

Advanced site-to-site IPsec VPN

BRKSEC-3006

Frédéric Detienne

Cisco Networkers 2007

HOUSEKEEPING

- We value your feedback, don't forget to complete your online session evaluations after each session and complete the Overall Conference Evaluation which will be available online from Friday.
- Visit the World of Solutions on Level -01!
- Please remember this is a 'No Smoking' venue!
- Please switch off your mobile phones!
- Please remember to wear your badge at all times including the Party!
- Do you have a question? Feel free to ask them during the Q&A section or write your question on the Question form given to you and hand it to the Room Monitor when you see them holding up the Q&A sign.

Sessions objectives

- We first introduce the latest DMVPN enhancements
- With those, we will target the creation of large IPsec VPN meshes

DMVPN is best fit to achieve our goal

Enhancements are needed to easily and efficiently scale

Agenda

- Introducing DMVPN phases
- DMVPN phase 2 recollection

DMVPN phase 2 resolution forwarding

DMVPN phase 2 data forwarding (CEF vs. Process)

DMVPN phase 3 enhancements

Shortcut Switching

CEF and process switching resolution

NHRP forwarding

NAT improvements

Troubleshooting enhancements

Designing with DMVPN phase 3

Basic design – passing the 1,000 nodes barrier with a single hub

Dual homed design – hub resilience

Very large scale DMVPN design – limitless aggregation

DMVPN phases

2-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public

DMVPN phases

- DMVPN was introduced in IOS 12.2(13)T
 All the features were present but it suffered from bugs
 Cisco recommended hub&spoke topologies only
 This was DMVPN phase 1
- With 12.3(1) Mainline, spoke-to-spoke was stable
 Cisco gave green light to dynamic meshes
 This was DMVPN phase 2

DMVPN phase 2

DMVPN phase 2 applies to

```
12.3 mainline; i.e. 12.3(1) \rightarrow 12.3(...)
12.4 mainline; i.e. 12.4(1) \rightarrow 12.4(...)
12.4(1) T \rightarrow 12.4(4) T
```

DMVPN phase 2 has been widely deployed

Successfully: networks up to 13,000 nodes were deployed

Both in hub & spoke and spoke-to-spoke

DMVPN phase 2 "recollection"

- Phase 2 shows discrepancies in the switching paths CEF and process do not work the same at all
- Multi-hubs are difficult to configure Resolutions follow the NHS path
 - → Need for hub daisy chaining → tricky
- Routing protocols are difficult to scale
 - No way to summarize in spoke-to-spoke mode
 - → can't redistribute into other protocols at hubs
- DMVPN phase 2 worked well but

There was room for improvement

DMVPN phase 3

 From 12.4(6)T onward, a series of features appeared that facilitate DMVPN scalability

More natural CEF vs. process comparisons

Resolution request forwarding changes

CEF Shortcut Switching

NAT handling improvements

12.4(9)T also introduces troubleshooting aids

Phase 3 focuses on

scalability and maintainability of dynamic meshes

DMVPN phase 2 – data forwarding CEF vs process

BRKSEC-3006 © 2006 Cisco Systems. Inc. All rights reserved. Cisco Public 1

DMVPN phase 2 – Design Style

 In DMVPN phase 2 the spoke routing table determines when to build spoke-to-spoke tunnels

Dynamic Spoke-Spoke Tunnels Phase 2 data forwarding

- DMVPN phase 2 behaves differently when in CEF switching or Process switching
- CEF switching

IP Next-hop from routing table

Next-hop → hub → data packets via hub

Next-hop → spoke → data packets direct

Process-switching

Routing selects outgoing interface and IP next-hop

NHRP overrides IP next-hop from routing by snooping the destination address of the packet

Data packets via hub while spoke-spoke tunnel is coming up, then direct. Temporary punting to the hub is done in process switching

NHRP Resolution CEF Switching

Building Spoke-Spoke tunnels CEF Switching

NHRP Resolution Process Switching

Building Spoke-Spoke tunnels Process Switching

DMVPN phase 2 – Multi hubs

RKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved Cisco Public

DMVPN phase 2 **NHRP** resolution forwarding

- A unique hub may not be able to aggregate all spokes
 Large environments require multiple hub
- To build spoke-to-spoke tunnels, a spokes need the NBMA address of the remote spoke
 - → NHRP resolution requests are sent to the NHS
- The target spoke may not be known on the hub

An other hub may know the answer-

Resolution requests

must be forwarded

DMVPN phase 2 NHRP resolution forwarding (cont.)

- Resolution requests are forwarded from NHS to NHS
- Hub routers must point to other hub routers as NHSs in a "daisy-chain" fashion

DMVPN phase 2 Multi-Hub **Hub Daisy Chaining**

Single daisy chain through all hubs

Loss of Hub breaks daisy chain

```
ip nhrp nhs <hub<x+1>>
```

Two layer daisy chain

Can lose of every other Hub without splitting DMVPN network.

```
ip nhrp nhs <hub<x+1>>
ip nhrp nhs <hub<x+2>>
```

Three layer daisy chain

Can handle losing more hubs, but greater complexity

```
ip nhrp nhs <hub<x+1>>
ip nhrp nhs <hub<x+2>>
ip nhrp nhs <hub<x+3>>
```

DMVPN Phase 2 Multi-Hub Hub Daisy Chaining (cont.)

DMVPN phase 2 Multi-Hub Hub 1


```
interface Tunnel0
    bandwidth 1000
    ip address 10.0.0.1 255.255.255.0
    ip mtu 1400
    no ip next-hop-self eigrp 1
    ip nhrp authentication test
    ip nhrp map 10.0.0.2 172.17.0.5
    ip nhrp map multicast 172.17.0.5
    ip nhrp map 10.0.0.3 172.17.0.9
    ip nhrp map multicast 172.17.0.9
    ip nhrp map multicast dynamic
    ip nhrp network-id 100000
    ip nhrp holdtime 360
    ip tcp adjust-mss 1360
    ip nhrp nhs 10.0.0.2
    ip nhrp nhs 10.0.0.3
    no ip split-horizon eigrp 1
    ip tcp adjust-mss 1360
    delay 1000
    tunnel source Serial 1/0
    tunnel mode gre multipoint
    tunnel key 100000
    tunnel protection ipsec profile vpnprof
router eigrp 1
network 10.0.0.0 0.0.0.255
    network 192.168.0.0
    no auto-summary
```

DMVPN phase 2 Multi-Hub Hub 2 and Hub 3

Hub 2

interface Tunnel0

ip address 10.0.0.2 255.255.255.0

ip nhrp map 10.0.0.3 172.17.0.9

ip nhrp map multicast 172.17.0.9

ip nhrp map 10.0.0.1 172.17.0.1 ip nhrp map multicast 172.17.0.1

ip nhrp nhs 10.0.0.3

ip nhrp nhs 10.0.0.1

Hub 3

interface Tunnel0

ip address 10.0.0.3 255.255.255.0

ip nhrp map 10.0.0.1 172.17.0.1

ip nhrp map multicast 172.17.0.1

ip nhrp map 10.0.0.2 172.17.0.5

ip nhrp map multicast 172.17.0.5

ip nhrp nhs 10.0.0.1

ip nhrp nhs 10.0.0.2

DMVPN phase 2 Multi-Hub Spoke A

interface Tunnel0

DMVPN phase 2 Multi-Hub Spoke B and Spoke C

DMVPN phase 2 **Dynamic Mesh Routing summary**

Spokes are routing neighbors with hubs

Spokes advertise local network to hubs

Spokes are **not** routing neighbors with each other

Hubs are routing neighbors with spokes

Hubs advertise spoke and local networks to all spokes

Turn off split-horizon (EIGRP, RIP)

Hub must preserve original IP next-hop

EIGRP (no ip next-hop-self), OSPF (network broadcast)

Cannot summarize

OSPF: Single area, no summarization and only two hubs

• Hubs must be routing neighbors with other hubs over the same **DMVPN** network

Must use the same routing protocol between hubs as is used between hubs and spokes (same AS, domain, etc.)

Dynamic Routing in spoke-to-spoke environments (Configuration)

EIGRP

```
no ip next-hop-self eigrp <as>
no ip split-horizon eigrp <as>
router eigrp <as>
 no auto-summary
```

(on hub – tunnel interface)

(cannot summarize on hubs)

OSPF

```
ip ospf network broadcast (on hub & spoke – tunnel interface)
ip ospf priority [2 (hub) | 0 (spoke)]
```

BGP (Hub is route-reflector)

```
router bgp <AS>
 neighbor <spoke-tunnel-ip> <AS> (on hub – one for each spoke)
 neighbor <spoke-tunnel-ip> route-reflector-client
 no next-hop self
```

Dynamic Routing Scaling

- 1 mGRE interface/hub/DMVPN
- Must use same routing protocol for spoke-hub and hub-hub neighbors
- EIGRP350 Spokes/Hub
- OSPF
 400 Spokes/Hub
 Single OSPF Area/DMVPN
 Maximum of 2 Hubs
- BGP1000 Spokes/Hub

All testing done under clean lab conditions, you may not be able to get to these numbers in real world conditions (Internet).

Phase 3 – Shortcut Switching

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 2

Introducing Shortcut Switching

- Spokes can now have a summary route
 Supernet of private networks → hub
- All the packets are initially sent to the hub
- The hub routes-back into the DMVPN
- then sends and NHRP indirection message back
 New message type introduced for the purpose
- The spoke receives the indirection message and resolves the private network NBMA address
- A spoke-spoke direct tunnel is created

DMVPN phase 3 – Design Style

DMVPN Shortcut Switching Hub configuration revisited

DMVPN Shortcut Switching Spoke configuration revisited

DMVP Phase 3 Forwarding enhancements

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 3

DMVPN Phase 3 next-hop resolution and forwarding

- DMVPN phase 3 always tries to resolve for next-hop
- No difference between CEF and Process Switching Shortcut switching, normal forwarding, resolutions... all the same!
- During a resolution request, packets are forwarded to the hub
- Phase 3 design style > packets are CEF switched during resolution

Resolution Requests Forwarding Algorithm 12.4(6)T - Phase 3

- Router receives a resolution request for address X
- Route lookup performed for X next-hop and output interface are determined
- If output interface is not in the DMVPN
 - → reply to resolution with our NBMA/tunnel addresses
- If output interface is in the DMVPN
 - → forward the request to next-hop as if it was an NHS

Spoke-to-Spoke (MH) Phase 3 **Hub Daisy Chaining revisited**

DMVPN Multi-Hub Phase 3 Hub1 revisited


```
interface Tunnel0
   bandwidth 1000
    ip address 10.0.0.1 255.255.255.0
   ip mtu 1400
    cdp enable
    ip nhrp authentication test
    ip nhrp map 10.0.0.2 172.17.0.5
    ip nhrp map multicast 172.17.0.5
    ip nhrp map 10.0.0.3 172.17.0.9
    ip nhrp map multicast 172.17.0.9
    ip nhrp map multicast dynamic
    ip nhrp network-id 100000
    ip nhrp holdtime 360
    ip tcp adjust-mss 1360
   tunnel source Serial 1/0
   tunnel mode gre multipoint
   tunnel protection ipsec profile vpnprof
router odr
   distribute-list 1 in
access-list 1 permit 192.168.0.0 0.0.255.255
```

DMVPN Multi-Hub Phase 3 Hub2 and Hub3 revisited

interface Tunnel0

ip address 10.0.0.2 255.255.255.0

...

ip nhrp map 10.0.0.3 172.17.0.9 ip nhrp map multicast 172.17.0.9 ip nhrp map 10.0.0.1 172.17.0.1 ip nhrp map multicast 172.17.0.1

. [6

ip nhrp nhs 10.0.0.3 ip nhrp nhs 10.0.0.1

...

Hub 3

interface Tunnel0

ip address 10.0.0.3 255.255.255.0

•••

ip nhrp map 10.0.0.1 172.17.0.1 ip nhrp map multicast 172.17.0.1 ip nhrp map 10.0.0.2 172.17.0.5 ip nhrp map multicast 172.17.0.5

...

ip nhrp nhs 10.0.0.1 ip nhrp nhs 10.0.0.2

•••

DMVPN and NAT

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 4

DMVPN NAT Enhancements 12.4(6)T

 Spoke-spoke dynamic tunnels are now supported to/from NAT translated spokes

Hub reports spoke's outside NAT IP address back to spoke in NHRP registration reply.

- Spoke outside NAT IP address passed in NHRP resolution request and reply packets
- Spokes use remote spoke outside NAT IP address to build spoke-to-spoke tunnel.

DMVPN NAT Enhancements 12.4(6)T (Cont.)

DMVPN NAT General remarks

Two spokes behind the same NAT node must be NAT translated to unique outside NAT IP address

In general, this really means NAT, not PAT! This is true for hub&spoke and spoke-to-spoke

If spoke-spoke tunnel will not come up, traffic will continue to be forwarded via the hub.

Troubleshooting Aids

SSFC-3006 © 2006 Cisco Systems. Inc. All rights reserved. Cisco Public

DMVPN Data Structures

NHRP Mapping Table

```
Maps VPN and Tunnel IP addresses to NBMA (Physical address)
```

```
show ip nhrp { brief | <address> },
debug nhrp { packet | cache | extension }
```

Crypto Socket Table

Mapping between NHRP and IPsec

```
show crypto socket. debug crypto socket.
show crypto ipsec profile, debug tunnel { protection }
```

Crypto Map Table

```
Dynamic Crypto map for each mGRE tunnel (tunnel protection ... )
or for each IPsec profile ( ... shared )
```

```
show crypto map
```

ISAKMP and IPsec SA Table

```
show crypto session { detail }, show crypto isakmp sa { detail }
show crypto ipsec sa { | include Tag|peer|spi|endpt }
```

DMVPN Data Structures Complex interaction

```
Hub1#show ip nhrp
                                 Hub1# show crypto socket
                                 Tu0 Peers (local/remote): 172.17.0.1(172.17.0.5)
10.0.0.2/32 via 10.0.0.2. ...
                                  Local Ident (ad/ma/po/pr): (172.17.0.1/255.255.255.255/0/47
NBMA address 172.17.0.5
                                  Remote Ident (ad/ma/po/pr): (172.17.0.5/255.255.255.255/0/47
10.0.0.11/32 via 10.0.0.11, ...
                                  Socket State: Open
 NBMA address: 172.16.1.1
                                 Tu0 Peers (local/remote): 172.17.0.1 (172.16.1.1
10.0.0.12/32 via 10.0.0.12, ...
                                  Local Ident (ad/ma/po/pr); (172.17.0.1/255.255.255.255/0/47
 NBMA address: 172.16.2.1
                                  Remote Ident (ad/ma/po/pr): (172.16.1.1/255.255.255.255/0/47)
  (no-socket)
                                  Socket State: Open
Hub1#show crypto ipsec sa
                                            Hub1#show crypto map
                                             Crypto Map "Tunnel0-head-0" 65537 ...
interface: Tunnel0
                                                      Map is a PROFILE INSTANCE
Crypto map tag: Tunnel0-head-0,
                                                      Peer = (172.17.0.5.
 local crypto endpt.: 172.17.0.1,
                                                      access-list permit gre host 172.17.0.
 remote crypto endpt. (172.17.0.5)
                                                                             host 172.16.0.5
         inbound sas: spi/0x3C32F075
                                             Crypto Map "Tunnel0-head-0" 65538 ...
         outbound sas: spi: 0x149FA5E7
                                                      Map is a PROFILE INSTANCE
 local crypto endpt.: 172.17.0.1,
                                                      Peer = (172.16.1.1
 remote crypto endpt. (172.16.1.1)
                                                      access-list permit gre host 172.17.0.
         inbound sas: spi:/0x8FE87A1B
                                                                             host 172.16.1.
         outbound sas: spi: 0xD111D4E0
```

DMVPN Show and Debug Commands Introduced in 12.4(9)T

Show show dmvpn [peer {{{ nbma | tunnel } ip address } | { network ip address mask } | { interface tunnel# } | { vrf vrf name }}] [detail][static] Debug debug dmvpn [{ error | event | detail | packet | all } { nhrp | crypto | tunnel | socket | all }] debug dmvpn condition [peer {{{ nbma | tunnel } ip address } | { network ip address mask } | { interface tunnel# } | { vrf vrf name }}] Logging dmvpn logging { enable | interval < 0-3600 > }

Show dmvpn detail – example

```
Router# show dmvpn detail
Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
       N - NATed, L - Local, X - No Socket
       # Ent --> Number of NHRP entries with same NBMA peer
----- Interface Tunnell info: -----
Intf. is up, Line Protocol is up, Addr. is 192.0.2.5
  Source addr: 192.0.2.229, Dest addr: MGRE
 Protocol/Transport: "multi-GRE/IP", Protect "gre prof",
Tunnel VRF "" ip vrf forwarding ""
NHRP Details: NHS: 192.0.2.10 RE 192.0.2.11 E
Type: Spoke, NBMA Peers: 4
# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb Target Network
2
           192.0.2.21
                         192.0.2.116 UP 00:14:59 D
                                                         192.0.2.118/24
                                        UP 00:14:59 D
                                                         192.0.2.116/32
 IKE SA: local 192.0.2.229/500 remote 192.0.2.21/500 Active
         Capabilities: (none) connid:1031 lifetime:23:45:00
 Crypto Session Status: UP-ACTIVE
 fvrf: (none)
 IPSEC FLOW: permit 47 host 192.0.2.229 host 192.0.2.21
       Active SAs: 2, origin: crypto map
       Inbound: #pkts dec'ed 1 drop 0 life (KB/Sec) 4494994/2700
       Outbound: #pkts enc'ed 1 drop 0 life (KB/Sec) 4494994/2700
  Outbound SPI: 0xD1EA3C9B, transform: esp-3des esp-sha-hmac
   Socket State: Open
```

RKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public

Show dmvpn detail (cont.)

```
# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb Target Network
   1 192.0.2.229 192.0.2.5 UP 00:15:00 DLX 192.0.2.5/32
# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb Target Network
         192.0.2.102 192.0.2.11 NHRP 02:55:47 S 192.0.2.11/32
   1
 IKE SA: local 192.0.2.229/4500 remote 192.0.2.102/4500 Active
         Capabilities: N connid:1028 lifetime:11:45:37
 Crypto Session Status: UP-ACTIVE
 fvrf: (none)
 IPSEC FLOW: permit 47 host 192.0.2.229 host 192.0.2.102
       Active SAs: 2, origin: crypto map
       Inbound: #pkts dec'ed 199056 drop 393401 life (KB/Sec) 4560270/1524
       Outbound: #pkts enc'ed 416631 drop 10531 life (KB/Sec) 4560322/1524
  Outbound SPI: 0x9451AF5C, transform: esp-3des esp-sha-hmac
   Socket State: Open
[...]
```


Show dmvpn detail (cont.)

Pending DMVPN Sessions: !There are no pending DMVPN sessions. The following example shows example configured conditions displays for DMVPN debugging: Router# show dmvpn debug-condition NBMA addresses under debug are: Interfaces under debug are: Tunnel101, Crypto DMVPN filters: Interface = Tunnel101 DMVPN Conditional debug context unmatched flag: OFF

© 2006 Cisco Systems. Inc. All rights reserved. Cisco Public

Phase 3: Platform Support Summary

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 5

Cisco IOS Code and Platform Support

IOS Code

```
Phase 1 & 2
   12.3(17), 12.3(14)T6, 12.4(7), 12.4(4)T
Phase 1, 2 & 3
   12.4(6)T
```

Platforms

```
6500/7600 (12.2(18)SXF4) with VPN-SPA + sup720
   No Phase 3 capability yet
7301, 7204/6, 38xx, 37xx, 36xx, 28xx, 26xx,
18xx, 17xx, 87x, 83x
   Phase 1, 2 & 3
```

Basic DMVPN Spoke – Spoke

RKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 5

Basic DMVPN spoke-spoke

- Phase 3 enhancements helps scaling DMVPN
- The 1000 nodes/hub barrier with spoke-spoke is broken
- Let's start with a very simple spoke-spoke design
- We will use a mix of two protocols

RIP passive to scale spoke > hub routing propagation

Up to 1500 spokes on a single 7200/VAM2+

NHRP shortcut switching to offer spoke-spoke

Basic DMVPN spoke-spoke topology

Basic DMVPN spoke-spoke Hub configuration

Basic DMVPN spoke-spoke Spoke configuration

Basic DMVPN spoke-spoke Hub Routing Table

RIP learned routes

```
C 172.17.0.0/30 is directly connected, Serial1/0
```

- C 10.0.0.0/24 is directly connected, Tunnel0
- C 192.168.0.0/24 is directly connected, Ethernet0/0
- R 192.168.1.0/24 [120/1] via 10.0.0.11, 00:36:53, Tunnel0
- R 192.168.2.0/24 [120/1] via 10.0.0.12, 00:37:58, Tunnel0

. . .

S* 0.0.0.0/0 [1/0] via 172.17.0.2

Basic DMVPN spoke-spoke Spokes Routing Tables

Spoke A

- C 172.16.1.0/30 is directly connected, Serial1/0
- C 10.0.0.0/24 is directly connected, Tunnel0
- C 192.168.1.0/24 is directly connected, Ethernet0/0
- S 192.168.0.0/16 [1/0] via 10.0.0.1, 00:46:20, Tunnel0
- S 10.0.0.0/8 [1/0] via 10.0.0.1, 00:46:20, Tunnel0
- S* 0.0.0.0/0 is directly connected, Serial1/0

- 2 172.16.2.0.0/30 is directly connected, Serial1/0
- C 10.0.0.0/24 is directly connected, Tunnel0
- C 192.168.2.0/24 is directly connected, Ethernet0/0
- 192.168.0.0/16 [1/0] via 10.0.0.1, 00:46:20, Tunnel0
- S 10.0.0.0/8 [1/0] via 10.0.0.1, 00:46:20, Tunnel0
- S* 0.0.0.0/0 is directly connected, Serial1/0

Basic DMVPN spoke-spoke Hub NHRP Tables

Hub

Learned via registration

10.0.0.11/32 via 10.0.0.11, Tunnel0 created 02:51:46, expire 00:04:13

Type: dynamic, Flags: authoritative unique registered used

NBMA address: 172.16.1.1

10.0.0.12/32 via 10.0.0.12, Tunnel0 created 02:51:26, expire 00:04:33

Type: dynamic, Flags: authoritative unique registered used

NBMA address: 172.16.2.1

Basic DMVPN spoke-spoke Spokes NHRP Tables

Spoke A

10.0.0.1/32 via 10.0.0.1, Tunnel0 created 02:51:20, never expire

Type: static, Flags: authoritative used

NBMA address: 172.17.0.1

Learned via resolution

10.0.0.12/32 via 10.0.0.12, Tunnel0 created 00:00:06, expire 00:05:05

Type: dynamic, Flags: router unique used

NBMA address: 172.16.2.1

Spoke B

10.0.0.1/32 via 10.0.0.1, Tunnel0 created 02:51:18, never expire

Type: static, Flags: authoritative used

NBMA address: 172.17.0.1

Learned via resolution

10.0.0.11/32 via 10.0.0.11, Tunnel0 created 00:00:24, expire 00:04:27

Type: dynamic, Flags: router unique used

NBMA address: 172.16.1.1

Dual homed spokes

BRKSEC-3006 © 2006 Cisco Systems. Inc. All rights reserved. Cisco Public

Dual homed DMVPN spokes

Dual homed DMVPN spokes Hub1

Dual homed DMVPN spokes Hub2

Dual homed DMVPN spokes Spokes – part 1

Dual homed DMVPN spokes Spokes – part 2

Poll 10.0.0.1 **UDP Port 2000**

Poll every second ip sla 1 udp-echo 10.0.0.1 2000 control disable Timeout: 1 second timeout 1000 Fail after 21 seconds frequency 10 threshold 21000 ip sla schedule 1 life forever start-time now **Monitor SLA probes** track 1 rtr 1 reachability ip route 192.168.0.0 255.255.255.0 10.0.0.1 track 1 **Primary routes** ip route 10.0.0.0 255.0.0.0 10.0.0.1 track 1 When track 1 is up

Floating routes Kick-in if probes fail (floating statics)

ip route 192,168,0,0 255,255,255,0 10,0,0,2 254 ip route 10.0.0.0 255.0.0.0 10.0.0.2 254

ip route 0.0.0.0 0.0.0.0 Serial 1/0

- Model shown here makes hub1 primary, hub2 backup
- Track both hubs to make active-active if desired

Large Scale DMVPN Hub & Spoke

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public

Overall solution

High level description

- Spokes believe there is a single hub
- NHRP map points to the Load Balancer's Virtual IP Address
- The Load Balancer is configured in forwarding mode (no NAT)
- All the hubs have the same DMVPN configuration

Same Tunnel interface address

Same Loopback address (equal to the VIP)

All the spokes have the same DMVPN configuration

Same hub NBMA address

Same NHS

The Load Balancer in general

- The Load Balancer owns a Virtual IP Address (VIP)
- When IKE or ESP packets are targeted at the VIP, the LB chooses a hub
- The hub choice is policy (predictor) based:

```
weighted round-robin
least-connections
```

- When hub chosen for a "tunnel", all packets go to the same hub
 - → stickyness
- Once a decision is made for IKE, the same is made for ESP
 - → buddying

Topology and addresses

Load Balancer

We will use an IOS-SLB

IOS SLB runs on top of c7200 or Catalyst6500 As of today, opt for 12.2S or 12.1E releases

- The LB must be able to do layer 3 and 4 load balancing. Upper layers are useless (encrypted)
- Content Switching Module 3.1 or above will work too but we do not need most of its features (layer 5+)
- ACE is ok but need to disable NAT-T
- Any SLB will do…

IOS SLB performances

IOS SLB on a Cat6500 (MSFC-2)

Can manage 1M connections w/ 128MB RAM

Can create 20,000 connections per second

Switches packets at 10Gbps (64 bytes)

IOS SLB on a c7200 (NPE-400)

Can create 5,000 connections per second

Switches packets at ½ the CEF rate (depending on other features)

Typically not a bottleneck

IOS SLB cluster definition

IOS SLB VIP definition

```
ip slb vserver ESPSLB
            virtual 172.17.0.1 esp
            serverfarm HUBS
            sticky 60 group 1
            idle 30
            inservice
Same farm
                                             Buddying
           ip slb vserver IKESLB
            virtual 172.17.0.1 udp isakmp
            serverfarm HUBS
            sticky 60 group 1
            idle 30
            inservice
```


Monitoring and managing

SLB-7200#sh ip slb connections

vserver	prot	client	real	state	nat	
-						
IKESLB	UDP	64.103.8.8:500	10.1.0.2	ESTAB		
none						
ESPSLB	ESP	217.136.116.189:0	10.1.0.2	ESTAB		
none		010 001 65 0 500	10.1.0.0			
IKESLB	UDP	213.224.65.3:500	10.1.0.2	ESTAB		
none	ESP	80.200.49.217:0	10.1.0.2	ECMAD		
ESPSLB none	ESP	80.200.49.217:0	10.1.0.2	ESTAB		
ESPSLB	ESP	217.136.132.202:0	10.1.0.3	ESTAB		
none	251	217.130.132.202.0	10.1.0.5	20112		
SLB-7200#clear ip slb connections ?						
firewallfarm	Clea	r connections for a	firewallfarm			
serverfarm	Clea	r connections for a	specific serverfarm			
vserver	Clea	r connections for a	specific virtual server			
<cr></cr>						

SLB-7200#sh ip slb reals

Hub Tunnel configuration

```
interface Loopback®
                                   ip address 172.17.0.1 255.255.255.255
interface Tunnel0
                                  end
bandwidth 10000
ip address 10.0.255.254 255.255.0.0
                                                 Must be same on all hubs
no ip redirects
                                                 Mask is /32
ip mtu 1400
ip nhrp map multicast dynamic
ip nhrp network-id 1
                                       Must be same on all hubs
ip nhrp holdtime 3600
                                       Mask allows 2<sup>16</sup>-2 nodes
tunnel source Loopback0
tunnel mode gre multipoint
tunnel protection ipsec profile tp
cdp enable
                                 interface FastEthernet0/0
end
                                  ip address 10.1.0.{2,3} 255.255.255.0
                                 interface FastEthernet0/1
                                  ip address 10.1.1.{2,3} 255.255.255.0
```

Physical interface ip addresses unique on each hub

Spoke tunnel configuration

Basic DMVPN / ODR configuration

```
interface Tunnel0
  ip address 10.0.0.1 255.255.25.0
  ip nhrp map 10.0.255.254 172.17.0.1
  ip nhrp nhs 10.0.255.254
  • • •
```

Remember...

All the spokes have the same configuration

Current status – Tunnel setup

We now allow spokes to build a DMVPN tunnel to a virtual hub NHRP-register to their assigned hub

Spoke routing configuration

	interface Tunnel0
Activate ODR over tunnel	cdp enable
Tunnel packet → physical	ip route 0.0.0.0 0.0.0.0 Dialer0
Private traffic (summary)	ip route 192.168.0.0 255.255.0.0 10.0.0.1
→ Tunnel 0	ip route 10.0.0.0 255.0.0.0 10.0.0.1

Physical: (dynamic)172.16.1.1 Tunnel0: 10.0.0.11

192.168.1.1/29

Spoke A

Hub Routing Protocol configuration

HQ Edge BGP configuration

```
router bgp 1
   no synchronization
   bgp log-neighbor-changes
   aggregate-address 10.0.0.0 255.0.0.0 summary-only
   aggregate-address 192.168.0.0 255.0.0.0 summary-only
   neighbor HUB peer-group
   neighbor HUB remote-as 1
   neighbor 10.1.1.2 peer-group HUB
   neighbor 10.1.1.3 peer-group HUB
   neighbor <other hubs> peer-group HUB
   no auto-summary
```

HQ network

Aggregation router

Hubs

Edge router OSPF configuration

- OSPF attracts traffic from the HQ → DMVPN
- Floating static route to Null0 discards packets to unconnected spokes

```
ip route 192.168.0.0 255.255.255.127 Null0 254
router ospf 1
 redistribute static
 network 10.1.2.0 0.0.0.255 area 1
```

HQ network (10.0.0.0/8)Runs OSPF - segment in area 1 10.1.2.0/24

Routing protocols Route Propagation spoke -> aggregation

192.168.0.0/29 192.168.0.8/29 192.168.0.16/29 192.168.0.24/29

Large Scale DMVPN Spoke – Spoke

KSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public

Shortcut switching

Spoke configurations get a single extra line:

interface Tunnel0

ip nhrp shortcut! ← that's it!!

Hub get an extra line:

interface Tunnel0

ip nhrp redirect! ← that's it!!

- Spokes on a given hub will create direct tunnels
- Spokes on different hubs will NOT create tunnels

Basic spoke-spoke packet flow

Basic spoke-spoke packet flow

Basic spoke-spoke packet flow

Cross-hubs spoke-spoke tunnels

- We want spokes to create direct tunnels even if they are on different hubs
- For this, we link the hubs via a DMVPN
- NOT a daisy chain!!!

Linking the hubs

```
interface Tunnel1
ip address 10.1.3.2 255.255.255.0
no ip redirects
                                        Same network ID as Tunnel0 !!
ip mtu 1400
ip nhrp network-id
ip nhrp redirect
                                        Send indirection notifications
ip nhrp map 10.1.3.3 10.1.0.3
tunnel source FastEthernet0/1
end
```


Routing across hubs


```
router bgp 1
  neighbor 10.1.3.3 remote-as 1
  neighbor 10.1.3.3 next-hop-self
```

```
router bgp 1
neighbor 10.1.3.2 remote-as 1
neighbor 10.1.3.2 next-hop-self
```

- Hubs exchange their ODR information directly via BGP
- The exchange occurs over the inter-hub DMVPN

Adding hubs

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 98

Linking the hubs – option 1

```
interface Tunnel1
ip address 10.1.3.2 255.255.255.0
 ip nhrp map 10.1.3.3 10.1.0.3
 ip nhrp map 10.1.3.4 10.1.0.4
ip nhrp map 10.1.3.5 10.1.0.5
end
```

Create a manual full mesh Do the same with BGP...

Linking the hubs – option 2

```
interface Tunnel1
 ip address 10.1.3.2 255.255.255.0
 ip nhrp network-id 1
 ip nhrp redirect
 ip nhrp map 10.1.3.1 10.1.0.1
 ip nhrp nhs 10.1.3.1
end
```

Use the edge router as NHRP hub Use the edge as a RR

Large Scale Design Summary

- Virtually limitless scaling w/ automatic load management
- Load balancing AND resilience
- Multiply performances by number of hubs Tunnel creation rate, speed, max SA's
- Resilience in N+1
- No need to touch the hubs while adding a spoke
- All spokes have the same configuration
- New hubs can be added/removed on the fly

BGP needs to be told about the new hub

EIGRP may be used instead of BGP

full automatic

Session Summary

3RKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 102

Previous Limitation	New Feature & Associated Benefits
Large routing tables at spokes sometimes caused network instability.	Shortcut switching introduced Route summarization now possible Higher scalability
Delays in setting up voice calls between spokes.	Packets CEF switched via hub Reduced latency during call setup.
Complex interconnection of Hubs to expand DMVPN Spoke-to-Spoke Networks.	 NHRP resolution requests forwarding Simplified hub network design Improved resiliency. Failure of single hub will not affect rest of DMVPN network.
NAT/PAT not possible in spoke- spoke designs	NAT and static PAT now supported

Shortcut switching Routing protocols revisited

- OSPF does not bring anything new Same requirements as in phase 2
- EIGRP can be tuned to summarize routes to spokes Number of neighbors does not increase
- ODR can now be used for spoke-to-spoke configs 1200 neighbors possible
- RIP passive can now be used for spoke-to-spoke 1500 neighbors possible
- Different protocols can be used between hubs and between hub-spoke

Troubleshooting enhancements

- IOS 12.4(9)T offers significant troubleshooting enhancements to IPsec VPN's
- There are more to come...

Newer images will allow even better troubleshooting

- → better support can be offered
- more audacious network can be deployed and fixed
- → foresee RAM and Flash ©

Meet the Experts Security

- Andres Gasson Consulting Systems Engineer
- Christophe Paggen **Technical Marketing Engineer**
- Eric Vyncke Distinguished Consulting Engineer
- Erik Lenten **Technical Marketing Engineer**
- Fredéric Detienne **CA Technical Leader**
- Luc Billot Consulting Engineer

Meet the Experts Security

- Michael Behringer
 Distinguished System Engineer
- Olivier Dupont
 Corporate Dev Consulting Engineer
- Peter MatthewsTechnical Marketing Engineer
- Scott WainnerDistinguished System Engineer
- Steinthor Bjarnason
 Consulting Engineer

Recommended Reading

BRKSEC - 3006

IPSec VPN Design

Available in the Cisco Company Store

BRKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 10

3RKSEC-3006 © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 110