

Troubleshooting Overview

http://www.INE.com

Instructor Introduction

- Brian McGahan, CCIE #8593
 - MCSE NT 4.0, CCNA, CCNP
 - CCIE Routing and Switching 2002
 - CCIE Service Provider 2006
 - CCIE Security 2007
 - bmcgahan@ine.com
- Anthony Sequeira, CCIE #15626
 - CCIE Routing and Switching
 - asequeira@ine.com

Online Classroom Introduction

- Classroom software overview
 - Bandwidth settings
- How questions are handled during class
 - Questions of interest to the whole class
 - Questions of interest to only you
 - NDA related questions
- What to do if you have a technical issue during class
 - US and Canada: 1-877-224-8987 ext 2
 - International: +1-775-825-9943

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Questions

- Cisco NDA Agreement
- Questions In Class
 - Participation is key
- Offline Questions
 - Blog
 - http://blog.INE.com
 - Online Community
 - http://www.IEOC.com
 - Web forum / mailing lists

Class Timing

- Start daily at 7am PDT (GMT -8)
- 10 minute break ~ every 50 minutes
- 1 hour lunch break at 10am PDT
- Class ends ~ 4pm PDT

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Class Schedule

- Day 1
 - Introduction
 - CCIEv4 Changes Overview
 - Troubleshooting Overview
 - Layer 2 Troubleshooting
- Day 2
 - Layer 3 Troubleshooting
- Day 3
 - Layer 3 Troubleshooting (cont.)
 - Layer 4 7 Troubleshooting
 - Security, Management, IOS Features, etc.
- Day 4
 - Full Scale Troubleshooting Lab
- Day 5
 - Full Scale Lab Breakdown
 - Class Review

CCIE R&S Version 4 Changes

- As of October 18, 2009, CCIE R&S Exam format undergoes a major format change
- Three lab exam sections:
 - Short Answer / OEQ's 30 minutes
 - Troubleshooting 2 hours
 - Our focus for this class
 - Configuration 5 hours 30 minutes
- Candidates must pass all three sections to pass the lab

Copyright © 2009 Internetwork Expert, Inc. www.INE.com

Short Answer / OEQ's Section

- Four "Open Ended" questions
- 30 minutes allotted
- Candidates must answer 3 out of 4 correctly to pass
- Answers typically one sentence or less

Copyright © 2009 Internetwork Expert, Inc

Troubleshooting Section

- ~ 8 12 "Trouble Tickets"
- $\sim 20 25$ points total
- 2 hours allotted
 - Extra time can be applied to Configuration section
- Assume 80% to pass
- DocCD access allowed

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Troubleshooting Section (cont.)

- Each ticket is independent of others, and can be solved in any order
 - Implies large topology
- Only working configurations are correct
 - i.e. results oriented like much of Configuration Section
- No Layer 1 troubleshooting
 - e.g. Fiber cabling issues

Troubleshooting Topology

- Uses IOS on Unix (IOU) for virtual hardware topology
 - Router hardware emulator like Dynamips, not an IOS "simulator"
 - Nothing special from our perspective, just an IOS instance
- IOU does not support Catalyst IOS
 - Implies no Layer 2 switching troubleshooting

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Configuration Section

- $\sim 70 76$ points total
- Assume 80% to pass
- Still main focus of the exam
- Less "basic" configuration and more preconfiguration
 - e.g. access VLAN assignments
- Pre-configuration can include Layer 2 switching troubleshooting

New CCIEv4 Topics

- MPLS
 - Basic L3VPN, no L2VPN / MPLS TE / QoS / etc.
- OER / PfR
- IPv6 Multicast
- IPv6 EIGRP
- Zone Based Policy Firewall
- IOS IPS
- Not all topics on all exams or in all sections of exams
 - Doesn't mean you can shortcut them though

Copyright © 2009 Internetwork Expert, Inc www.INE.com

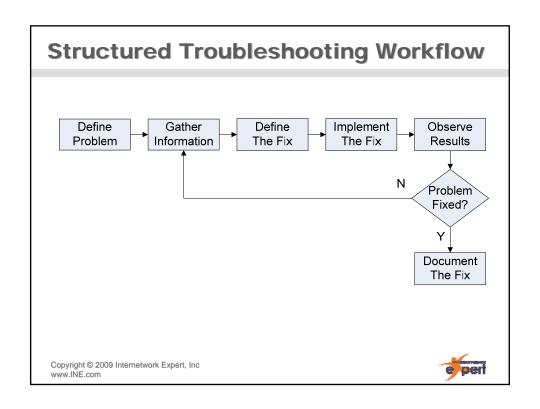
What Is Troubleshooting?

- Per Wikipedia... "a form of problem solving most often applied to repair of failed products or processes. It is a logical, systematic search for the source of a problem so that it can be solved, and so the product or process can be made operational again."
- The key is that troubleshooting is *logical* and systematic
- Fixing a problem by dumb luck does not constitute troubleshooting

Why Troubleshooting?

- Today's networks are more high-availability minded than ever, and downtime means loss of revenue in...
 - Employee productivity
 - Customer SLA violations
 - Regulatory fines
 - Etc.
- One key way expert-level engineers set themselves apart from average engineers is troubleshooting methodology
 - average engineer runs around like a chicken with its head cut off
 - expert engineer keeps a cool head and follows a structured approach

Copyright © 2009 Internetwork Expert, Inc www.INE.com



Structured Troubleshooting Approach

- Defines a logical and systematic method of troubleshooting that can be applied to any case
 - E.g. troubleshooting VoIP call quality and OSPF neighbor adjacency involves different discrete steps, but logical approach is the same
- Structured troubleshooting is closely analogous to the Scientific Method of conducting experiments

Defining The Problem

- Network problems are generally discovered in two ways
 - Reactive
 - e.g. users submit tickets to the help desk that web browsing is slow
 - Proactive
 - e.g. SNMP reports a linkdown event
- In either case, more investigation is needed to find the root of the cause

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Gathering Information

- Apart from asking users for more information on tickets submitted, gathering information is in the form of...
 - show commands
 - debug commands
 - Typically not used in real-world unless network-down emergency
 - Misc. testing tools
 - PING
 - Traceroute
 - Telnet
 - Etc.
- Ultimate goal is to isolate the issue as closely as possible

How To Gather Information

- Structured troubleshooting involves isolating the operation network into functional layers
 - E.g. OSI Model or TCP/IP Model
- Where to actually start isolating is a personal preference
 - Common approaches are...
 - Top-Down
 - Bottom-Up
 - Divide and Conquer
- Key to remember is that layers have a cascading effect
 - E.g. if physical layer (i.e. layer 1) is down, all layers above it are broken

Copyright © 2009 Internetwork Expert, Inc. www.INE.com

Top Down Troubleshooting

- Most useful for application related issues
 - E.g. user can't send email start by checking their email settings
- Within the scope of CCIE lab troubleshooting, would be very time consuming

Bottom Up Troubleshooting

- Verify each layer starting with physical and proceed to the next
 - Is the link UP/UP?
 - Are the layer 2 options correct?
 - IP properly configured?
 - IGP adjacency exists?
 - Etc.
- Like top-down, can be very time consuming depending on where the problem actually lies

Copyright © 2009 Internetwork Expert, Inc. www.INE.com

Divide and Conquer

- Goal is to reduce search time by picking a layer to start at
- Based on results of testing, further verification goes either up or down the stack
- E.g. for troubleshooting email problem...
 - Can I ping the mail server?
 - If yes, go up the stack
 - If no, go down the stack

Defining & Implementing The Fix

- Ideally up to this point the issue is sufficiently isolated to make an educated guess as to how the problem can be fixed
- Proper "Change Control" at this stage is key
 - Clearly define the proposed fix
 - Implement the proposed fix
 - Did it work?
 - If yes, proceed forwards
 - If no, roll back
- Changing too many variables at once can compound the problem even further

Copyright © 2009 Internetwork Expert, Inc www.INE.com

Observing The Results

- Depending on the nature of the problem, verification of the solution can be either straightforward or complicated
 - E.g. user said they couldn't email, now they can, problem straightforward and solved
 - E.g. users experienced low VoIP quality, quality is now good, but only time will tell
- Within the scope of CCIE lab exam we can assume that verification will be concrete

Reiteration

- If the problem was not solved, a further dilemma occurs
 - Did I misdiagnose the problem in the first place?
 - Are there significant variables that were overlooked?
 - Was my fix not appropriate?
- Before making further changes, more information should be gathered
 - Did the situation change since I implemented a fix?
 - If yes, for the better or worse?
 - If not, why not?

