 in a reasonable
time.

j ′i S′i [i] S′i [ j
′
i ] zi C i ProbabilityRemark

0 0 1 1 240 16 1.04/N New 010
0 0 1 50 224 16 1.04/N New 011
0 0 1 68 192 16 1.05/N New 012
0 0 1 98 224 16 1.04/N New 013
0 0 1 148 192 16 1.05/N New 014
0 0 1 162 224 16 1.05/N New 015
0 0 1 186 96 16 1.03/N New 016
0 0 1 187 80 16 1.04/N New 017
0 0 1 251 80 16 1.04/N New 018
0 0 2 19 208 16 1.04/N New 019
0 0 2 127 16 16 1.04/N New 020
0 0 2 147 208 16 1.04/N New 021
0 0 2 255 16 16 1.04/N New 022
0 0 4 59 80 16 1.04/N New 023
0 0 4 123 80 16 1.04/N New 024
0 0 8 19 208 16 1.04/N New 025
0 0 8 55 144 16 1.03/N New 026
0 0 8 81 240 16 1.03/N New 027
0 0 8 215 144 16 1.03/N New 028
0 0 8 241 48 16 1.03/N New 029
0 0 8 243 208 16 1.04/N New 030
0 0 32 39 144 16 1.04/N New 031
0 0 32 191 16 16 1.04/N New 032

Fig. 10: correlations in PRGA derived using DFT. If coefficient of S′i [ j
′
i ] is one, that

equation can be bound with KSA biases.

After investigation, it seems that all the listed biases areartifact of a new conditional
bias which is

Pr[S′16[ j
′
16] = 0|z16 =−16] = 0.038488



So far, we have no explanation about this new bias.

4 Binding PRGA and KSA Weaknesses

Since we have new PRGA biased correlations, we have to bind them with KSA weak-
nesses to provide key recovery attacks.

4.1 Known Binding between KSA and PRGA Weaknesses

Already known bindings between KSA and PRGA have been exploited. In 2006, Klein [12,13]
demonstrated that the Jenkins correlation of the PRGA and some weaknesses in the
KSA can be combined.

S′i [ j
′
i ]

Pj
= i−zi from Equation (3) withPj = 2/N (6)

S′i [ j
′
i ] = S′i−1[i] step 6 of the PRGA (7)

S′i−1[i]
P′
= Si [i] P′ = ((N−1)/N)N−2 (8)

Si [i] = Si−1[ j i ] KSA (9)

j i = Si−1[i]+ j i−1+K[i] step 6 of the KSA (10)

From (6) with respectively (7), (8), (9) and (10) we have

K[i]
PKlein= S−1

i−1 [i−zi modN]−Si−1[i]− j i−1 modN (11)

which holds with probability

PKlein =
2
N
·

(

N−1
N

)N−2

+
N−2

N(N−1)
·

(

1−

(

N−1
N

)N−2
)

≈
1.36
N

(12)

In 2007, Vaudenay and Vuagnoux [32] improved this attack by using the Roos correla-
tion and the repetition of the secret key moduloℓ. Thus, the sum of the secret key bytes
can be recovered with

i

∑
y=0

K[y]
PKleinImproved

= i−zi−
i · (i +1)

2
modN (13)

with success probability ofPKleinImproved(i) defined by

PC(i) =
(

N−1
N

)i
·∏i

k=1

(

N−k
N

)

·
(

N−1
N

)N−2

PKleinImproved(i) = 2
N ·PC(i)+ N−2

N(N−1) · (1−PC(i))
(14)

for any i−zi modN 6= {0,1, . . . , i−1}.



4.2 Binding New PRGA Bias where S′i [ j
′
i ] is Involved

Interestingly, from the Jenkins correlation described byS′i [ j
′
i ] = i−zi and Equation (13)

we have

S′i [ j
′
i ]

PKleinImproved
=

i · (i +1)
2

+
i

∑
y=0

K[y] modN (15)

for the same success probability. Hence, every new biased equation containingS′i [ j
′
i ]

and public values such asi andzi can be exploited as key recovery attack.

New 009 (−i−Si [ j ′i ] = zi). This biased correlation concerns rounds 0 mod 16 of the
PRGA. The success probability is 1.0338/N for round 16. Using the same technique
described above, we can exploit this bias to recover the secret key sum

i

∑
y=0

K[y]
P0=−i−zi−

i · (i +1)
2

modN

with a success probability equal to

P0(i) =
1.0338

N
·PC(i)+

N−1.0338
N(N−1)

· (1−PC(i))

for any−i−zi modN 6= {0,1, . . . , i−1} andi = 16.

New 008 ( −i +Si [ j ′i ] = zi). Similarly, we can exploit this biased equation using the
same technique

i

∑
y=0

K[y]
P1=−i +zi−

i · (i +1)
2

modN

with a success probability equal to

P1(i) =
1.05
N
·PC(i)+

N−1.05
N(N−1)

· (1−PC(i))

for any−i +zi modN 6= {0,1, . . . , i−1} andi = 16.

4.3 Exploiting Additional Biased Linear Correlations in the PRGA

The binding between KSA weakness and PRGA biases presented above is an example
of a practical application of the correlations discovered in the previous section. We did
not find a way to exploit biases whereS′i [i] or j ′i are involved. However, these correla-
tions could be exploited in future work.



5 RC4 as a Black Box

In Section 4 we have seen that secret key words and keystream words may be corre-
lated if weaknesses in the KSA and PRGA can be bound. However,from an attacker’s
point of view there is no reason to determine weaknesses in the KSA or the PRGA. The
objective is to find correlations between known values and the secret key words. More-
over, the biased correlations previously found concern only elements inside a round of
the PRGA. Correlations between elements from different rounds cannot be highlighted.

In this section, we present another way to attack RC4. We consider RC4 as a black
box. The objective is to discover linear correlations between the input (the secret key
words) and the output (the keystream words), since we consider known keystream at-
tacks. First, we study known RC4 correlations between the keystream words and the
secret key words. Then, we propose a method to highlight new biases. Finally, we list
new discovered biases in RC4.

5.1 Maitra and Paul Correlation

In 2008, Maitra and Paul [17] discovered a new experimental observation on RC4 which
holds with probability of≈ 1.10/N for i = 0.

zi+1
PMaitra=

i · (i +1)
2

+
i

∑
y=0

K[y] (16)

Maitra and Paul did not find any practical application for this bias in protocols using or
based on RC4. However, from Equation 15 we can rewrite Equation (16) as

zi+1
PMaitra= S′i [ j

′
i ]

This bias has not been found with our previous technique, since these elements are not
in the same round of the PRGA. However, with the black box technique we are able to
rediscover this bias and new ones.

5.2 Discovering New Linear Correlations in RC4

We define a linear equation containing input and output elements.

(a0 ·K[0]+ . . .+aℓ−1 ·K[ℓ−1]+aℓ ·z1+ . . .+aN+ℓ−1 ·zN) modN = b (17)

This kind of exhaustive search is identical to those presented in Section 3. First, we
consider the subset of allai ’s defined byA= {−1,0,1} andb∈ Z/NZ. The number of
equation isN ·3ℓ+N = 2439.11 for N = 256 andℓ= 16, which is obviously too large for
an exhaustive search.

Based on the pseudo T-function’s behavior of the KSA (i.e.SN−1[i] depends only on
K[i−1],K[i−2], . . . ,K[0] with a non negligible probability) and the Roos correlation,
we can reduce the size of the equation by considering only thefirst ℓ keystream words.
Equation (17) becomes

(a0 ·K[0]+ . . .+aℓ−1 ·K[ℓ−1]+aℓ ·z1+ . . .+a2ℓ−1 ·zℓ) modN = b (18)



Thus, we obtain a number of equations equals toN ·32ℓ = 258.7 which is still too large
for an exhaustive search. Thus, we reduced the secret keys length toℓ= 5 bytes to obtain
223.8496 equations. Indeed, based on the pseudo T-function behavior’s of the KSA, we
suppose that the correlations found with a RC4 key length of 5bytes can be generalized
to RC4 with a secret key of 16 bytes. Then, the supposed biasedcorrelation are tested
experimentally. After a few computation, we remarked that the constant value repre-
sented byb can be reduced to the subset generated byi · (i+1)/2 with i = 0,1,2. . . ,22,
since only the Roos correlation seems to be exploited in the KSA. Thus, the number of
equations decreases to 23·310 = 220.373. Figure 11 gives the correlations found in RC4
with a secret key of 5 bytes which are experimentally confirmed on RC4 with a key
length of 16 bytes.

Equation ProbabilityRemarks
z1+K[0]+K[1] = 0 1.35779/N Klein Improved
z1−K[0] = 0 1.11784/N Maitra and Paul
z2 = 0 2.01825/N Mantin and Shamir
z2+K[0]+K[1]+K[2] =−1 1.36095/N Klein Improved
z1−K[0]−K[1] = 1 1.04237/N New bb 000
z1−K[0]+K[1] =−1 1.04969/N New bb 001
z3+K[0]+K[1]+K[2]+K[3] =−3 1.35362/N Klein Improved
z3−K[0]+K[3] =−3 1.04620/N New bb 002
z1−K[0]−K[1]−K[2] = 3 1.33474/N Roos/Paul et al.
z2−K[0]−K[1]−K[2] = 3 0.64300/N New bb 003
z3−K[0]−K[1]−K[2] = 3 1.13555/N Maitra and Paul
z2+K[1]+K[2] =−3 1.36897/N New bb 004
z2−K[1]−K[2] = 3 1.36733/N New bb 005
z1−K[2] = 3 1.14193/N New bb 006
z1+K[0]+K[1]−K[2] = 3 1.14116/N New bb 007
z4−K[0]+K[4] = 4 1.04463/N New bb 008
z4+K[0]+K[1]+K[2]+K[3]+K[4] =−6 1.35275/N Klein Improved
z4−K[0]−K[1]−K[2]−K[3] = 10 1.11432/N Maitra and Paul

Fig. 11: Biased correlations experimentally observed withthe black box technique with
ℓ= 5 in Equation 18. Note that these biases are exploitable in RC4 with a secret key of
16 bytes as well.

For every indexi corresponding to the index of a key byte, letdi the number of
biased equations we have for̄K[i] = K[0]+ · · ·+K[i]. Let pi, j be the probability of the
jth equation for this byte. The list of biases we use is depicted in Fig 12.

If the key has sizeℓ, indicesi = k.ℓ− 1 correspond to the same byte, so we can
merge the associated list of biases. Similarly, ifK̄[ℓ− 1] is known, indices which are
equal moduloℓ correspond to the same byte, so we can merge these lists as well. Let
p′i, j be the table of merged lists andd′i be the length of listp′i, j .



Equation ProbabilityRemarks
K̄[0]−z1 = 0 1.10873/N Maitra and Paul
K̄[1]+z1 = 0 1.36467/N Klein Improved
K̄[1]−z1 = 255 1.04237/N New bb 000
K̄[2]−z2 = 253 0.64300/N New bb 003
K̄[2]+z2 = 255 1.36036/N Klein Improved
K̄[2]−z3 = 253 1.12742/N Maitra and Paul
...

...
...

K̄[14]+z14 = 165 1.22758/N Klein Improved
K̄[14]−z15 = 151 1.06444/N Maitra and Paul
K̄[15]+z15 = 151 1.21317/N Klein Improved
K̄[15]−z16 = 136 1.07519/N Maitra and Paul
K̄[15]+ K̄[0]−z16 = 104 1.01838/N New 008
K̄[15]+ K̄[0]+z16 = 104 1.01242/N New 009
K̄[15]+ K̄[0]+z16 = 136 1.19880/N Klein Improved
K̄[15]+ K̄[0]−z17 = 136 1.05983/N Maitra and Paul
...

...
...

K̄[15]+ K̄[14]+z30 = 77 1.04582/N Klein Improved
K̄[15]+ K̄[14]−z31 = 47 1.02118/N Maitra and Paul
2K̄[15]+z31 = 47 1.03963/N Klein Improved
2K̄[15]−z32 = 16 1.03833/N Maitra and Paul
2K̄[15]+ K̄[0]−z32 = 208 1.009/N New 008
2K̄[15]+ K̄[0]+z32 = 208 1.0062/N New 009
2K̄[15]+ K̄[0]+z32 = 16 1.03403/N Klein Improved
...

...
...

2K̄[15]+ K̄[14]+z46 = 57 1.00027/N Klein Improved
3K̄[15]+z47 = 199 0.99951/N Klein Improved

Fig. 12: Useful biases in key recovery attack on RC4 forℓ= 16.

6 Key Recovery Attacks

6.1 Theoretical Key Recovery Attack on Plain RC4

We consider RC4 withN = 256 and a secret key lengthℓ = 16 bytes. Thus, the ex-
haustive search has complexity of 2128. Using all the exploitable biased correlations
presented in this paper and the previously known biases in RC4 and considering that
they are independent, we are able to recover the RC4 secret key words from the 48 first
keystream words (known keystream attack) with a complexityof 2122.06. In fact, the
probability that all key bytes are expressed by at least one bias is

p≈
ℓ−1

∏
i=0



1−
d′i

∏
j=1

(1− p′i, j)







and the number of combination of biases isk = ∏ℓ−1
i=0 d′i . So the average complexity is

k
2 with success probabilityp. The average complexity by iterating isk

p. With our table,

we computep≈ 2−87.90 andk≈ 238.09. Thus, the complexity of attacking plain RC4
would be 2125.99.

Note thatp is optimized this way, but notkp. By taking only the largest bias for each

byte, we obtaink
p = 2122.06 with k= 1.

6.2 Practical Key Recovery Attack on WEP

To provide a practical use of these attacks, we tried to deploy them on RC4 with an IV
such as used by the protocol WEP or WPA. For some people, attacking WEP is like
beating a dead horse, since it has been already badly broken [5,9,2,15,16,32,30,29].
First, the new biases presented in this paper are related to the stream cipher RC4. WEP
is an example of a practical exploitation of these biases. Moreover, the cryptanalysis
of WEP is one of the most applied cryptographic attack in practice. Indeed, tools such
asAircrack [4] are massively downloaded to provide a good example of weaknesses in
cryptography.

In the case of WEP and WPA, the first 3 bytes are known and the key isa repetition
of ℓ = 16 bytes. So, we can remove theP0, j ,P1, j ,P2, j lists, redo the merge operation,
then merge the lists fori′ = 3,4, . . . ,15. In practice, this givesk ≈ 231.77 biases and
results inp= 2−70.57. So, we have a complexity ofkp ≈ 2102.34 to recover the full key
K with a single packet.

We picked the same key recovery algorithm described in [32],but we added known
and new correlation presented in this paper. We also includeall conditional biases from
the Korek attacks [15,16,3] with the improvement describedin [32,33]. The complexity
of the key recovery attacks on WEP depends on the number of encrypted packets cap-
tured. For every captured packet, we sort the list of potential secret keys given by the
key recovery attacks and we test the first 106 keys according to this list. See [32] for
more details. The previous best key recovery attack described in [32] and better imple-
mented in [29] needs 24200 packets to recover a secret key of 104 bits with a success
probability> 1/2. With the new key recovery described in this paper, we are able to
recover the secret key with an average of 9800 encrypted packets for the same success
probability. This complexity of 9800 packets was measured experimentally by running
the attacks on 106 random secret keys. This represents the best key recovery attack on
WEP to our knowledge.

6.3 Theoretical Key Recovery Attacks on WPA

In order to correct the weaknesses on WEP discovered before 2004, the Wi-Fi Alliance
proposed a WEP improved protocol called WPA [10]. It has been established that WPA
must be hardware compatible with existing WEP capable devices to be deployed as a
software patch. Basically, WPA is a WEP wrapper which containsanti-replay protec-
tions and a key management scheme to avoid key reuse. In 2004,Moen, Raddum and
Hole [24] discovered that the recovery of at least two RC4 packet keys in WPA leads to



a full recovery of the temporal key and the message integritycheck key. The complexity
of this attack is defined by the exhaustive search of two 104-bit long keys, i.e. 2104.

Almost all known and new key recovery attacks on WEP can be applied to WPA.
Only the Fluhrer, Mantin and Shamir attack [5] is filtered. Indeed, WPA encryption
is similar to WEP, using RC4 with an IV. But, WPA uses a differentsecret key for
every encrypted packet. Once from the same segment of 216 consequetive packets, two
keys are successfully recovered, the Moen, Raddum and Hole attack can be applied.
However, the attack in Section 6.2 has a success probabilityp too low to recover two
keys. The actual application to attacking WPA is left for future work.

7 Conclusion

In this paper, we have seen some techniques to exhaustively highlight linear correlations
in RC4. First, we have considered only the elements inside a round of the PRGA. Then,
we have generalized this method to the whole RC4 as a black boxwith the secret key
words as input and the keystream words as output. These techniques led to the discovery
of 57 new correlations in RC4. Some of them can be directly applied to existing key
recovery attacks on RC4, WEP and WPA. For example, a WEP secret key of 128 bits
(104 unknown bits) can be recovered in less than 20 seconds, the time to eavesdrop at
least 9800 encrypted packets. This is the best attack on WEP toour knowledge.

However, the main interest of this paper is the application of an automated discov-
ery of weaknesses in ciphers. Similar to fuzzing techniquesused to highlight security
vulnerabilities in computer systems, these methods, although relatively simple, reveal
an impressive number of new weaknesses in a intensively analyzed stream cipher such
as RC4. This may suggest a new kind of automated tools for cryptanalysts. Indeed,
weaknesses in network protocol or computer systems are largely found by automated
tools such as fuzzers, negative testers or black box analyzers. With the results presented
in this paper, it may be interesting to adapt these tools for cryptanalysis.
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