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Live Memory analysis on the Linux platform has traditionally been difficult to perform.
Memory analysis requires precise knowledge of struct layout information in memory,
usually obtained through debugging symbols generated at compile time. The Linux kernel
is however, highly configurable, implying that debugging information is rarely applicable

Eg\r::gleesngineering to systems other than the ones that generated it. For incident response applications,
Malware obtaining the relevant debugging information is currently a slow and manual process,

limiting its usefulness in rapid triaging. We have developed a tool dubbed, the Layout
Expert which is able to calculate memory layout of critical kernel structures at runtime on
the target system without requiring extra tools, such as the compiler tool-chain to be pre-
installed. Our approach specifically addresses the need to adapt the generated profile to
customized Linux kernels — an important first step towards a general version agnostic
system. Our system is completely self sufficient and allows a live analysis tool to operate
automatically on the target system. The layout expert operates in two phases: First it pre-
parses the kernel source code into a preprocessor AST (Pre-AST) which is trimmed and
stored as a data file in the analysis tool's distribution. When running on the target system,
the running system configuration is used to resolve the Pre-AST into a C-AST, and com-
bined with a pre-calculated layout model. The result is a running system specific profile
with precise struct layout information. We evaluate the effectiveness of the Layout Expert
in producing profiles for analysis of two very differently configured kernels. The produced
profiles can be used to analyze the live memory through the /proc/kcore device without
resorting to local or remote compilers. We finally consider future applications of this
technique, such as memory acquisition.

© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Linux Forensics
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Introduction techniques are becoming more important (Moser and

Cohen, 2013).

In recent times, Memory analysis has been used effec-
tively in the wider context of digital forensics, and malware
detection (Ligh et al., 2014). In essence, memory analysis
strives to make sense of a computer's memory image — an
exact copy of the physical memory used by a running
system. As the size of physical memory increases, especially
on large servers, memory analysis based triaging
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At first look, physical memory might appear as a large
amorphous and unstructured collection of data. In fact,
physical memory is used by the running software to store
program state in a highly structured manner. The pro-
grammer employs logical constructs such as C structs to
collect related data into logical units, representing abstract
data types. The compiler than ensures that this struct is laid
out in memory in a consistent way, and generates code to
access various members of the struct according to this
layout.
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In order to successfully extract high level information
from a memory image, one must extract and interpret the
abstract struct objects that the program handles from the
amorphous physical memory. In order to do this, one must
have an accurate model of the physical layout of the structs
and their individual member's data types.

Earlier memory analysis solutions relied on hand con-
structed layout models for each struct, obtained by trial and
error (Schuster and Andreas, 2007). However, struct lay-
outs change frequently between released versions (Cohen,
2015b), and the large number of structs of interest makes
such maintenance difficult.

For open source operating systems, one might be
tempted to examine the source code and from the source
code, theorize the precise memory layout for each struct.
However (as explained in detail in Section Layout model),
such an analysis is not practical without intimate knowl-
edge of the compiler's layout model. In practice there are
many edge cases which are difficult to predict: For example,
the compiler may add padding to ensure alignment of
various struct members under different conditions.

In order to support debugging tools, which must also
extract meaningful information from the program's mem-
ory, compilers typically emit the layout models for each
struct used in a program into some kind of debugging
stream, for example a PDB file, or DWAREF streams (DWARF
Debugging Information Format Committee, 2010).

The Volatility Memory analysis Framework (The
Volatility Foundation, 2014) was the first open source
memory analysis framework able to utilize information
derived from debugging streams in order to analyze
memory images from multiple versions of an operating
system. In the Volatility framework, debugging information
is converted into a profile specific to a particular version of
the operating system. These profiles are embedded inside
the tool and allow the user to specify which version of the
operating system the image originated from.

On Microsoft Windows systems, debugging symbols are
stored in external PDB files which may be downloaded
from a central symbol server on demand (Okolica and
Peterson, 2010). The Rekall memory analysis framework
(The Rekall Team, 2014) is able to download debugging
symbols for unknown kernels directly from the Microsoft
debugging server. This feature is useful when operating in
live mode since Rekall can parse the PDB files directly into
profiles which are used to analyze the running system.

Unfortunately, memory analysis on Linux systems pre-
sents some practical challenges. Unlike Windows, the Linux
Kernel is typically not compiled with debugging informa-
tion (such as DWAREF streams), nor is debugging informa-
tion typically available on demand from a debug server. In
order to obtain debugging information, one must recom-
pile the kernel, or some part of the kernel (e.g. a kernel
module) specifically with debug flags enabled. On a Debian
based system, this also requires that a linux-header package
be installed, containing kernel header files as well as
important files that were generated during the kernel
compilation step (e.g. Modules.symvers file) before a kernel
module can be built (Hertzog and Mas, 2014). In practice,
the kernel-header package for a custom compiled kernel is
often not available or was never even created in the first

place. At best, incident responders must scramble to
identify the correct kernel-header package for the running
kernel on the target system and hope that it matches.

Another complication is the high level of configurability
of the Linux kernel. During the kernel build process, users
may specify a large number of configuration options through
the kernel's configuration system. These options affect the
kernel build process by defining a large number of C pre-
processing macros.

The Linux kernel source uses preprocessing macros
heavily to customize the operation of the kernel itself — and
in particular the kernel tends to include certain fields into
critical structs only if certain functionality is enabled by the
user. For example consider the code in Fig. 1 which shows
the definition of task_struct — a critical struct maintaining
information about running processes.

As can be seen, some of the struct members are only
included if certain configuration parameters are set. For
example, the sched_task_group pointer only exists when
the kernel is compiled with support for task group sched-
uling — an optional feature of the Linux kernel. Similarly
CONFIG_SMP controls the inclusion of several fields used by
multiprocessing systems.

When the compiler generates the abstract struct layout
model, it must allocate a position for every struct member
in memory, sufficient to accommodate the size of the
member, its alignment requirements and the alignment of
members around it. Clearly if certain fields are not included
in the struct definition (e.g. if the feature they implement is
not chosen by the user), the compiler will not reserve any
space for them, and therefore struct members that appear
later in the struct definition will be located at different
positions in memory.

The main problem that memory analysis tools
encounter when parsing the Linux kernel's memory, is that
the configuration of the kernel controls the resulting kernel
structures' layout model, but this configuration is not
constant. Since Linux users and distributions are free to
reconfigure and recompile their kernels at any time, each
specific kernel used in a given memory image can have
vastly different configuration and therefore layouts (This is
contrasted with commercial operating systems, such as
Windows or OSX, where only a small number of officially
released versions are found in the wild).

One solution to this problem is to maintain a large re-
pository of common kernel configurations. The Secondlook
product (Secondlook, 2015) maintain a large repository of
profiles for every release of major distributions (e.g.
Ubuntu, Redhat etc). Although this repository is large
(supposedly over 14,000 profiles), if the user has recom-
piled the kernel and changed some configuration options
themselves, the correct profile will not be found in the
repository. A complete repository will have to account for
every combination of configuration options and would
therefore be impractically large.

A different approach, as taken by some memory analysis
frameworks (The Rekall Team, 2014; The Volatility
Foundation, 2014) requires the user to specifically build a
profile for each target kernel in advance prior to analysis.
The usual procedure is to obtain the kernel-headers pack-
age and use the target kernel's configuration to compile a
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task_struct {
volatile long state;
void *stack;
atomic_t usage;
unsigned int flags;
unsigned int ptrace;

struct

/ *

#ifdef CONFIG_SMP

struct 1llist_node wake_entry;
int on_cpu;

struct task_struct *last_wakee;
unsigned long wakee_flips;

unsigned long wakee_flip_decay_ts;

int wake_cpu;
#endif
int on_rq;

int prio, static_prio,
unsigned int rt_priority;

struct sched_entity se;

struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
#endif

#ifdef CONFIG_PREEMPT_NOTIFIERS

#endif
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif

-1 unrunnable,

/* per process flags,

normal_prio;

const struct sched_class *sched_class;

struct task_group *sched_task_group;

/* list of struct preempt_notifier:
struct hlist_head preempt_notifiers;

0 runnable, >0 stopped */

defined below */

*/

Fig. 1. A sample struct definition from the Linux Kernel source. Note that many fields in the struct are conditional on the kernel configuration parameters.

test kernel module with debugging symbols enabled. The
compiler will emit the required debugging symbols into
DWARF streams in the test kernel module. Memory
forensic tools then parse the required DWARF information
to construct a suitable profile to analyze the specific ker-
nel's memory.

In an incident response and live analysis context,
compiling a kernel module may not always be possible;
Servers rarely have a complete compiler tool-chain
installed, or the required kernel source code or headers.
Conversely, installing development tools on production
systems is not always possible. If a profile can not be built
locally on the target system, the analyst must install the
relevant kernel headers (if they exist) on a similar different
system so a profile could be generated. The analyst must
then manually copy the generated profile back onto the
target system for live analysis.

This extra work makes it difficult to implement a fully
automatic memory triaging system (Moser and Cohen,
2013). An automated system can not have manual inter-
action to construct the profile on every system being
analyzed. For example, the GRR Rapid response tool (Cohen
et al, 2011) is able to conduct sophisticated memory
analysis on a large number of enterprise Windows and OSX
systems. However, for Linux, it requires a pre-calculated
profile for every possible kernel it might encounter.

Ideally, a profile can be generated automatically purely
using information readily available on the running system
itself, without prior preparations.

The literature documents a number of efforts to achieve
this goal (Lin et al., 2011). For example, RAMPARSER (Case
et al., 2010) uses dynamic reverse engineering techniques
to reconstruct a restricted model of struct layouts (Con-
taining a small selected subset of key struct's fields). For
each struct, a reduced set of important fields are recon-
structed by reverse engineering exported kernel functions
which manipulate these fields. Case et al. (2010) document
some of the challenges encountered using this approach —
For example, it was noted that the assembler code gener-
ated for each function can vary significantly, even within
the same kernel version. Therefore the tool must be widely
tested to allow for all possible variations of assembler code
encountered in the field. Furthermore, each struct member
must be examined manually so the correct strategy for
deducing it's offset from certain kernel functions be
devised. This manual treatment of struct members limit the
tool's scalability due to the significant effort required to
build detailed model for each struct member.

Cohen (2015b) has extended this idea by developing a
disassembler signature template specification. The tem-
plates allows for expressing disassembler matching rules to
be expressed concisely, while allowing for common
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variations such as differences in exact registers used in the
assembler code. This system still fails when the disas-
sembly varies more radically, though.

The main limitation with both these approaches is the
manual analysis required to identify the assembly patterns
required for extracting just a few struct offsets. As modern
memory analysis techniques extend their coverage of
kernel data structures, more and more struct members are
becoming relevant, and manually devising techniques to
derive them at runtime simply does not scale.

The variability in kernel struct layouts can be attributed
to two orthogonal dimensions. One type of variability is
introduced by varying kernel versions and applied patches,
while another type of variability is introduced by users re-
compiling a kernel at a specific release version using
different configuration options. This paper specifically
deals with the variability introduced due to configuration
changes. Ideally an automated solution would be able to
handle both types of variability, but dealing with re-
compiled kernels is an important step towards this final
solution.

Problem statement

Our goal is to improve the specific use case of live
analysis in incident response. Ideally we would run our live
memory analysis tool from read only external media (e.g.
DVD Rom or a read only mounted USB drive) and it would
have everything needed to triage an arbitrary Linux system.
Such a use case is already common for Windows systems
Cohen (2015a), and our goal is to make it just as automated
for Linux systems.

We assume the following constraints:

e It is not practical for the user to build a specific tailored
profile for the running kernel on the live system itself.

e The specific target kernel version is known (e.g. via the
uname command).

e The configuration of the target kernel is known and
accurate. This is often found in the /boot/ partition. For
example /boot/config-3.13.0-61-generic corresponds to
the running kernel with version 3.13.0-61-generic.

e The System.map file is present and accurate (or /proc/
kallsyms is available).

The main difficulty with the current “compile profile
locally” approach is that it requires the entire compiler
tool-chain to be available on the target system, including
the correct kernel headers package. Much of the time,
however, responders to production systems are unable to
install additional software on the target system, especially
those who are suspected of being compromised.

One possible solution is to remove the compilation step
from the target server, and perform it on a remote server
instead. Currently, responders wanting to perform live tri-
aging, need to manually copy the required files to a remote
system, similarly configured to the target system, create the
profile file and then copy the profile back to the target
system prior to analysis. This approach does not scale, in
particular when automated remote live analysis is required

for rapid triage and response (as is the case with for
example the GRR rapid response tool (Various, 20153,
2015b)).

Consider the solution depicted in Fig. 2, which contains
the git checkout of the kernel source tree. The server can
offer a build service accepting a configuration file, then
building the required debug module, and finally serving the
profile to the memory analysis tool.

This arrangement is essentially an automated version of
the manual profile creation by module compilation
approach: The build server uses a local source repository to
build a kernel module with debug symbols using the pro-
vided configuration. The struct layout is then extracted
from DWARF debug streams and returned to the triaged
system which completes the profile. The main benefit with
such a system is that the compiler tool-chain is not
installed on the analysis target itself — rather it is installed
on the server, and being used remotely.

However, this design still has the major shortcoming
that network access must be maintained with the profile
server, which must be available before each new live sys-
tem can be analyzed. In particular this approach is not
convenient from a remote live forensic perspective, since it
requires analysis to be paused while the build server gen-
erates the profile. Additionally the kernel headers package
is still required to be available on the server before it can
build a kernel module (Hertzog and Mas, 2014). For custom
compiled kernels, the relevant kernel header package must
somehow be located and transferred to the build server too.

Layout expert

It would be much more convenient to contain all
required information within the live analysis tool itself.
This way, the live analysis tool becomes stand alone, and
able to calculate its own profiles without external
dependencies.

Live System
Under Analysis

Sem_:l config z_and Config + Version Prof[le builder
version to build service
server.

Checkout
codebase

Build debug
module

Extract
HH DWARF
symbols

Combine struct
layout with
System.map to
produce a profile

Send struct layout

e/

Fig. 2. A possible architecture for a profile builder service. A memory
analysis system sends the server a configuration file and a kernel version,
and the server builds a test module with debug symbols, sending back the
struct layout.
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We have developed a tool, dubbed the Layout Expert
which takes the profile generation service to another level.
Rather than build a test module using the complete
compiler tool-chain, the Layout Expert attempts to predict
struct layout by emulating the main operation of the
compiler tool-chain locally.

This allows the layout expert to calculate a profile
without contacting an external server and without
installing the full compiler tool-chain on the target system.

The Layout Expert's main components are illustrated in
Fig. 3. The kernel's sources are parsed into a Pre-AST (i.e. a
C-Preprocessor's Abstract Syntax Tree), which is then
trimmed to remove much of the unneeded code, unneeded
struct definitions and macro expansions. The Trimmed Pre-
AST is serialized using JSON to a file and stored on disk. This
file can be delivered as part of the data files included in the
live memory acquisition tool.

When analysts work with a live Linux system, they
apply the target kernel configuration file to the Pre-AST to
derive a Preprocessed Pre-AST. This step essentially reduces
the AST to a single string of preprocessed C Code. The pure
C code is then trimmed into a snippets containing only
relevant C code for our purposes. The C code snippets are
then parsed by a C parser to produce a C-AST.

Finally we apply a layout model, specifically developed
for GCC, to the C-AST and derive layout information for all
the defined structs. This layout information is combined
with the System.map to produce a working profile for
analysis frameworks.

Our proof of concept implementation of the Layout
Expert targets Linux systems running on the AMDG64
architecture.

1

Pre-calculation
for kernel

version. 4 GCC
Caiig EDJ Intrinsic
Pre-AST Parameters s
Serialized

to JSON

4

Pre-AST Preprocessed
Parsed C code (String)

from JSON 7

4a 5

Trimmed
Preprocessed C AST
C code

Layout

Model Generated
p Profile

Visitor

M

Fig. 3. The Layout Expert is divided into three major components: The
Preprocessing parser constructs a trimmed Pre-AST from source code. This is
then serialized into JSON and stored locally in the live memory analysis tool.
At triage time, the live system configuration is applied to this Pre-AST to
produce a pure C file (free from macros). As an optimization, the pure C file
is further trimmed to only include relevant structs. Finally, the trimmed C
file is parsed by the C Parser into a C-AST, suitable for application of the
layout model in order to predict the final layout of each struct and therefore
derive a profile.

&

We now describe each of the processing steps in more
detail.

The Preprocessing parser

The C programming language is not a single language —
rather it relies on two separate passes over the C source
code. The first pass is termed preprocessing, and it is typi-
cally performed by the C preprocessor (Kernighan et al.,
1988).

Preprocessing transforms the source code into pure C
code, by use of macro substitution (#define directives), file
includes (#include directives) and conditional includes
(#ifdef directives).

The Linux kernel makes heavy use of preprocessing di-
rectives. For example:

e Different files are included based on CONFIG
parameters.

e Macros are expanded in the preprocessing step which
affect struct layout, such as the GCC __attribute__(packed)
expression.

e CONFIG parameters are evaluated in the pre-processing
stage to add or remove members from structs. This
effectively changes the field layout of structs depending
on config parameters.

Some example snippets of code for such preprocessing
examples are shown in Fig. 4. In the first case alternate
implementations of a kernel subsystem are chosen based
on a configuration choice. These implementations are
present in different include files, and each include file may
introduce a different set of structs and types specific to that
implementation, as well as introduce new macros that
affect subsequent processing. In the second case, a macro is
defined, that when expanded, adds an attribute to a struct
field. As explained in Section Layout model, attributes can
influence the struct's field layout and so it is critical for the
parser to correctly expand these macros.

From these examples it is clear that in order to properly
parse struct layouts, the source code must be preprocessed
in a similar way to the C preprocessor. However, while the C
preprocessor needs to have the full configuration parame-
ters during pre-processing time, the layout expert's C Pre-
processor parser does not.

The preprocessor creates a Preprocessor Abstract Syntax
Tree (Pre-AST) (Figs. 3—2). The Pre-AST does not require the
configuration parameters at this stage — for example, if
there is a conditional include, both conditions are present
in the Pre-AST. It is only in subsequent processing steps,
when CONFIG parameters are known, that we are able to
resolve the Pre-AST by trimming parts which are selected
by the relevant CONFIG parameters. It is worth noting here
that the Pre-AST contains TEXT nodes which contain
verbatim snippets of C code. By evaluating the decision
nodes (e.g. #ifdef) the relevant text nodes may be glued in
the correct order, to produce the complete C code. Note too
that text within these TEXT nodes must be expanded by the
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include/linux/rcupdate.h (line 399)

#include <linux/rcutree.h>
#elif defined (CONFIG_TINY_RCU)
#include <linux/rcutiny.h>
#else

#endif

#if defined (CONFIG_TREE_RCU) || defined (CONFIG_PREEMPT_RCU)

#error "Unknown RCU implementation specified to kernel configuration"

include/linux/compat.h (line 146)

# define __packed
struct compat_sigaction {

compat_sigset_t

};

__attribute__((__packed__))

sa_mask __packed;

Fig. 4. Some examples of the use of C preprocessing in the Linux kernel. The first example illustrates conditional header includes based on configuration
parameters. The different files included may declare different structs or struct layouts for the same type. In the second example, we see a macro expansion which
influences the layout policy for a specific field by specifying the packing attribute on that field (See section Layout model).

preprocessor emulator in order to substitute macros (e.g. as
used in Fig. 4).

An example of a JSON encoded Pre-AST tree is shown in
Fig. 5.

Trimming the Pre-AST

As described previously, the Layout Expert's prepro-
cessor converts the kernel's source files into the Pre-AST.
The Pre-AST is then serialized and incorporated into the live
memory analysis tool. However, this step is effectively the
same as simply including the source files directly within
the analysis tool. In fact the size of the serialized JSON data
exceeds that of the plain source files due to the extra in-
formation stored in the AST.

The main benefit comes when we consider that in order
to analyze the memory of the running system, we do not
require the entirety of the kernel source. We are typically
only interested in a small subset of the structs defined and
used by the kernel. We certainly do not need any of the
source code itself.

The Layout Expert's Pre-AST Trimmer reduces the size of
the Pre-AST in such as way that it does not impact subse-
quent processing. By identifying and removing branches of
the Pre-AST which are irrelevant to the final profile, we can
reduce its serialized size.

The challenge is to identify and remove unnecessary
code from the Pre-AST, while still maintaining all the
needed code — either the actual structs we need or their
dependencies.

We have come up with several strategies:

e Develop a subset of struct definitions which are actually
used by our memory analysis framework.

e If we restrict our tool to only support certain configu-
ration values (e.g. kernel architecture), we can partially
preprocess the Pre-AST and remove large chunks of
unneeded code.

e Remove inline function definitions since we do not
generate any code. We are only interested in struct
definitions.

Our efforts have resulted in a significant reduction of
total Pre-AST size already, but we believe that further
research in this area can reduce the Pre-AST size even more.
Currently the trimmed Pre-AST is around 6 mb uncom-
pressed and around 600 kb compressed with gzip.

Preprocessing the Pre-AST

On the live system we obtain the kernel's configuration,
effectively creating a large number of macro definitions.
Armed with this knowledge, and a model of GCC intrinsic
macros, we can preprocess the Pre-AST into a pure C file (i.e.
free from macros and other preprocessing directives). This
can be seen in Fig. 3 part 4.

Second level trimming

The resulting pure C file is very large (over 50 k lines of
code) and defines every single data structure used in the
Linux kernel. Since the Layout Expert is written in Python,
where complex parsing is resource intensive, we employ a
second trimming phase (Shown in Fig. 3 part 4a) in order to
optimize performance. In this phase we use a rough parser
to quickly partition the C file into snippets. Each snippet
describes the definition of a single struct or data type. The
trimming parser is very simple, and therefore extremely
fast.

We use the snippets, and a list of structs actually used in
Rekall's memory analysis plugins to isolate only those
snippets which are relevant to our goal (and any of their
depedencies). Therefore the total number of lines we must
parse with the C parser is significantly reduced — saving a
significant amount of processing time.
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#include <linux/rcutree.h>
#elif defined (CONFIG_TINY_RCU)
#include <linux/rcutiny.h>

#if defined (CONFIG_TREE_RCU) || defined (CONFIG_PREEMPT_RCU)

"absolute_path":

"content": null,
"path": "linux/rcutree.h",
"quotes_type": "<"
3,
LR

"content": [{
"absolute_path":

"content": null,
"path": "linux/rcutiny.h",
"quotes_type": "<"
1,
L

"conditional_expression": "1",
"content": [{

"mro
"message":

3,
.,
}

#else
#error "Unknown RCU implementation specified to kernel configuration"
#endif
{
"mro": "If:_PreASTNode:DataContainer:VisitorMixin:object"
"conditional_blocks": [{
"mro": "ConditionalBlock:_PreASTNode:DataContainer:VisitorMixin:object"
"conditional_expression": "defined (CONFIG_TREE_RCU) ||
defined (CONFIG_PREEMPT_RCU)",
"content": [{
"mro": "Include:_PreASTNode:DataContainer:VisitorMixin:object",

"/usr/src/linux-headers-4.2.0-22-generic/include/linux/rcutree.h",

"mro": "ConditionalBlock:_PreASTNode:DataContainer:VisitorMixin:object"
"conditional_expression": "defined (CONFIG_TINY_RCU)",

"mro": "Include:_PreASTNode:DataContainer:VisitorMixin:object",

"/usr/src/linux-headers-4.2.0-22-generic/include/linux/rcutiny.h",

"mro": "ConditionalBlock:_PreASTNode:DataContainer:VisitorMixin:object"

"Error: _PreASTNode:DataContainer:VisitorMixin:object"

"\"Unknown RCU implementation specified to kermnel configuration\"“,

Fig. 5. An example AST produced by the preprocessing parser. In this example, different header files are included based on the value of some configuration
parameters. Since the AST can not be evaluated until it is applied to the live system (when the configuration is known), the Pre-AST must contain both alternatives
at the same time. Below is displayed the JSON serialized Pre-AST for the above code snippet. Each node is of a specific type (based on its python Method Res-

olution Order), and contains metadata and other nodes nested within it.

Additionally, this trimming phase isolates specific C
code relevant for profile generation, allowing us to imple-
ment a very simplistic C parser — since it does not need to
handle more complex constructs. Our C parser can only
parse struct definitions, unions, enums and typedefs. It is
therefore faster and more accurate than a complete C lan-
guage parser written in Python.

While trimming the Pre-AST (Described in Section
Trimming the Pre-AST) reduces the size of the Pre-AST, it
has little impact on the time required to parse the C code.
Trimming the preprocessed C file is thus used to reduce the
overall time required to parse structs.

The C parser

The C code within each snippet is free from macros and
can be parsed into a C-AST. The Layout Expert's C parser

must still be as authentic as possible in generating the C-
AST. There are many subtle cases where parsing is partic-
ularly tricky. Some of these examples are shown in Fig. 6.
In the first example we see anonymous structs defined
inline, inside other struct's definitions. This example also
uses unions and bit fields. Finally the first example makes
use of the compiler attribute packed to influence field
placement.

The second example shows a struct definition con-
taining an inline array. The length of this array depends on
the value of an enum value defined previously. The C
language allows constants defined in an enum definition to
be used in the global namespace — in this case it is used to
specify a length to an array. We must parse all enum
definitions accurately and keep a record of all their fields,
since they may influence struct definitions encountered
later.
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arch/x86/include/asm/desc_defs.h (line 22)

struct desc_struct {
union {
struct {
unsigned int a;
unsigned int b;
};
struct {
ulé 1limito0;
ul6é baseO;
unsigned basel: 8, type: 4, s:
unsigned limit: 4, :
};
};
} __attribute__((packed));

dpl: 2, p: 1;

1, g: 1, base2: 8;

include/linux/sched.h (line 1337)

enum perf_event_task_context {
perf_invalid_context = -1,
perf_hw_context = 0,
perf_sw_context,
perf_nr_task_contexts,

};

task_struct {
G ¢ 5

()
};

struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];

include/uapi/linux/timex.h (line 90)

struct timex {
Gosi 2 )
int :32; dnt 232; int :32; int
int :32; int :32; int :32; int
int :32; int :32; int :32;

};

Fig. 6. Some example of particularly tricky C code used in the Linux Kernel. In the first example we see a union of two anonymous structs. One of these structs
contains bit fields. The entire struct is packed too. The second example shows a struct containing an array of pointers with a length depending the incrementing

value of an enum. The last example shows the use of anonymous bit fields.

Layout model

The C compiler plans the memory layout of each newly
defined struct according to a number of complex and
sometimes apparently arbitrary rules. While at first it
might appear that fields in structs can be laid out arbitrarily
by the compiler, in fact, fields are required to be laid out in a
consistent reproducible manner in order to abide by the
platform's Application Binary Interface (ABI) (Matz et al.,
2012). There are some cases where software must depend
on the exact alignment of struct fields in memory, for
example in order to pass structured data from one program
to another. This often happens, even when programs
communicate with the kernel. For example, the Linux stat()
system call expects a struct stat pointer prepared from
userspace code to be passed into kernel space through a
system call. Therefore kernel and userspace code must
agree on struct layout, even if the userspace code was built

by a compiler other than GCC. The Linux Platform ABI
contains rules about field alignments and sizes in C structs
(Matz et al., 2012).

Therefore, in general, it should be possible to use the
platform's ABI rules to predict the exact memory layout of
structs in a consistent and reproducible manner. However,
GCC also provides a number of methods for programmers
to manipulate the precise alignment and padding before
each struct member, via the __attribute__ directive (Von
Hagen, 2006).

The precise way in which field attributes, size and the
platform ABI interact all influence the alignment model. The
ABI documentation does not describe in details all the edge
cases entailing these interactions.

We have therefore developed a set of exhaustive tests to
assess all the edge cases where the alignment model is
difficult to predict. We have written sample C programs
containing variations of structs. The programs were then
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compiled with DWARF debugging information included.
Finally we refined our GCC layout model by identifying
discrepancies between our predictions of member align-
ment and the observed alignment as obtained from DWARF
symbols.

There are two main attributes determining layout.
These can be specified on the entire struct, or each field:

e alignment: Specifies the alignment of the start position
of the element within its containing object.

e packed: This attribute specifies that the minimum
default alignment of contained objects is one byte —
unless the contained object has an explicit alignment
specified.

The interaction between these two attributes is quite
complex. Consider the examples shown in Fig. 7. The first
example illustrates the natural alignment of int fields to 32
bits. If the struct is not packed, GCC will align ints to 32 bits,
and therefore create a padding past the char field. Similarly
a long is naturally aligned to 64 bits, hence the third field
will be padded.

In the second example we see that the struct is aligned
to the smallest alignment of its members, when repeated in
an array. In this case a char.

The third example illustrates the alignment of a struct
containing an int, is also 8 bytes. Therefore inserting the
struct into another struct will start it on an 8 byte
alignment.

In the 4th example, the struct is packed. This means that
the default alignment of its members is one bytes. How-
ever, the inner struct is specified to be aligned on 8 byte
boundary. Therefore that field is still aligned to 8 bytes (i.e.
a field's explicit alignment supersedes a packed directive).

The 5th example specifies that the inner struct should
have a field, H, which is aligned to 8 bytes. However this is
only specified relative to the beginning of its containing
struct, which does not explicitly specify an alignment —
therefore it is packed immediately after the struct. Note
that the field H is not actually aligned in absolute memory
at all — despite begin explicitly declared as aligned! It is
only aligned relative to its (shifted and unaligned)
container.

Examples 6 and 7 illustrate the difference between at-
tributes applied to the struct itself and those applied to a
variable of this type. The packed attribute causes the struct
to be packed but has no effect when applied to a static
variable of this type.

Structs can also declare bit fields. A bit field is a struct
member which only contains a fixed number of bits. The
compiler lays the bitfield inside a larger type (such as an
int or char) depending on how many bits are requires.
Fig. 7 also illustrates some interesting situations of bitfield
alignment. In case 8, we can see that the compiler will try
to fit bit fields into the previous item if they can fit (an int
is 32 bits wide — so it can contain 2 fields of 30 and 2 bits
each). However, in case 9, there are 3 bits required,
making the compiler push the int bitfield into the
next 32 bit slot and creating a small 2 bit pad in the first
field.

Case 10 illustrates the same principle: The 64 bit long
bitfield does not fit inside the previous 16 bit (short) bit-
field, hence the next 64 bit slot is taken, and the long (55
bit) bitfield is pushed out to be 64 bit aligned.

The next two examples illustrate how a packed attribute,
when applied to a field, causes the field to be placed
immediately following the previous bitfield with no bit
padding at all. Fields not explicitly packed, are still aligned
to their natural alignment. Finally the last example shows
the packed attribute applied to the struct causing all fields
within the struct to be packed.

Putting it all together

We have developed a C-AST visitor which traverses the
AST for struct definitions. For each struct, the visitor pre-
dicts the final layout of each element based on the layout
model. After processing the C-AST, the Layout Expert cre-
ates Rekall profiles in JSON format. Rekall profiles are
divided into various sections (The Rekall Team, 2014). The
layout expert stores struct definitions in the $STRUCTS
section, and then incorporates the System.map and config
file into the $CONSTANTS and $CONFIG sections
respectively.

An example run is shown in Fig. 8. Resident memory use
for the Layout Expert was around 150 Mb and total execu-
tion time was around a minute. Note that while building
the Pre-AST we must deliberately exclude the generated/
autoconf.h file since it contains the current config file con-
verted into #define macros. If we include this file, then our
macro evaluator will override the local config with the one
used by the original kernel headers package during the
preprocessing phase.

Results

The Layout Expert finally produces a workable profile
which can be provided to Rekall in order to analyze live
memory (via for example the /proc/kcore mechanism). On a
system with /proc/kcore present, there is no need to
compile a kernel module for acquisition and live memory
can be performed immediately, without needing a
compiler.

In order to fully evaluate the accuracy of the Layout
Expert's profile generation technique we have compiled a
Linux kernel from source (Kernel version 4.2.0) using the
stock config file shipped with Ubuntu 15.10 distribution
(Hertzog and Mas, 2014). We created three packages (linux-
image, linux-headers and linux-source) labeled as “stan-
dard”. We then installed them and booted our VMWare
virtual machine into the standard kernel.

We used Rekall's standard profile generation script to
obtain a profile from DWAREF streams. In order to do this we
had to install the complete compiler tool chain on the vir-
tual machine and the kernel header package we built pre-
viously (Needless to say, installing the required packages
resulted in over 400 Mb of packages downloaded and made
significant changes to the virtual machine.).

We then acquired an AFF4 image using the standard
Rekall aff4acquire plugin (Note Rekall automatically
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(stmct s {
char c;
int i;
long 1;
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/struct c {
char c;
}i
struct s {
struct c t[3];

\}
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struct s {
char c;
struct i s;
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__packed;

}
-
/;truct s {

char c;

struct {

Y;
__packed;

int H __aligned(8);

}
-
Ve
struct s {

char c;

long 1;
} __packed;

X

(struct s {
char c;
long 1;

} x __packed;

-

Ve
struct s {
long x : 30;
int y : 2;
¥;
(N

el LTl TTTTTT]

s

struct s {
long x : 30;
int y @ 3;
Yi
-

~

el TRl TTTTTT]

J

struct s {
ahoYE-x : 10;
long y : 55;
};
&

y

~

]
el LTI Rel [TTTTT]

J

-

struct s {
long x : 40;
long y : 40;

\)'

long packed z: 40;

2 |

N

[ T TRl TTTTT]

J

(struct s {
long x : 40;

long x : 40;

\);

long __packed y: 40;

e |

N

HEEEECEEEEEE

struct s {
long x : 40;
long y: 40;
long x : 40;
} __packed;
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Fig. 7. Examples of struct layout for some combinations of field types and alignments on the AMD64 architecture.
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2016-01-24
2016-01-24
2016-01-24
2016-01-24

00:
00:
00:
00:

0-22. json

45
45
46
46

102,276
102,876
109,557
112,893

$ layout_tool build_pre_ast

INFO
INFO
INFO
INFO

--source_file_path ~“/rekall/tools/linux/module.c \
--linux_repository_path /usr/src/linux-headers-4.2.0-22-generic/ \
pre_ast_4.2.

LOADING AND PARSING HEADERS

Excluding include file generated/autoconf.h
Completed built pre-ast forest in 67 Seconds
LOADED AND PARSED

$ layout_tool make_profile --config_file_path boot/config-4.2.02.0.smp \
--system boot/System.map-4.2.02.0.smp pre_ast_4.2.0-22. json profile. json

2016-01-23 09:44:29,416 INFO LOADING PREPROCESSOR AST FROM: pre_ast_4.2.0...
2016-01-23 09:44:34,494 INFO DONE

2016-01-23 09:44:34,495 INFO LINKING INCLUDES

2016-01-23 09:44:34,937 INFO LINKED

2016-01-23 09:44:34,937 INFO EXTRACTING CONFIG FLAGS

2016-01-23 09:44:34,994 INFO EXTRACTED

2016-01-23 09:44:35,108 INFO PREPROCESSING

2016-01-23 09:44:50,856 INFO PREPROCESSED

2016-01-23 09:44:50,856 INFO Completed preprocessing pre-ast in 16 Seconds
2016-01-23 09:44:50,856 INFO GENERATING PURE C FILE

2016-01-23 09:44:53,047 INFO GENERATED

2016-01-23 09:44:53,048 INFO Completed generating pure C file in 2 Seconds
2016-01-23 09:44:53,048 INFO TRIMMING C FILE

2016-01-23 09:45:14,340 INFO Completed trimming C file in 21 Seconds
2016-01-23 09:45:14,341 INFO TRIMMED C FILE

2016-01-23 09:45:14,354 INFO PARSING STRUCTS

2016-01-23 09:45:37,853 INFO Completed parsing struct layouts in 23 Seconds
2016-01-23 09:45:37,853 INFO PARSED

2016-01-23 09:45:37,853 INFO GENERATING PROFILE

2016-01-23 09:45:37,949 INFO
2016-01-23 09:45:38,763 INFO

Exporting 627 structs
GENERATED

Fig. 8. Layout Expert output. Top: Producing the Pre-AST from kernel sources in preparation. This step only requires access to the kernel sources and Rekall's
dummy module's source. Bottom: Parsing Pre-AST to generate a profile on the live system. This step combines the kernel config and system map with the Pre-AST

file to produce a working profile.

acquires the system.map and kernel config into the AFF4
image).

Next we modified the kernel configuration by running
make menuconfig in the kernel source tree. We wanted to
change a very pervasive kernel parameter which will result
in a large change for many data structures. As can be seen in
Fig. 1 the CONFIG_SMP option is a good choice, as it is very
pervasive and therefore radically changes many different
structs. We repeated the build with this option disabled,
rebooted and rebuilt a profile in the usual way. We also
acquired a new memory image with a non-SMP kernel (i.e.
single CPU support only).

Next we used the Layout Expert to build the Pre-AST and
trim it from the kernel source tree. The resulting trimmed
Pre-AST was compressed with gzip (total size 5.6 mb un-
compressed, 0.57 mb compressed). Finally we used the
Layout Expert to create Rekall profiles using both acquired
config files (the one with SMP enabled and the one
without). Resident memory size for the Layout Expert
during the profile generation phase was 150 Mb as
measured with the top command.

Recalling the task_struct struct previously depicted in
Fig. 1, we examined a small snippet of the profile generated
by the Layout Expert (Shown in Fig. 9). As can be seen, the

field positioning varies greatly between the SMP and non-
SMP cases.

As a first test of the Layout Expert's profiles we ran
common Rekall plugins (pslist, modules and Isof) on the
acquired memory images. All these plugins produced
identical output when using the profile built by the Layout
Expert and those built using the traditional DWARF
extraction method.

Since Rekall plugins only use some fields in the struct,
the ultimate test for the accuracy of the Layout Expert is to
compare the complete struct layouts produced by it with
the struct layouts produced by the traditional DWARF
extraction method.

Fig. 10 show the same snippet from the task_struct struct
as generated using the traditional DWARF extraction pro-
cess. As we can see the offsets of all fields are identical,
although the two tools use different aliases for the basic
types (e.g. unsigned long long as compared to long long
unsigned int).

Another difference is that the profiles extracted using
DWAREF symbols include many structs that are not required
by Rekall. They were incidentally added into the DWARF
stream during the module building process but are never
used by Rekall.
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"task_struct":
"acct_rss_meml":

[6400, {

"acct_vm_meml":

"active_mm": [744, ["Pointer", {
"target": "mm_struct"

1,

"alloc_lock": [1536, ["spinlock",

"audit_context":

[1688, ["unsigned long long", {}11,
"acct_timexpd": [1704, ["unsigned long", {}1],
[1696, ["unsigned long long", {}1]1,

"atomic_flags": [824, ["unsigned long",
[1496, ["Pointer",

"target": "audit_context"

11,

"backing_dev_info": [1600, ["Pointer",
"target": "backing_dev_info"

11,

"bio_list": [1576, ["Pointer", {

"target": "bio_list"

11,

"blocked": [1400, ["sigset_t", {}11,
"btrace_seq": [664, ["unsigned int", {}]],

"cg_list": [1744, ["list_head", {}1],

"cgroups": [1736, ["Pointer", {
"target": "css_set"

11,

{111,

4

task_struct": [6784, {
"acct_rss_meml":

"active_mm": [928, ["Pointer", {
"target": "mm_struct"

71,
"alloc_lock": [1736, ["spinlock",

"audit_context":

[1896, ["unsigned long long", {}11,
"acct_timexpd": [1912, ["unsigned long", {}11,
"acct_vm_meml": [1904, ["unsigned long long", {}11,

"atomic_flags": [1024, ["unsigned long", {}11,
[1696, ["Pointer",

"target": "audit_context"

11,

"backing_dev_info": [1808, ["Pointer",
"target": "backing_dev_info"

371,

"bio_list": [1784, ["Pointer", {
"target": "bio_list"

311,

"blocked": [1600, ["sigset_t", {}]],

"btrace_seq": [760, ["unsigned int", {}1],

"cg_list": [1952, ["list_head", {}1],

"cgroups": [1944, ["Pointer", {
"target": "css_set"

71,

{

Fig. 9. An extract from the Rekall profiles generated by the Layout Expert for the non-SMP (above) and SMP (below) configurations. The profile format lists each
field name, followed by its offset within the struct followed by its type. Clearly the field offsets are very different in each case, since many fields are omitted in the

non-SMP case.

Discussion

The Layout Expert is implemented in python using the
pyparsing library (Various, 2015a, 2015b). We initially
considered using the LLVM parser instead of developing our
own implementation (Lattner and Adve, 2004). However,
the LLVM parser does not build a preprocessing AST — rather
the preprocessing step is done in tokenization time prior to
parsing. Our unique approach is that the preprocessor itself
is parsed into a trimmed Pre-AST. We do not require the
kernel configuration to derive this Pre-AST, and therefore
we can do this in advance before encountering the target
system. Using the LLVM parser we would need to include the
entire kernel source tree in the live memory analysis tool,

since the LLVM tool requires the entire kernel configuration
before any processing of source files can take place.

One of the main assumptions in our work is that we
have access to the local kernel configuration and System
map. If the system is maliciously attacked, the attacker may
simply delete these files to make it difficult for us to
perform memory analysis. We specifically do not consider
this possibility in our scope. Our goal is to simply improve
the normal workflow for incident response. Future work
can derive the system map and configuration parameters
from other aspects of the system which can be more
trusted.

Another limitation in our technique is the speed of
processing. We implemented the Layout Expert in Python
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"target": "audit_context",

31,

"backing_dev_info": [1808, ["Pointer",
"target": "backing_dev_info",

31,

"bio_list": [1784, ["Pointer", {
"target": "bio_list",

1,

"blocked": [1600, ["sigset_t"]],
"btrace_seq": [760, ["unsigned int"]],
"cg_list": [1952, ["list_head"]],

"task_struct": [6784, {

"acct_rss_meml": [1896, ["long long unsigned int"]],
"acct_timexpd": [1912, ["long unsigned int"]],
"acct_vm_meml": [1904, ["long long unsigned int"]],
"active_mm": [928, ["Pointer", {

"target": "mm_struct",

71,

"alloc_lock": [1736, ["spinlock"]],
"atomic_flags": [1024, ["long unsigned int"]],
"audit_context": [1696, ["Pointer", {

{

Fig. 10. A Rekall profile built using the traditional DWARF extraction method for the SMP enabled kernel. As compared with Fig. 9 all the fields are identical apart

from use of equivalent type definitions for integers.

due to the easy access to powerful parsing libraries. Python
is, however, much slower than the GCC compiler tool chain.
Therefore, we had to implement certain strategies to opti-
mize performance. For example, trimming the pre-
processed C file can be seen as merely an optimization step,
since it reduces the total size of code we need to parse.
Despite these difficulties we consider the total processing
time of around 1 min to be acceptable in practice.

The Layout Expert still needs to create a single Pre-AST
for every potential version of the kernel source tree. Our
solution accounts for variations in kernel configuration, but
not kernel versions. A complete solution to live memory
analysis would require an extensive library of released ver-
sions of the Linux tree. However in contrast to current
approachs that require a distinct kernel profile for each
configuration variation at a single kernel version, our library
would only require a single Pre-AST file for each version.
This file already supports all possible configurations.

We assume that users started off from a released
version, obtained from a distribution and then they only
modified their configuration. Therefore there should be a
relatively small number of possible kernel releases to
consider (e.g. Ubuntu release tag commits in the git re-
pository). In this work we do not deal with the possibility
that a user may have checked their source code at an
arbitrary git commit, or applied custom patches to their
source tree (For example, users typically apply kernel
patches in order to support different hardware). In practice
however, many patches rarely change core kernel compo-
nents such as task_struct and so using a Pre-AST from the
regular unpatched kernel might still work for typical
memory analysis needs.

Further applications

The ability to accurately predict the layout of kernel
structures is not only critical for analysis — it is also critical
for the initial acquisition phase itself.

On Linux there are two main modes of memory acqui-
sition. The first relies on the presence of the /proc/kcore
device, which exposes physical memory to userland.
However, in more secure installations, this device is
disabled, requiring a special kernel module to be loaded in
order to expose and acquire physical memory.

In order to load a kernel module into a running kernel,
the module must be compiled with the precise kernel
configuration that was used to build the kernel. The main
reason is that the kernel module must interact with the
running kernel's structs and so must have the same struct
layout as the running kernel. Stiittgen and Cohen (2014)
have demonstrated an interesting technique where code
is injected into an existing kernel module (a parasite)
which would already have the correct kernel struct layout
to enable the module to be safely inserted. However their
technique depends on the availability of a suitable parasite
module on the running system.

The layout expert, however, can solve this problem
entirely, since we can arrive at the correct struct layout at
runtime. We can therefore modify an existing linux kernel
module to contain the correct struct layout on the running
system before inserting the kernel module. This makes the
layout expert useful in acquisition situations as well, and is
an exciting future application of this technology.

Conclusions

Traditionally, memory analysis on the Linux platform
has been cumbersome due to the need for advanced
preparations: Profiles and drivers were required to be
compiled in advance before they can be run on the system.
This practical limitation made incident response on Linux
platforms difficult.

The main reason for this difficulty is the inability to
predict in advance the memory layout of kernel structures,
without the assistance of the compiler itself and it's
emitted debug information.
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For the first time, we offer a self contained solution
which can work without relying on the compiler tool-
chain, without installing any additional tools on the
target system and without contacting external services. The
Layout Expert project is able to calculate the memory layout
of critical kernel parameters from the kernel configuration
found on the actual target machine itself. The tool is able to
automatically create fully functional profiles for live anal-
ysis on Linux, without requiring any advanced
preparations.

We have released our tool under an open source licence
and have contributed it to the Rekall memory forensic suite.
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