

IOS XR Software CRS-1 and C12000

Martin Winter Technical Leader

Agenda

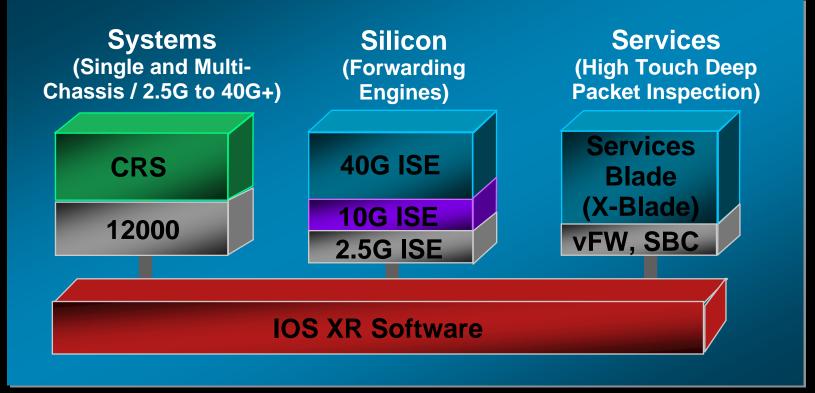
- High Level IOS XR Strategy
- IOS XR Software Architecture
- IOS XR CLI

High level IOS XR Strategy

High End Routing Portfolio

Next Generation Core

- 40G Routing Day 1
- Multi-Chassis Scale
- Foundation for Core Consolidation


Next Generation Core & Edge

- Builds on 12000 Series Technology
 - PRP, 2.5G ISE, 10G ISE
- Edge interface breadth/density
- 4/6/10/16 Slot Form Factor
- Foundation for Multi-Service Edge consolidation

Cisco High End Routing Strategy

IOS XR: Foundation of Cisco HER Technology Convergence

High End Routing Platforms

• IOS XR is the 'glue', delivering HA, scale, core+edge services with common management and user interface

IOS XR Software Architecture

Modular IOS != IOS XR

Modular IOS:

Ships today on Catalyst 6500 with Sup720 and Sup32

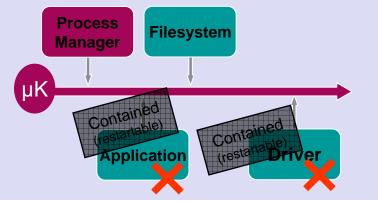
Based on the same IOS code with added Microkernel and IOS split into multiple processes.

Not everything as it's own process (ie all Routing as one process), optimized for performance on existing hardware

IOS XR:

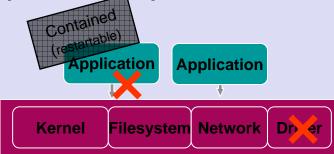
Ships today on CRS-1 and C12000 (PRP only)

Complete rewrite of the code


Very modular, split into multiple processes and built for multiterabit scaling and distributed operation

Features targeted for SP NGN router

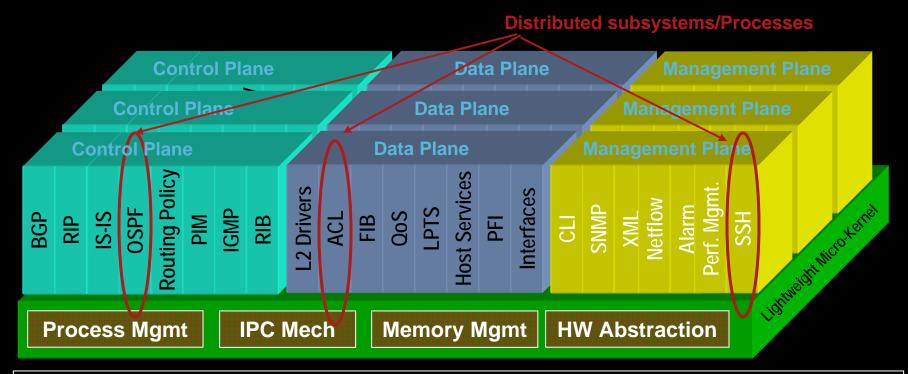
The Microkernel, the foundation of IOS XR


TRUE Microkernel (Mach, QNX)

• MMU with <u>full</u> protection for protected Applications, drivers, and protocols

Monolithic Kernel (BSD/Linux, NT)

MMU with <u>partial</u> protection. Only applications are protected



System wide corruption -Router Restart

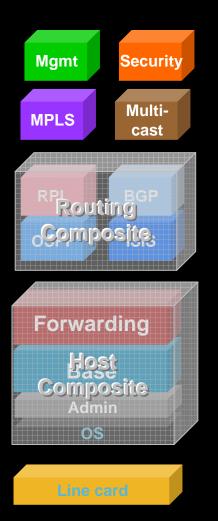
Feature	Microkernel	Monolithic Kernel
Preemptive scheduler with support for process priority	Yes	Yes
Protected memory architecture for application processes	Yes	Yes
Protected memory architecture for system processes	Yes	NO
Fault protection for application processes	Yes	Yes
Fault protection for Host Stack	Yes	NO
Fault protection for device drivers	Yes	NO
Fault protection for file system	Yes	NO
In Service SW Upgrade for application processes	Yes	Yes
In Service SW Upgrade for Network Drivers, File System	Yes	NO

IOS XR Software Architecture

Modular, Distributed Architecture

IOS XR Architecture Features

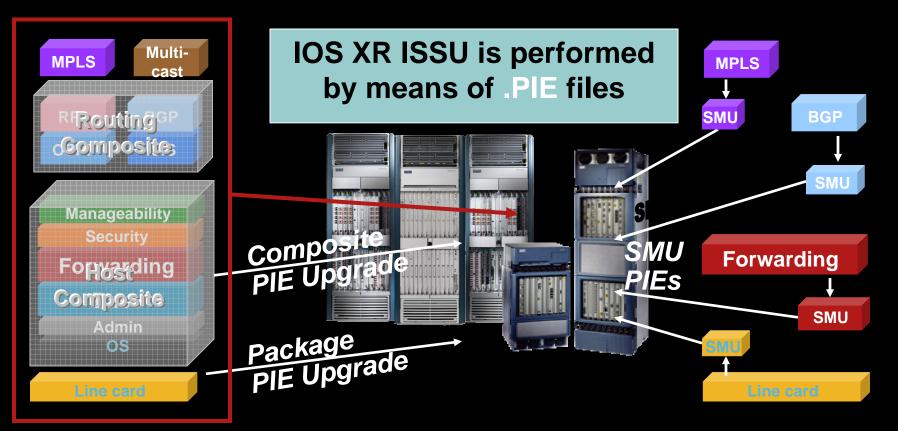
- Restartability Real Time Deterministic Scheduling Patchability
- Full Memory Protection
- Light weight Microkernel


- Distributed Processes/subsystems
 - Virtualization
 - Checkpointing for stateful recovery

IOS XR Architecture Benefits

True Modularity

- Reliable architecture enabling highly available applications
- Distributed to enable high level of scale limited only by hardware
- Feature velocity due to modular software design


IOS XR Modular Software Packaging

- Code base files are organized into components these are versioned and visible to the development engineer
- Packages are unique sets of components and represent potential units of delivery
- Packages are visible in the code base "build" infrastructure prevents illegal dependencies between packages
- Packages can be grouped into composites for ease of delivery
- SW is packaged and can be upgraded along these Composites:

Host – includes Microkernel, Infrastructure code, platform independent forwarding code, host stack Line Card – Line card specific drivers and platform code Routing - Support for static & dynamic unicast routing Multicast - Support for Multicast protocols MPLS – MPLS, GMPLS, & UCP functionality Mgmt – XML, CWI Security – non-exportable security features

In Service Software Upgrades (ISSU)

- Upgrades can be on Composite, Package, or SMU boundaries
- Upgrades are performed in-service
- Upgrades can be rolled back
- Software Maintenance Updates (SMU) or patches provide pointed corrections for mission critical defects
- Presentation_ID Linescards upgradescan be independent of Route Processor

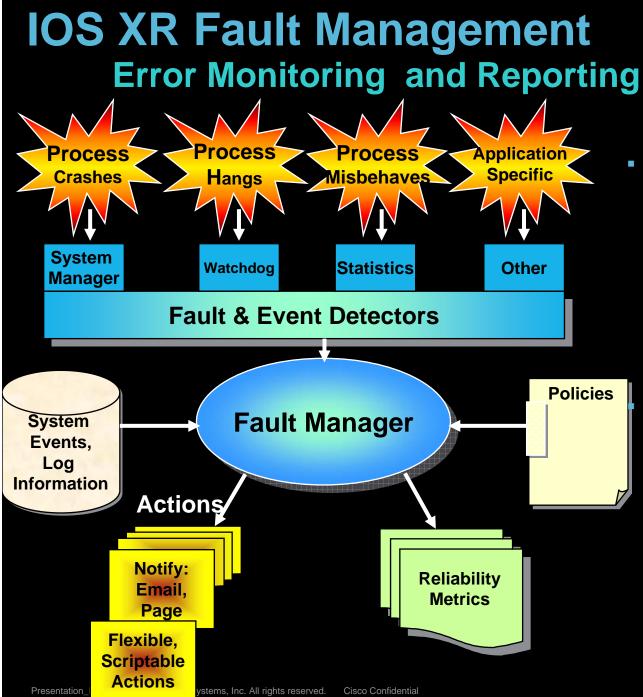
IOS XR Carrier Class High Availability Built for Non-Stop Operations

99.999+% Service

Availability

Non-Stop Forwarding

Process Restartability with Active State Checkpointing


Protected Memory Processes Memory faults affect only 1 process

Software Design: Highly Modular, Separation of Control, Data, Management Planes, Fault Management, MicroKernel, Packaging Model

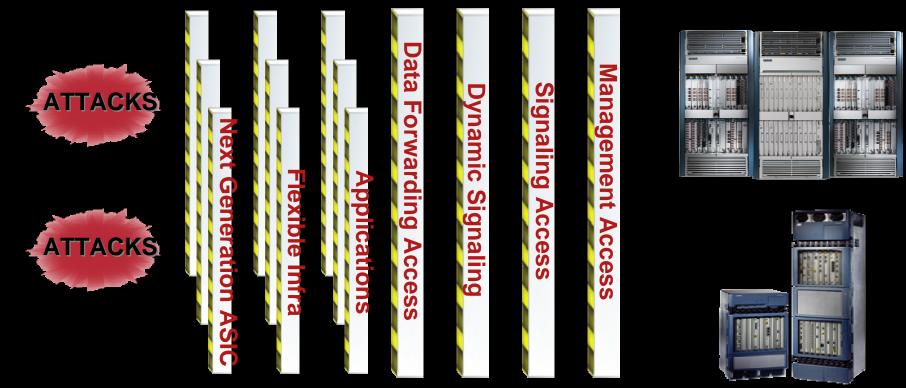
Hardware Design: Redundancy (Fabric, Power, Thermal, Route Processor, Line Card), High MTBF, Distributed Forwarding, Online Insertion Removal (OIR), Parity or Error Correcting Memory, Fault Insertion Testing

Graceful Restart Shipping: OSPF (Cisco), ISIS, BGP, LDP, RSVP-TE, Multicast

- Line Card Redundancy Shipping: 1+1 SONET/SDH APS
- HA Components Shipping: IOS XR, MPLS TE FRR
- Software Upgrades Shipping: ISSU (Patching), SMU

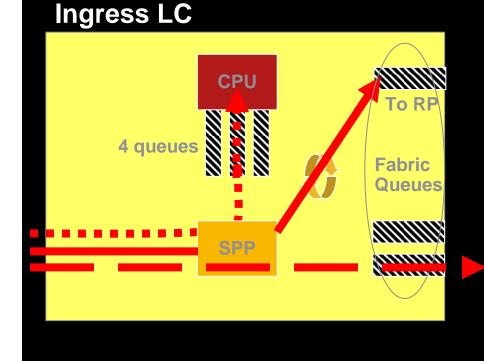
 Fault Manager checks for established policy handlers:

> If a policy handler exists, the FM runs the policy (TCL script) that implements recovery actions.


If a policy handler doesn't exist, the system performs a built-in default action defined for this event type (if any).

Example:

Default action for a process fault is automatic restart. It's defined in startup files by developers and can't be set by users.


Users can enhance the default action by writing an FM policy.

IOS XR Carrier Class Security

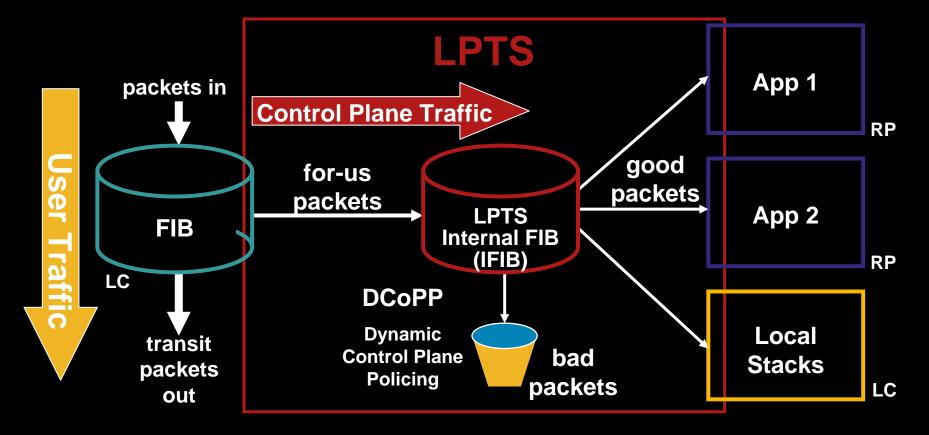
- IOS XR provides a layered approach for total system security
- IOS XR Architecture and coupled with the CRS-1 and Cisco 12000 hardware design provides the foundation for secure networking applications
- Protection is completed with IOS XR's security aware management
 Presenta access: signaling access: and router applications

IOS XR Carrier Class Security Data Forwarding Access Security

- Control plane classification, policing, and queuing provide the foundation to stopping DoS attack
- 4 queues into LC CPU

Low: TTL errors, Options, logging, ICMP Medium: IPv4 lookup High: ARP Critical: Layer 2 keep alive. (PPP, HDLC)

- 3 queues into RP CPU Low: other Medium: BGP, PIM, LDP, SSH High: OSPF, ISIS
- Priority queuing among software queues



Transit User Traffic

ICMP, IP Options logging, ...

Control Plane (routing, labels)

IOS XR Control Plane Local Packet Transport Service

- LPTS enables applications to reside on any or all RPs, DRPs, or LCs Active/Standby, Distributed Applications, Local processing
- IFIB forwarding is based on matching control plane flows DCoPP is built in firewall for control plane traffic.

Presentation_ID TS is transparent and automatic

IOS XR LPTS Dynamic Control Plane Protection

- DCoPP is an automatic, built in firewall for control plane traffic.
- DCoPP is being made user configurable

Router bgp neighbor 202.4.48.99 ttl_security

mpls ldp

ocket

LC 1 IFIB TCAM HW Entries

Local	port	Remote	port	Rate	Priority	
Any	ICMP	ANY	ANY	1000	low	
any	179	any	any	100	medium	
any	179	202.4.48.99	any	1000	medium	tt
202.4.48.1	179	202.4.48.99	2223	10000	medium	25
200.200.0.2	13232	200.200.0.1	646	100	medium	

LC 2 IFIB TCAM HW Entries ...

Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

TCP Handshake

BGP

LDP

SSH

IOS XR Carrier Class Security Signaling Access Security

- Support MD5 authentication for routing protocols BGP, ISIS, OSPF, LDP, RSVP
- Support GTSM RFC 3682 (formerly BTSH)
- Open services off by default
- Security stress testing and audits through SAT, SecureScanX, Nessus, Datapool tests.
- Developed IOS XR with Cisco Security experts from PSIRT, NSITE, Alcazar, ARF, STAT teams... to learn and share experiences.

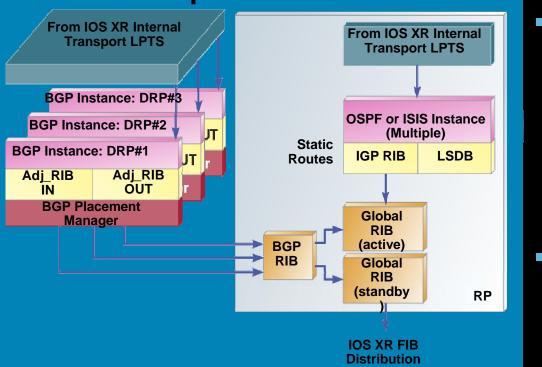
IOS XR Carrier Class Security Management Access Security

- Support for SSH, SSL, SCP, IPSEC, IKE
- Support for SNMPv3
- Authenticated software installation
 Only authorized software can be installed
- Role based User Management

Using TACACS+ for CLI and XML interfaces Administer EMS user(s)/roles/responsibilities Administer NE user(s)/roles/responsibilities

Logging and auditing

Maintain log of security events


system access, unauthorized attempts, profile changes, etc.)

Support audit tools to produce exception, summary and detailed reports

IOS XR Distributed Processing Distributed Control Plane

Multi-Speaker BGP

 IOS XR supports multiple (D)RPs per system

Logical Routers

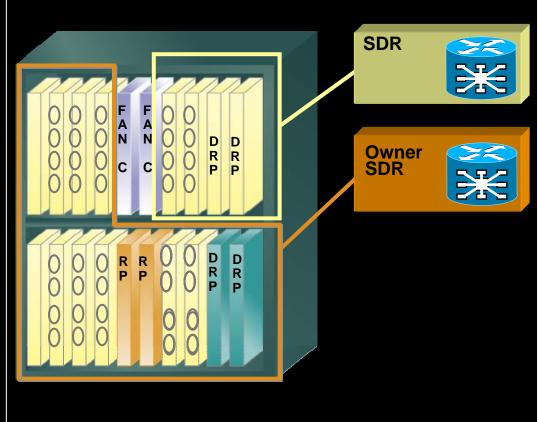
Additional processing capacity Routing protocols and signaling protocols can run in one or more (D)RP

Dedicated Management RP

 Each (D)RP can have redundancy support with standby (D)RP

For example, Multi-Speaker BGP for high scale applications

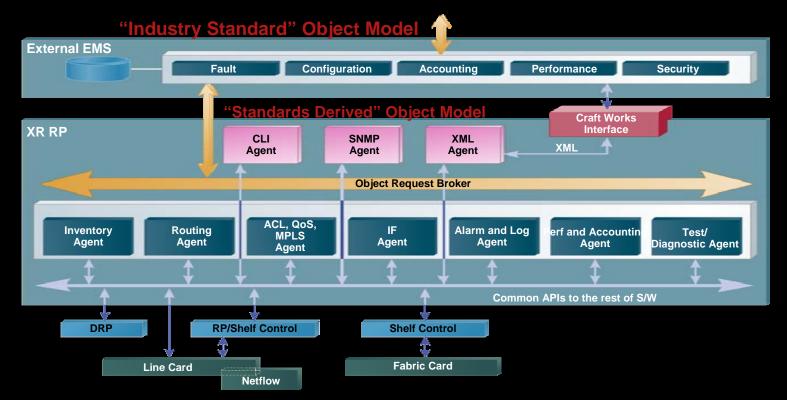
- Distributed BGP speakers to multiple RP and DRPs
- Single unified BGP RIB to external peers
- Achieve BGP peering scalability (many 1000s of peers)


IOS-XR Service Separation Architecture Resource Partitioning/Sharing, with <u>Admin & Fault Isolation</u>

Physical Separation: Secure Domain Routers (SDR)

- Isolated physical routing instances with independent management, control, and data planes.
- Defined by a subset of RPs and LCs within a common (Multi-)chassis.
- Dedicated RPs, RIB, FIB, Memory, CPU, interfaces
- SDRs definable across multichassis boundaries
- SDRs share redundant cooling, power, fabric and the (multi-)chassis.

SDR Benefits


- Single-system simplicity, with multi-box fault and administrative isolation.
- Additional dRPS can be added in service to increase control plane scale of any SDR
- dRPs and LCs can be dynamically reassigned to meet changing service & b/w needs
- Per SDR ISSU supported to allow new features in one SDR without impacting others
- All Routing features supported for service flexibility. No feature caveats.

Secure Separation Architecture (SSA)

Key Router Instantiation Feature	Cisco SDR	Generic Virtual Routers
Every feature of the router is supported	YES	No
Different Software releases allowed per Instantiation	YES	No
Per Instantiation ISSU	YES	No
Per Instantiation software packaging	YES	No
Full hardware/software isolation between Instantiations	YES	No
Distributed Processing Support – for additional scale and processing capability	YES	No
Fully Separated Control Planes - anomalies in one instantiation do NOT affect other instantiations	YES	No, shared
Fully Separated management plane – complete administrative separation	YES	No, Centralized
Mis-configurations are isolated per instantiation	YES	No, Shared
Dynamically reassignable resources	YES	YES

IOS XR Manageability

 Consistent data model independent of access schemes: CLI, SNMP or XML

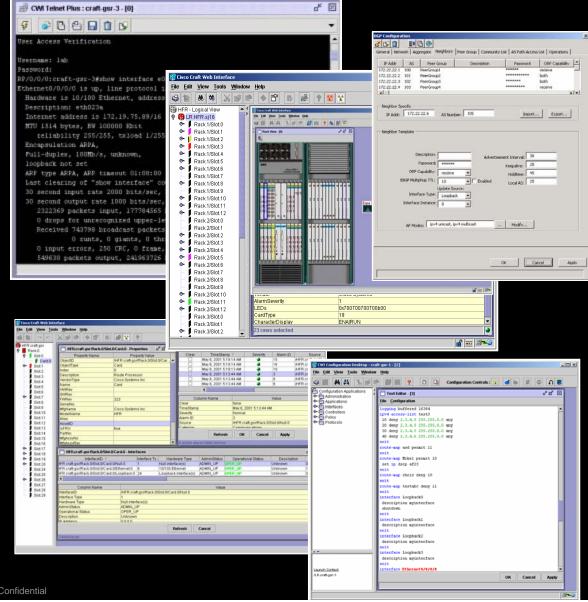
> Embedded Agents for command and control Programmatic Interfaces – XML/CORBA; SNMP Traditional Command Line Interface – CLI

 Software Development Kit (SDK) provides smooth backend OSS/EMS integration

Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Element Management System (EMS)

Fault, Configuration, Accounting, Performance & Security


Data Collection, Storage, and Historical Reporting "Standardized" mediation to external systems

IOS XR's Craft Works Interface (CWI) Industry Leading User Interface

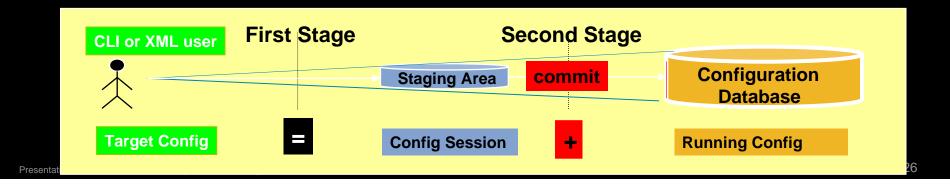
- Java application launched from web browser
- Interacts with the Router's XML

Metadata for fast feature development

- Graphical Configuration Desktop
 - Provides traditional CLI through CWI Telnet+
 - Config Validation with 2 stage configuration
 - Embedded Configuration Text Editor
 - Value-added SSH/Telnet Inventory and Rack View Integrated Alarm Views
- Increased Operator Productivity

IOS XR CLI

IOS XR's CLI Configuration Model Two Stage Configuration


Configuration first enters a staging area (first stage)

Users and their commands are authorized in staging area to limit operator to their administrative role

Offline configuration and syntax checks eliminates operator errors during configuration Active Configuration can not be modified directly

 Configuration must be explicitly promoted to become part of the active configuration (second stage).

Configuration audit log kept to track when, who, and why changes were made Rollback available to easily to revert to any of the last 20 configurations Change Notification generated to syslog to track configuration changes

IOS XR CLI: Config Commits

RP/0/0/CPU0:ios#show run int gi0/2/0/0
% No such configuration item(s)

RP/0/0/CPU0:iosxr1#conf t RP/0/0/CPU0:iosxr1(config)#interface gig0/2/0/0 RP/0/0/CPU0:iosxr1(config-if)#ipv4 address 100.12.1.1/24 RP/0/0/CPU0:iosxr1(config-if)#commit RP/0/0/CPU0:Apr 24 00:49:28.119 : config[65691]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by user 'root'. Use 'show configuration commit changes 1000000036' to view the changes. RP/0/0/CPU0:iosxr1(config-if)#end RP/0/0/CPU0:Apr 24 00:49:30.701 : config[65691]: %MGBL-SYS-5-CONFIG_I : Configured from console by root RP/0/0/CPU0:iosxr1# RP/0/0/CPU0:iosxr1#show run int gigabitEthernet 0/2/0/0 interface GigabitEthernet0/2/0/0 ipv4 address 100.12.1.1 255.255.255.0

ISIS/OSPF CLI Differences

IOS XR ISIS Configuration: router isis IOS XR net 47.1111.1111.0001.0000.0c00.0006.00 nsf ietf interface POS0/4/0/0 address-family ipv4 unicast ! !	IOS ISIS Configuration: router isis IOS net 47.1111.111.0001.0000.0c00.0006.00 log-adjacency-changes nsf ietf ! interface POS1/0/0 ip address 201.1.1.2 255.255.255.0 ip router isis IOS
IOS XR OSPF Configuration router ospf 99 router-id 1.1.1.1 area 0 interface GigabitEthernet0/2/0/0 !	IOS OSPF Configuration router ospf 99 router-id 1.1.1.1 log-adjacency-changes network 201.0.0.0 0.0.0.255 area 0 ! interface POS1/0/0 ip address 201.1.1.2 255.255.255.0

Comparison of Cisco IOS Static Route and Cisco IOS XR Static Route

Static Route IOSStatic Route IOS XR

IOS#sh run | beg ip route 192.1.1.0

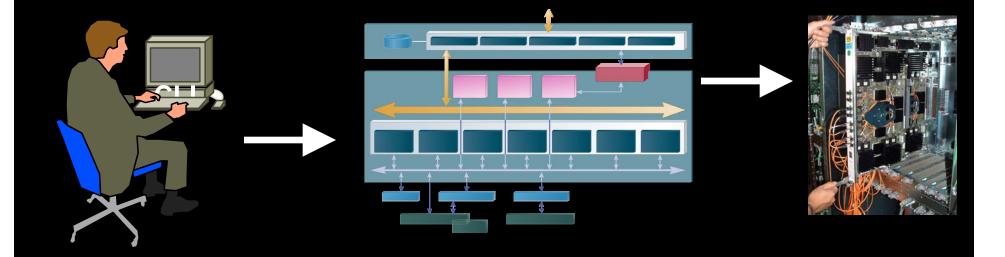
ip route 192.1.1.0 255.255.255.0 g4/0 ip route 223.255.254.0 255.255.255.0 10.13.0.1 RP/0/1/CPU0:IOS XR#sh run router static

router static address-family ipv4 unicast 43.43.44.0/24 Serial0/5/3/3/0:2 43.43.44.44/32 Serial0/5/3/3/0:0 223.255.254.254/32 MgmtEth0/1/CPU0/0

address-family ipv6 unicast 5301::1111/128 Serial0/5/3/3/0:0

Comparison of Cisco IOS BGP and Cisco IOS XR BGP

IOS BGP Configuration


router bgp 1 no bgp default ipv4-unicast bgp log-neighbor-changes neighbor 1.1.1.1 remote-as 1 neighbor 1.1.1.1 update-source Loopback0 maximum-paths 8 ! address-family ipv4 neighbor 1.1.1.1 activate maximum-paths 8 no auto-summary no synchronization exit-address-family

IOS XR BGP Configuration

RP/0/1/CPU0:IOS XR#sh run router bgp router bgp 300 bgp router-id 2.2.2.2 address-family ipv4 unicast ! neighbor 192.1.1.2 remote-as 400 address-family ipv4 unicast route-policy policy in maximum-prefix 200000 75 warning-only route-policy policy out !

IOS XR's CLI Configuration

Hardware Pre-configuration

- preconfigure interface POS0/0
- Reduces down time
- Improves operational tasks
- Simplifies maintenance

IOS XR's CLI Configuration Routing Policy Language (RPL)

Routing Policy Language (RPL)

A "C"-like provisioning mechanism for route policy Replaces IOS's route-map configuration

RPL is used for

Adding, deleting, modifying routes or attributes within the bounds of the protocol specification

Influencing routing decision for controlling redistribution/advertisement to another peer/neighbor

Benefits of RPL

Easier to manage, maintain and troubleshoot routing policies (readability & Micro*Emacs Editor*)

Establish sets (groups) based on AS path, Community, Extended Community and prefix

Supports Conditional Statements, Boolean Operators, Hierarchal insertion

Reduces the redundancy in route map to support large scale routing configurations.

RPL Examples

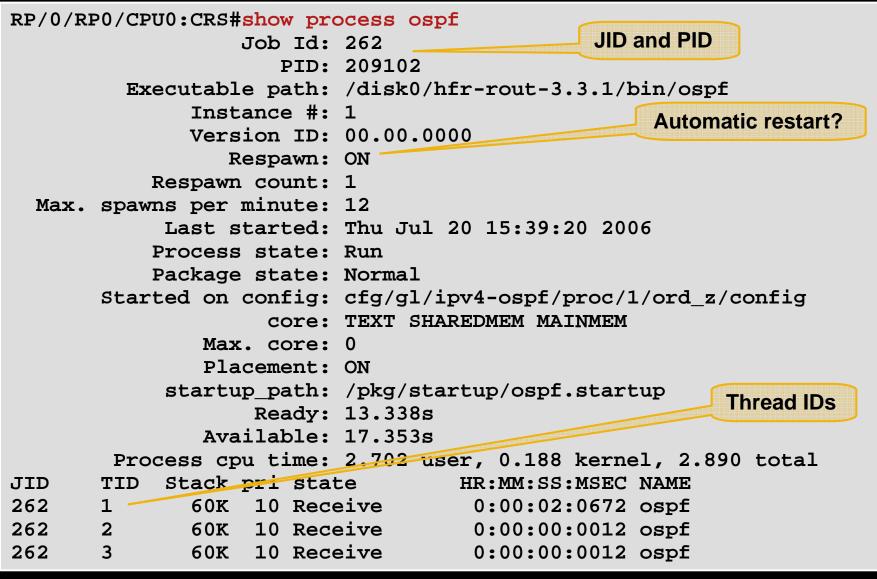
Nested conditional statements

if community matches(12:34, 56:78) then if med eq 8 then drop endif set local-preference 100 endif

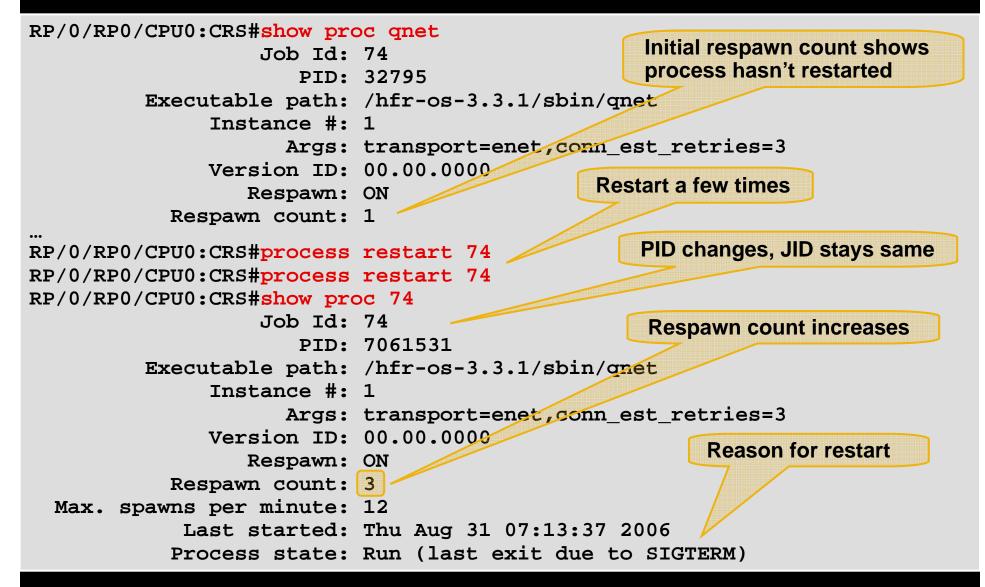
Hierarchical RPL

route-policy rp_one set weight 100 end-policy

route-policy rp_two set med 200 end-policy


route-policy rp_three apply rp_two set community (2:666) additive end-policy

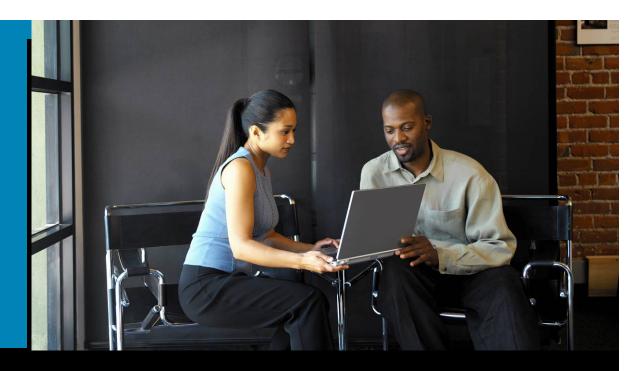
route-policy four apply rp_one apply rp_three pass end-policy


Boolean combinations:

med eq 10 and not destination in (10.1.3.0/24) or community is (56:78) med eq 10 and (not destination in (10.1.3.0/24)) or community is (56:78)

show process command output

Process Restart Example



Summary of IOS XR Benefits

Modular Packaged Software Platform

- Add/modify specific "feature packs" leading to <u>focused certification</u> of new features only and faster service delivery
- Software Maintenance Upgrades (Patching) for decrease turn around time for critical software issues
- High Availability Continuous System Availability
 - Built on a highly modularized protected memory foundation with <u>HA features</u> to minimize unplanned outages
 - In service Patching Eliminates DPM's associated with Scheduled Upgrades
- Simplified OSS integration with XML/RPL and CWI
 - Leverages existing knowledge of CLI
 - Flexible Programmatic XML interface for EMS/OSS integration
 - Config staging/logging and rollback minimizes downtime due to errors
 - CWI industry leading user interface increases operator productivity
 - Role or task based authentication for increased router security
- Fully Distributed Software
 - <u>Massive Scale</u> increase resulting in reduced capital expense
 - Administrative and Service Separation with Logical Router (LR) and Virtual Router (VR)

Q and A

Any questions ?

#