
Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

 Copyright
 Praise for Counter Hack Reloaded

 The Radia Perlman Series in Computer Networking and Security Radia
Perlman, Series Editor

 Foreword
 Preface Reloaded
 About the Authors
 Chapter 1. Introduction
 The Computer World and the Golden Age of Hacking
 Why This Book?
 The Threat: Never Underestimate Your Adversary
 A Note on Terminology and Iconography
 Caveat: These Tools Could Hurt You
 Organization of Rest of the Book
 Summary
 Chapter 2. Networking Overview: Pretty Much Everything You Need to

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Know About Networking to Follow the Rest of This Book
 The OSI Reference Model and Protocol Layering
 How Does TCP/IP Fit In?
 Understanding TCP/IP
 Transmission Control Protocol (TCP)
 User Datagram Protocol (UDP)
 Internet Protocol (IP) and Internet Control Message Protocol (ICMP)
 ICMP
 Other Network-Level Issues
 Don't Forget About the Data Link and Physical Layers!
 Security Solutions for the Internet
 Conclusion
 Summary

 Chapter 3. Linux and UNIX Overview: Pretty Much Everything You Need
to Know About Linux and UNIX to Follow the Rest of This Book

 Introduction
 Architecture
 Accounts and Groups
 Linux and UNIX Permissions
 Linux and UNIX Trust Relationships
 Common Linux and UNIX Network Services
 Conclusion
 Summary

 Chapter 4. Windows NT/2000/XP/2003 Overview: Pretty Much
Everything You Need to Know about Windows to Follow the Rest of This
Book

 Introduction
 A Brief History of Time
 The Underlying Windows Operating System Architecture
 How Windows Password Representations Are Derived
 Kernel Mode
 From Service Packs and Hotfixes to Windows Update and Beyond
 Accounts and Groups
 Privilege Control
 Policies

 Trust
 Auditing
 Object Access Control and Permissions
 Network Security
 Windows 2000 and Beyond: Welcome to the New Millennium
 Conclusion
 Summary
 Chapter 5. Phase 1: Reconnaissance

 Low-Technology Reconnaissance: Social Engineering, Caller ID
Spoofing, Physical Break-In, and Dumpster Diving

 Search the Fine Web (STFW)
 Whois Databases: Treasure Chests of Information
 The Domain Name System
 General-Purpose Reconnaissance Tools
 Conclusion
 Summary
 Chapter 6. Phase 2: Scanning
 War Driving: Finding Wireless Access Points
 War Dialing: Looking for Modems in All the Right Places
 Network Mapping
 Determining Open Ports Using Port Scanners
 Vulnerability-Scanning Tools
 Intrusion Detection System and Intrusion Prevention System Evasion
 Conclusion
 Summary

 Chapter 7. Phase 3: Gaining Access Using Application and Operating
System Attacks

 Script Kiddie Exploit Trolling
 Pragmatism for More Sophisticated Attackers
 Buffer Overflow Exploits
 Password Attacks
 Web Application Attacks
 Exploiting Browser Flaws
 Conclusion
 Summary
 Chapter 8. Phase 3: Gaining Access Using Network Attacks

 Sniffing
 IP Address Spoofing
 Session Hijacking
 Netcat: A General-Purpose Network Tool
 Conclusion
 Summary
 Chapter 9. Phase 3: Denial-of-Service Attacks
 Locally Stopping Services
 Locally Exhausting Resources
 Remotely Stopping Services
 Remotely Exhausting Resources
 Conclusion
 Summary

 Chapter 10. Phase 4: Maintaining Access: Trojans, Backdoors, and
Rootkits ... Oh My!

 Trojan Horses
 Backdoors
 The Devious Duo: Backdoors Melded into Trojan Horses
 Nasty: Application-Level Trojan Horse Backdoor Tools
 Also Nasty: The Rise of the Bots
 Additional Nastiness: Spyware Everywhere!

 Defenses Against Application-Level Trojan Horse Backdoors, Bots, and
Spyware

 Even Nastier: User-Mode Rootkits
 Defending Against User-Mode Rootkits
 Nastiest: Kernel-Mode Rootkits
 Defending Against Kernel-Mode Rootkits
 Conclusion
 Summary
 Chapter 11. Phase 5: Covering Tracks and Hiding
 Hiding Evidence by Altering Event Logs
 Defenses Against Log and Accounting File Attacks
 Creating Difficult-to-Find Files and Directories
 Hiding Evidence on the Network: Covert Channels
 Defenses Against Covert Channels

 Conclusion

 Summary
 Chapter 12. Putting It All Together: Anatomy of an Attack
 Scenario 1: Crouching Wi-Fi, Hidden Dragon
 Scenario 2: Death of a Telecommuter
 Scenario 3: The Manchurian Contractor
 Conclusion
 Summary
 Chapter 13. The Future, References, and Conclusions
 Where Are We Heading?
 Keeping Up to Speed
 Final Thoughts ... Live Long and Prosper
 Summary
 Index

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Copyright

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include electronic
versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more
information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Skoudis, Ed.
 Counter hack reloaded : a step-by-step guide to computer attacks and
 effective defenses / Ed Skoudis with Tom Liston.—2nd ed.
 p. cm.
 Rev. ed. of: Counter hack, c2002.
 Includes bibliographical references and index.
 ISBN 0-13-148104-5 (pbk. : alk. paper)
 1. Computer networks—Security measures. 2. Data protection. I.
 Skoudis, Ed. Counter hack. II. Liston, Tom. III. Title.
 TK5105.59.S57 2006
 005.8—dc22
 2005027164

Copyright © 2006 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.prenhallprofessional.com

is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 One Lake Street
 Upper Saddle River, NJ 07458
 Fax: (201) 236-3290

Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.

First printing, December 2005

Dedication

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Praise for

"I finally get it! I used to hear words like and and they just didn't make
any sense. I asked other people and they didn't seem to know how these
things work, or at least they couldn't explain them in a way that I could
understand. is the clearest explanation of these tools I have ever seen.
Thank you!"

—

"Ed Skoudis is a rare individual. He knows the innards of all the various
systems, knows all the latest exploits and defenses, and yet is able to
explain everything at just the right level. The first edition of was a
fascinating read. It's technically intriguing and very clear. . . . A book on
vulnerabilities, though, will get out of date, and so we definitely needed
this updated and significantly rewritten second edition. This book is a
wonderful overview of the field."

— Interconnections;
Network Security: Private Communications in a Public World

"What a great partnership! Ed Skoudis and Tom Liston share an uncanny
talent for explaining even the most challenging security concepts in a
clear and enjoyable manner. is an indispensable resource for those who
want to improve their defenses and understand the mechanics of
computer attacks."

— Malware: Fighting Malicious Code

"Ed Skoudis does it again! With this new edition, Ed takes a phenomenal
work to the next level! This book is a 'must-have' and a 'must-read' for
anyone remotely associated with computers and computer security."

— Windows Forensics and Incident Recovery

"In addition to having breadth of knowledge about and probing insights
into network security, Ed Skoudis's real strength is in his ability to show
complex topics in an understandable form. By the time he's done, what
started off as a hopeless conglomeration of acronyms starts to sound
comfortable and familiar. This book is your best source for understanding
attack strategies, attack tools, and the defenses against both."

—

"This book is a must-have for anyone in the Internet security game. It
covers everything from the basic principles to the fine details of online

attack methods and counter-strategies and is very engagingly written."

— Secure Electronic Commerce

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The Radia Perlman Series in Computer
Networking and Security

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Foreword

It's hard to remember a world without the Internet. We now take for granted
that we can access our bank accounts and health records, get driving
directions, talk to friends, and shop, all on the Internet. Many companies
couldn't survive without it because it is their link to their customers.

But the Internet doesn't just give businesses access to customers, doctors
access to health records, and friends access to each other, it also gives
attackers access to your system and to the systems you want to reach.

The systems were built in a much more innocent time, which assumed a
collegial environment for honest researchers to share information, or a
single-user, home machine used for word processing or playing games. The
Internet, along with the idea of people attacking systems for fun or to make
a political point, developed so quickly that the systems have not had time to
evolve into the completely hardened systems they need to be. In the
meantime, it is a constant struggle to try to stay ahead of the attackers.

It would be easy to give up, declare the situation hopeless, and move to
Vermont to raise rabbits. But just when dealing with thousands of rabbits
starts sounding like the easy way out, along comes Ed Skoudis, with his
boundless energy, enthusiasm, and optimism.

Ed is a rare individual. He knows the innards of all the various systems, as
well as all the latest exploits and defenses, and yet he is able to explain
everything at just the right level. The first edition of was a fascinating read.
It's technically intriguing and very clear. It's also, of course, scary, but Ed's
basic optimism shines through and is somehow reassuring and empowering.

A book on vulnerabilities will get out of date, though, and so we definitely
needed this updated and significantly rewritten second edition. This book is a
wonderful overview of the field. (For those wanting to do a deep dive into
the details of malicious code, I strongly recommend Ed's other book,
[Prentice Hall, 2004].)

Unfortunately, the battle for understanding and defending against exploits is
not ever going to be won. As the Red Queen said in "Now here, you see, it
takes all the running you can do, to keep in the same place." That's such a
discouraging thought, but at least will make us enjoy learning what we need
to know to do our best.

—

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Preface Reloaded

My flight had just landed. It was around midnight. The flight attendant
announced that we could turn on our cell phones. As soon as mine booted
up, it started buzzing with a frantic call from a newspaper reporter I had
recently met. He quickly explained that he had obtained a copy of a
manifesto written by a terrorist who had launched some pretty horrific
attacks killing hundreds of innocent people a few months back. The reporter
had had the text professionally translated so he could get some folks to
analyze it. In this 30-page document, this very evil guy was urging his
followers to alter their tactics in their struggle. To augment their physical
terrorism, the plan was now to start including cyberattacks to maximize
their impact on countries that oppose their terrorist agenda. The reporter
wanted me to analyze the technical underpinnings of the manifesto, to
determine whether it was all smoke and mirrors, or a legitimate cause for
concern.

I got to my hotel room and snagged a copy of the manifesto from my e-mail.
The document I read startled me. Although not technically deep, it was quite
astute. Its author emphasized that the terrorist group could enhance their
stature and influence and cause more terror to their enemies by
undermining their economic well-being through the use of computer attacks.
After this really eerie "motivational" speech introduction, the manifesto
turned toward describing how different categories of attack could be used to
achieve terrorist goals. Although the author didn't include technical details,
he did provide a huge number of technical references on computer attacks,
pressing his faithful followers to study hard the technologies of the infidel so
they could undermine them.

The following day I received an unrelated call, this time from a lawyer friend
of mine. He explained that a computer attacker had broken into the network
of a company and stolen over a million credit card numbers. Because the
attacker had pilfered the entire magnetic stripe data stored on the
company's servers, the bad guy could create very convincing counterfeit
cards, and begin selling them on the black market. My lawyer friend wanted
me to look over the details of the heist and explain in nontechnical jargon
how the thief was able to pull this off. I carefully reviewed the case,
analyzing the bad guy's moves, noting sadly that he had used some pretty
standard attack techniques to perpetrate this big-time crime.

Given those cases on back-to-back days, I just reread the preface to the
original book I wrote almost five years ago. Although it described a real-
world attack against an ISP, it still had a fun feeling to it. The biggest worry
then was the defacement of some Web sites and my buddy's boss getting
mad, certainly cause for concern, but not the end of the world. I was struck

with how much things have changed in computer attacks, and not at all for
the better. Five years back, we faced a threat, but it was often manifested in
leisurely attacks by kids looking to have some fun. We did face a hardened
criminal here and there, of course, but there was a certain whimsy to our
work. Today, with organized crime and, yes, even terrorists mastering their
computer attack skills, things have taken a turn for the dark and sinister.
Sure, the technology has evolved, but increasingly so has the nature of our
threat.

Underscoring the problem, if you place an unpatched computer on the
Internet today, it's average survival time before being completely
compromised is less than 20 minutes. That time frame fluctuates a bit over
the months, sometimes dropping to less than 10 minutes, and occasionally
bumping up over 30 minutes when some particularly good patches are
released and quickly deployed. However, even the upper-end number is
disheartening. Given this highly aggressive threat, it's even more important
now than ever for computer professionals (system administrators, network
administrators, and security personnel) and even laymen to have knowledge
of how the bad guys attack and how to defend against each of their moves.
If we don't understand the bad guys' tactics and how to thwart them, they'll
continue to have their way with our machines, resulting in some major
damage. They know how to attack, and are learning more all the time. We
defenders also must be equally if not better equipped. This new edition of
represents a massive update to the original book; a lot has happened in the
last five years in the evolution of computer attack technology. However, the
book retains the same format and goal: to describe the attacks in a step-by-
step manner and to demonstrate how to defend against each attack using
time-tested, real-world techniques.

Oh, and one final note: Although the nature of the threat we face has gown
far more sinister, don't let that get you down in the dumps. A depressed or
frightened attitude might make you frustrated and less agile when dealing
with attacks, lowering your capabilities. If we are to be effective in defending
our systems, we must keep in mind that this information security work we
all do is inherently interesting and even fun. It's incredibly important to be
diligent in the face of these evolving threats; don't get me wrong. At the
same time, we must strive to keep a positive attitude, fighting the good
fight, and making our systems more secure.

Preface from the First Edition

My cell phone rang. I squinted through my sleepy eyelids at the clock. Ugh!
4 , New Year's Day. Needless to say, I hadn't gotten very much sleep that
night.

I picked up the phone to hear the frantic voice of my buddy, Fred, on the
line. Fred was a security administrator for a medium-sized Internet Service
Provider, and he frequently called me with questions about a variety of
security issues.

"We've been hacked big time!" Fred shouted, far too loudly for this time of
the morning.

I rubbed my eyes to try to gain a little coherence.

"How do you know they got in? What did they do?" I asked.

Fred replied, "They tampered with a bunch of Web pages. This is bad, Ed. My
boss is gonna have a fit!"

I asked, "How did they get in? Have you checked out the logs?"

Fred stuttered, "W-Well, we don't do much logging, because it slows down
performance. I only snag logs from a couple of machines. Also, on those
systems where we do gather logs, the attackers cleared the log files."

"Have you applied the latest security fixes from your operating system
vendor to your machines?" I asked, trying to learn a little more about Fred's
security posture.

Fred responded with hesitation, "We apply security patches every three
months. The last time we deployed fixes was ... um ... two-and-a-half
months ago."

I scratched my aching head and said, "Two major buffer overflow attacks
were released last week. You may have been hit. Have they installed any
rootkits? Have you checked the consistency of critical files on the system?"

"You know, I was planning to install something like Tripwire, but just never
got around to it," Fred admitted.

I quietly sighed and said, "OK. Just remain calm. I'll be right over so we can
start to analyze your machines."

You clearly don't want to end up in a situation like Fred, and I want to
minimize the number of calls I get at 4 on New Year's Day. While I've
changed Fred's name to protect the innocent, this situation actually
occurred. Fred's organization had failed to implement some fundamental
security controls, and it had to pay the price when an attacker came
knocking. In my experience, many organizations find themselves in the
same state of information security unpreparedness.

But the situation goes beyond these security basics. Even if you've
implemented all of the controls discussed in this Fred narrative, there are a
variety of other tips and tricks you can use to defend your systems. Sure,
you might apply security patches, use a file integrity checking tool, and have
adequate logging, but have you recently looked for unsecured modems? Or,
how about activating port-level security on the switches in your critical
network segments to prevent powerful, new active sniffing attacks? Have
you considered implementing nonexecutable stacks to prevent one of the
most common types of attacks today, the stack-based buffer overflow? Are
you ready for kernel-level rootkits? If you want to learn more about these
topics and more, please read on.

As we will see throughout the book, computer attacks happen each and
every day, with increasing virulence. To create a good defense, you must
understand the offensive techniques of your adversaries. In my career as a
system penetration tester, incident response team member, and information
security architect, I've seen numerous types of attacks ranging from simple
scanning by clueless kids to elite attacks sponsored by the criminal
underground. This book boils down the common and most damaging
elements from these real-world attacks, while offering specific advice on how
you can proactively avoid such trouble from your adversaries. We'll zoom in
on how computer attackers conduct their activities, looking at each step of
their process so we can implement in-depth defenses.

The book is designed for system administrators, network administrators, and
security professionals, as well as others who want to learn how computer
attackers do their magic and how to stop them. The offensive and defensive
techniques laid out in the book apply to all types of organizations using
computers and networks today, including enterprises and service providers,
ranging in size from small to gigantic.

Computer attackers are marvelous at sharing information with each other
about how to attack your infrastructure. Their efficiency at information
dissemination about victims can be ruthless. It is my hope that this book can
help to even the score, by sharing practical advice about how to defend your
computing environment from the bad guys. By applying the defenses from
this book, you can greatly improve your computer security and, perhaps,
we'll both be able to sleep in late next New Year's Day.

Acknowledgments

I was surprised to find that writing a new edition for a book was even harder
than writing the original book! Deciding what to keep and what to drop is
very tough, but I think we've struck the right balance. The consistently good
input I got from my reviewers made me revise the book significantly and

really contributed to this process. My more technical reviewers wanted
deeper technical detail, and the less technical folks wanted more tutorial and
background. In the end, I am very grateful for all of the wonderful input
regarding the balance between the importance of background material and
the need for technical details.

In particular, Radia Perlman was instrumental in the development of this
book. She originally had the idea for writing it, and finally motivated me to
get started writing. She also guided me through the writing process,
providing a great deal of support and excellent technical feedback. Many
thanks to Radia, the great Queen of Networking!

Catherine Nolan from Prentice Hall was crucial in kicking me in the rear to
move this whole process forward. She was firm yet friendly, inspiring me
with her e-mails to keep making progress every day.

Mary Franz from Prentice Hall was an inspiring friend, helping to get this
revised edition started. This book wouldn't exist if it weren't for Mary. She's
now moved on to other opportunities, and I do indeed miss her.

Also, thanks to everyone else at Prentice Hall for their support in getting this
done, especially Julie Nahil and Teresa Horton, who shepherded this puppy
through the editing process and provided much helpful input.

Thank you also to Harlan Carvey, Kevin Fu, Mike Ressler, and Warwick Ford,
who reviewed this book and provided very useful comments. Also, Denise
Mickelsen was very helpful in organizing things throughout the review
process.

I'd like to thank Tom Liston, a great friend, who did the updates on Chapters
4, 8, and 11. Without Tom's excellent work on those chapters, I'm not sure
we'd have ever finished. Thanks a bunch!

Allan Paller and Stephen Northcutt, from the SANS Institute, have done a
tremendous job pushing me to develop my presentation and writing style.
I've always appreciated their input regarding how to present these concepts
in a fun, informative, and professional way.

Also, many thanks go the authors of the tools described throughout the
book. Although a small number of the tool developers have sinister motives,
the vast majority are focused on helping people find security flaws before
the attackers do. Although you might disagree about their motivations, the
skill and dedication that goes into devising these tools and attack strategies
are remarkable and must not be understated.

The students who've attended my live course over the past decade have

provided a huge amount of input and clarification. Often, a small comment
on the feedback forms has led to some major changes in my materials that
have greatly improved the coherence and value of the presentation
materials and this book. Thanks to all who have contributed over the years!

But most important, I'd like especially to thank my wonderful wife,
Josephine, and our children, Jessica and Joshua, for their help and
understanding throughout this process. They were incredibly supportive
while I wrote away day and night, giving me far more leeway and
understanding than I deserve. It wasn't easy, but it was fun ... and now it's
done.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

About the Authors

is a founder and senior security consultant for the Washington, D.C.-based
network security consultancy, Intelguardians Network Intelligence, LLC. His
expertise includes hacker attacks and defenses, the information security
industry, and computer privacy issues. He has performed numerous security
assessments, designed information security governance and operations
teams for Fortune 500 companies, and responded to computer attacks for
clients in financial, high technology, health care, and other industries. Ed
has demonstrated hacker techniques for the U.S. Senate and is a frequent
speaker on issues associated with hacker tools and defenses. In addition to
this book, Ed is the coauthor of (Prentice Hall, 2004). He was also awarded
2004 and 2005 Microsoft MVP awards for Windows Server Security, and is
an alumnus of the Honeynet Project. Prior to Intelguardians, Ed served as a
security consultant with International Network Services (INS), Predictive
Systems, Global Integrity, SAIC, and Bell Communications Research
(Bellcore).

is a senior analyst for the Washington, D.C.-based network security
consultancy, Intelguardians Network Intelligence, LLC. He is the author of
the popular open source network tarpit, LaBrea, for which he was a finalist
for and Innovations In Infrastructure (i3) award in 2002. He is one of the
handlers at the SANS Institute's Internet Storm Center, where he deals daily
with cutting edge security issues and authors a popular series of articles
under the title "Follow the Bouncing Malware." Mr. Liston resides in the
teeming metropolis of Johnsburg, Illinois, and has four beautiful children
(who to be mentioned): Mary, Maggie, Erin, and Victoria.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 1. Introduction

Computer attacks happen each and every day. Simply connect an innocuous
computer to the Internet, and someone will try to pry into the machine
three, five, or a dozen times every 24 hours. Even without any
advertisements or links bringing attention to it, attackers looking for
vulnerable prey will constantly scan your machine or pummel you with e-
mail trying to trick you into opening an innocuous-appearing attachment. If
the computer is used for actual business purposes, such as a commercial,
educational, not-for-profit, or even military system, it will get even more
attention from the bad guys.

Many of these attacks are mere scans looking for particularly weak prey.
Others are really sophisticated computer break-ins, which occur with
increasing frequency as any glimpse of recent headlines demonstrates. In
just a year's time, various government agencies around the world have
publicly admitted they were targeted with a customized Trojan horse
designed to pilfer very sensitive government secrets. Attackers have stolen
untold millions of credit card numbers from e-commerce sites, banks, and
credit card processors, sometimes turning to extortion of the victim company
to get paid not to release customers' credit card information. Numerous
online retailers have been temporarily shut down due to major packet
floods. A major U.S.-based high-tech manufacturer disclosed that attackers
had broken into its network and stolen the source code for future releases of
its popular networking product. The stories go on and on.

The purpose of this book is to illustrate how many of these attacks are
conducted so that you can defend your computers against cyber siege. By
exploring in detail the techniques used by the bad guys, we can learn how to
defend our systems and turn the tables on the attackers.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

The Computer World and the Golden Age of
Hacking

Over the last several decades, our society has rapidly become very
dependent on computer technology. We've taken the controls for our whole
civilization and loaded them onto digital machines. Our computer systems
are responsible for storing sensitive medical information, guiding aircraft
around the world, conducting nearly all financial transactions, planning food
distribution, and even transmitting love letters. When I was a kid (not all
long ago, mind you), computers were primarily for nerds, something avoided
by most people who had a choice in the matter. Only 15 years ago, the
Internet was the refuge of researchers and academics. Now, as a major
component of our population stares into computer screens and talks on cell
phones all day long for both business and personal use, these technologies
dominate our headlines and economy.

I'm sure you've noticed that the underlying technologies behind computers
and networks have many flaws. Sure, there are counterintuitive user
interfaces and frequent computer crashes. Beyond these easily observed
bugs, however, there are some fundamental flaws in the design and

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

implementation of the underlying operating systems, applications, and
protocols. By taking advantage of these flaws, an attacker can steal data,
take over systems, or otherwise wreak havoc.

Indeed, we have created a world that is inherently hackable. With our great
reliance on computers and the numerous flaws found in most systems, this is
the Golden Age of Hacking. New flaws in computer technology are being
discovered every day and widely shared throughout a burgeoning computer
underground. By setting up a lab in the comfort of their own homes,
attackers and security researchers alike can create a scaled-down copy of
the computer platforms used by giant corporations, government agencies, or
even military operations, using the same operating systems, routers, and
other gadgetry as their ultimate target. By scouring these systems looking
for new vulnerabilities, attackers can hone their skills and discover new
vulnerabilities to exploit.

And computer technology is continuing its advance into every nook and
cranny of our lives. We've seen an explosion in Personal Video Recorders
(PVRs), wonderful tools that sit on your television and observe your TV
viewing habits. When your PVR decides that you are a major fan of or it
starts recording those shows on its built-in hard drive. The latest PVRs even
include Ethernet jacks so you can connect them to your home network and
the Internet itself, sharing their stored TV content on other screens. So,
there's a box on your TV, watching what you watch, connected to the
Internet. Imagine hacking that! An attacker could use some of that PVR hard
drive space to store nefarious information, including stolen software, attack
plans, or pornography. Attackers could even customize your TV viewing
sessions, injecting their own content into the next episode of that you watch.
In addition to PVRs, many stereo systems are now geared toward MP3
playback and can interface with a home computer, creating a media center
built on underlying technologies full of security holes. In the very near
future, your car will have a wireless network connection supporting map
downloads, remote troubleshooting, and—Heaven help us—e-mail reading
while you drive.

Beyond these consumer-centric applications, medical devices are being
computerized and networked like never before. Some new heart pacemakers
include magnetic induction interfaces so a doctor can read the settings on
the device simply by holding a magnetic coupler over the patient's chest.
Some versions even support such readings over the phone, so the doctor
and patient don't have to be together. Future versions might even support
the update of the pacemaker's configuration over the Internet!

What underlies all of these rapidly approaching technologies? Computers and
the networks that link them together.

With these advances, our current Golden Age of Hacking could get even
more golden for the attackers. Think about it: Today, an attacker tries to
break into your computer by scanning through your Internet connection,
tricking you into surfing to an evil Web site, or duping you into running an
e-mail attachment. In the near future, someone might try to hack into your
network-enabled automobile while you are driving down the street. You've
heard of carjacking? Get ready for the world of car hacking.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Why This Book?
If you know the enemy and know yourself,
you need not fear the result of a hundred battles.
If you know yourself but not the enemy,
for every victory gained you will also suffer a defeat.
If you know neither the enemy nor yourself,
you will succumb in every battle.

—, Art of War

"Golly Gee!" you might be thinking. "Why write a book on hacking? You'll
just encourage to attack more!" I respect your concern, but unfortunately
there are some flaws behind this logic. Let's face it—the malicious attackers
have all the information they need to do all kinds of nasty things. If they
don't have the information now, they can get it easily enough on the
Internet through a variety of Web sites, mailing lists, and newsgroups
devoted to hacking, using a variety of the Web sites we discuss in Chapter
13, The Future, References, and Conclusions. Experienced attackers often
selectively share information with new attackers to get them started in the
craft. Indeed, the communication channels in the computer underground
among attackers are often far better than the communication among

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

computer professionals like you and me. This book is one way to help make
things more even.

My purpose here is not to create an army of barbarian hackers mercilessly
bent on world domination. The focus of this book is on defense, but to create
an effective defense, we must understand the offensive tools used by our
adversaries. By seeing how the tools truly work and understanding what
they can do, not only can we better see the needs for good defenses, but
also we can better understand how the defensive techniques work.

This book is designed for system administrators, security personnel, and
network administrators whose jobs require them to defend their systems
from attack. Additionally, other curious folks who want to learn how
attackers work and techniques for defending their own systems against
attacks can benefit. The book includes practical recommendations for people
who have to deal with the care and feeding of systems, keeping them
running and keeping the bad guys out, ranging from home users to
operators of corporate and government environments. With this
understanding, we can work to create an environment where effective
defensive techniques are commonplace, and not the exception. As good ol'
Sun Tzu said, you must understand your enemy's capabilities and your own.
For each offensive technique described in this book, we'll also describe real-
world defenses. You can measure your own security capabilities against
these defenses to see how you stack up. Where your policies, procedures,
and technologies fall short, you can implement appropriate defenses to
protect against the enemy. And that's what this book is all about: Learning
what the attackers do so we can defend ourselves.

Why Cover These Specific Tools and Techniques?

There are thousands of different computer and network attack tools
available today, and tens of thousands of different exploit techniques. To
address this flood of possible attacks, this book focuses on particular genres
of attack tools and techniques, examining the most widely used and most
damaging tools from each category. By learning in depth how to defend
against the nastiest tools and techniques in each category, we will be
defending against all related tools in the category. For example, there are
hundreds of methods available that let an attacker hide on a machine by
transforming the operating system itself, using tools called rootkits. Rather
than describing each and every individual rootkit available today, we
analyze in a greater level of detail some of the most powerful and widely
used rootkit tools in Chapter 10, Phase 4: Maintaining Access. By learning
about and properly defending against these specimens, you will go a long
way in securing your systems against other related rootkit attacks. In the
same way, by learning about the most powerful tools in other categories, we

can design and implement the most effective defenses.

How This Book Differs

In recent years, several books have been released covering the topic of
attackers and their techniques. Some of these books are well written and
quite useful in helping readers understand how attacks work and
highlighting defenses. Why add another book to the shelf addressing these
topics? I'm glad you asked. This book is focused on being different in several
ways, including these:

Other books in this genre cover thousands of tools, with a paragraph or
page on each tool. As described in the previous section, this book
focuses on understanding each category of tool in much more depth.
Therefore, whereas other books act like fantastic dictionaries of attack
tools and defenses, this book aims to be more of an encyclopedia,
describing the attack process in more detail and providing the overall
architecture of attacks. By covering each category of attack tool and the
overall attack architecture in more detail, we can better understand the
appropriate defenses. But, the book isn't designed to be an encyclopedia.
We don't want this book to be merely a giant tome on your shelf
gathering dust, occasionally used as a reference. Instead, we aim to
provide the material in an interesting and educational manner, helping
bring readers up to speed with the myriad of attacks we face and real-
world methods for handling them in an effective manner.

Other books present a view of how attackers gain access to systems,
focusing on the penetration portion of an attack. Although gaining access
is an incredibly important element of most attacks, our adversaries do
much more than simply gain access. Once access is gained, most
attackers manipulate the system to maintain access and work hard to
cover their tracks. This book covers the attack sequence end-to-end by
presenting a phased approach to attacking, so we can cover defenses at
each stage of a siege. Most attacks follow a general outline that includes
reconnaissance, scanning, gaining access, maintaining access, and
covering the tracks. This book describes each phase in detail.

The tools used by attackers are a little like building blocks; each one fills
a specific (but limited) purpose. Only by seeing how attackers build
complete attacks out of the little blocks can we understand how to best
defend ourselves. Sophisticated attackers take individual building blocks
of tools and combine them in creative ways to devise very elegant
attacks. This book describes how the tools are used together with its
phased view of an attack. Additionally, Chapter 12, Putting It All
Together: Anatomy of an Attack, presents several scenarios describing
how these tools are used together in the wild to undermine systems.

Throughout the book, I have used analogies to highlight how various
technologies work. Although some of the analogies are certainly cheesy,
I hope they make the material more interesting and accessible to
readers.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

The Threat: Never Underestimate Your
Adversary

So who are these attackers that we must defend against? So often, when we
speak of computer attackers, people get visions of a pimply-faced teenager
messing around with his computer from his bedroom in his parents' house,
sucking down a bunch of high-caffeine energy drinks in the process. This
image lulls some people into lowering their defenses, thinking, "What kind of
damage could a mere kid do?" This thinking is wrong on at least three
accounts.

First, in my experience, many of the youthful attackers have remarkably
clear skin, with not a pimple to be found. Second, and far more important,
many of the kids are amazingly good at what they do, with sophisticated
skills and a huge degree of determination. Sure, some of the youthful
masses don't have a great deal of skill, but if your organization falls into the
crosshairs of highly skilled youthful attackers, they can do some significant
damage to your computing systems. Don't let your defenses down just
because you think your only threat is younger than 20 years old.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

A third reason not to let your defenses down with visions of teenage
attackers is perhaps the most important. Most organizations are faced with
threats far beyond mischievous youth. You should never underestimate your
adversary. Different organizations have different exposure to potential
threats. In reality, attackers come from all walks of life and have a variety of
motives for their actions. Beyond the youthful offender, some of the outside
threats that we encounter launching attacks include the following:

If your organization handles money (which most organizations do at
some level), your computing infrastructure could be the target of
organized crime. Similarly, if you are an individual (which most people
are), your sensitive information could be very useful to criminals. These
attackers might be looking for sensitive data for identity theft or other
fraud, a convenient way to launder money, information useful in their
criminal business endeavors, or system access for other nefarious
purposes. One of the most important stories of the past couple of years
has been the rush of organized crime into the computer attacking
business. The bad guys have honed their business models to optimize
how they make money in computer attacks. This type of crime can be
highly lucrative for the bad guys, who might steal and sell credit card
numbers, commit identity theft, or even extort money from a target
under threat of denial-of-service flood. Further, if the attackers cover
their tracks carefully, the possibilities of going to jail (as well as the
likelihood of getting shot) are far lower for computer crimes than for
many types of physical crimes. Finally, by operating from an overseas
base from a country with little or no legal framework regarding computer
crime prosecution and no extradition treaties, attackers can operate with
virtual impunity.

If your organization is considered part of the critical infrastructure of
your country or the world, you face potential cyber attacks from
terrorists. They could plant malicious programs throughout your
enterprise to shut down all critical systems during sensitive times,
destroy systems or data to cause economic upheaval, or otherwise cause
potentially life-threatening problems.

Most governments have active interest in the activities of a huge variety
of organizations operating on their soil. Some have turned to cyber
attacks to gain access to and information about local organizations to
support law enforcement, to gain information to help homegrown
companies compete against foreign companies, and even to repress
dissidents. Going further, some governments have reached outside of
their own territory in subtle computer probing and outright attacks
against businesses and other governments, for military or business
advantage.

Sometimes, an organization's competition will turn to computer attacks
to try to gain the upper hand. These attacks could include low-level
reconnaissance for gathering interesting tidbits about the business, in-
depth penetration into sensitive systems to gain details of future
strategies, or even massive denial-of-service attacks to prevent
customers from reaching the victim. We've personally handled incidents
in which e-commerce sites were targeting their competition to knock
them offline for a while in an effort to drive customers toward their own
Web sites and increase revenue.

If your organization does something politically sensitive, you might be
the target of hacktivists. This class of attackers tries to break into your
systems to make a political point or demonstrate regarding social issues.
Hacktivists might alter your Web site to display their messages and
embarrass your organization, or cripple your processing capabilities to
slow down your business.

This type of attacker is looking to make money by stealing information
or gaining access to computer systems on behalf of a client, which could
be one of the other external threats included in this list.

Beyond these outsiders, keep in mind that a majority of attacks come from
insiders, folks who have direct access to your computer systems as part of
their job function or a business relationship. Insider threats include the
following:

Because they have a great degree of access to, exposure on, and
training in an organization's own systems, an organization's own
employees are often the most frequent and damaging attackers of
computer systems.

Beyond the employees who are out to get you (that is, the disgruntled
ones), other employees might inadvertently compromise your
organization's security. By disabling antivirus tools, surfing to sites that
try to attack their browsers, or countless other improper security
practices, these users represent a real risk, even though they aren't
trying to hurt anyone.

Unfortunately, customers sometimes turn on their suppliers, attacking
their computing systems in an attempt to gain sensitive information
about other customers, alter prices, or otherwise mess up an
organization's data.

Suppliers sometimes attack customers. A malicious employee on a
supplier's network could attack systems in a variety of ways.

Vendors are often given full access to systems for remote diagnostics,
system upgrades, and administration. With this access, they could not
only attack the systems to which they are given access, but potentially
systems throughout the network. What's more, whether you like it or
not, the software running on your systems acts as a massively trusted
insider, with access to very sensitive information. The people who wrote
that software might or might not have your best interests at heart. A
renegade developer at a software company could have planted a
backdoor or deliberately inserted a security flaw so that he or she could
gain access to your systems. With recent trends toward outsourcing
software development around the globe, very few organizations even
know where the guts of their own vital software was developed, let alone
the names and motivations of the people on the development team.

Joint ventures, shared projects, and other business relationships often
involve linking networks together and sharing highly sensitive
information. An attacker located on any one of the networks connected
together could launch an attack on one of the other business partners.
Also, security is often like the proverbial chain with the weakest link. If
one of your business partners succumbs to an external attacker because
they have a lower security stance than you do, that attacker could gain
access to your network through a business partner connection.

Having worked as a consultant myself for more than a decade, I feel
confident in saying that these breeds of insiders can be particularly
insidious. Many organizations do not conduct thorough background
checks on these temporary employees as they do on their own
permanent employees. These short-term workers often have a great
deal of access to systems and data. Compounding the problem, some
organizations cannot remove account access by short-term workers as
quickly or thoroughly as they can for terminated employees. I've seen
situations where terminated employees' accounts will be closed out the
morning of separation, whereas a temp's account might linger for
months.

Of course, the threats in this list are not mutually exclusive. For example, a
determined terrorist group could place people within your organization as
temps in an effort to gain access and plant malicious software on your
systems from the inside. Likewise, a competitor could employ highly skilled
youthful offenders as hired guns to steal particular information from an
organization's systems. The combinations and permutations are endless.

However, just as you don't want to underestimate the threats you face,
neither do you want to overestimate them. You don't want to gold plate your
security, protecting against phantoms that would have no interest in your
computers or information. No one installs expensive car alarms on a beaten

up 1992 Chevy station wagon. However, in certain neighborhoods, you
certainly lock the doors on such a car to keep people from taking a joyride at
your expense. You must sit down and carefully evaluate which threats would
be motivated to go after your organization, tally the tangible and intangible
value of the assets you have to protect, and then deploy security
commensurate with the threat and the value of your systems and
information.

Attacker Skill Levels: From Script Kiddies to the Elite

Among the numerous types of computer attackers, skill levels vary greatly.
Some attackers have only rudimentary skills, not understanding how their
tools really work and instead relying on prepackaged attack tools written by
others. Such attackers are often derisively referred to as "script kiddies," as
their skills are based on running scripts and other software written by more
sophisticated attackers and they tend to be rather immature. Script kiddies
often indiscriminately scan large swaths of the Internet looking for easy prey
to take over, or send a bazillion e-mail messages with evil attachments,
hoping that some small fraction of their targets take the bait. By
compromising this low-hanging fruit, script kiddies get bragging rights and a
base from which to launch further attacks. Because so many hosts are so
poorly protected on the Internet today, even attackers with very low skill
levels can compromise hundreds or thousands of systems around the world.
There are a huge number of script kiddies on the Internet today, and their
growth is truly international in scope.

Beyond the simple script kiddies, we often observe moderately skilled
attackers, who are very sharp in one type of operating system. With the
right degree of determination, these medium-level attackers can cause a
great deal of damage to a target organization. Furthermore, a major trend in
the computer underground involves moderately or highly skilled attackers
and security researchers discovering vulnerabilities in computer systems and
creating simple-to-use exploit tools to demonstrate the discovered
vulnerability. Many of the moderately skilled attackers release these tools in
a public forum, such as a newsgroup or on a Web site. Some of these
exploits are quite sophisticated, yet are very easy to use. In fact, many of
the tools have point-and-click graphical interfaces or simple command-line
options. The script kiddies adopt these tools written by more skilled
attackers and use them in their attacks without understanding the
underlying vulnerabilities that they are exploiting.

At the top end of the skill chart, we find truly elite attackers. These
individuals tend to have in-depth skills covering a wide range of platforms.
Unlike the script kiddie masses, these elite attackers seldom want publicity.
When they take over a system, the elite tend to lurk silently in the

background, carefully covering their tracks and gathering sensitive
information for future use. This elite community also conducts detailed
security research, looking for holes in applications, operating systems, and
other programs that can be used to take over systems. Based on this
research, they develop their own specialized tools for taking over systems.
Many of the elite attackers keep their newly discovered vulnerabilities and
custom attack tools to themselves, not sharing them publicly. By not sharing
tools and techniques, these more secretive attackers attempt to prevent
development and deployment of effective defenses against their tools.

Another group with an elite degree of attacking skills has exactly the
opposite intention. They have more noble purposes, wanting to discover
vulnerabilities before the malicious attackers do in an effort to defend
systems. These more noble elites sometimes become security professionals,
offering their skills to companies or governments looking to improve their
security stance or vendors who want to improve their products. Some
provide this information for free, just trying to make the world a better,
more secure place. Others hang a shingle outside their door and go into
business as security researchers or consultants.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

A Note on Terminology and Iconography
Hackers, Crackers, and Hats of Many Colors: Let's Just Use
"Attackers" and "Bad Guys"

Just as Eskimos have a large number of words to represent the idea of snow,
so too are there a variety of words used to refer to people who attack
computer systems. Unlike snow, though, there is some degree of
controversy over these computer attacker terms. The media and, by
extension, the general public refer to people who attack computer systems
as "hackers." However, many people in the computer underground point out
that the term "hacker" has historically referred to a person who was gifted at
extending the function of computers beyond their original design. According
to this definition, hackers are good, acting as noble explorers making
computers do new and cool things. Using the term hacker to label a
computer vandal or thief denigrates not only the term, but the historic
hacking concept.

For folks who use the term hacker in a positive sense, people who
maliciously attack computer systems trying to wreak havoc are sometimes
called "crackers." So, in this vernacular, hackers are good, and crackers are

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

bad. Of course, because the worldwide media labels both categories of
people as hackers, the cracker terminology hasn't caught on.

To address this problem of terminology, you sometimes see the words "black
hat" and "white hat" used for different kinds of attackers. Just like in old
cowboy movies, black hats are the malicious attackers, whereas white hats
are the computer security experts who try to protect systems. A black hat
tries to break into systems, whereas a white hat conducts research and does
penetration testing to find and fix vulnerabilities. Predictably, people who
work on both sides of the divide (sometimes attacking systems, sometimes
defending them) are "gray hats."

Because the hacker, cracker, and multicolored hat terminology can get
rather muddled and controversial, throughout this book we will use the
simple term "attacker" to refer to someone who attacks computers. The
attacker could be a hacker, cracker, white hat, black hat, gray hat, super
elite, security researcher, or even a penetration tester. Whatever the skill
level, motivation, and the nomenclature, these are the people attacking
computers. Therefore, we use the term attacker. Additionally, we use the
term bad guy to refer to those specific attackers with evil intent.

Another important point to keep in mind is that attackers (or bad guys) are
not necessarily human. No, they aren't extraterrestrials ... I'm referring to
malicious code. Sometimes your attacker has fingers on a keyboard and a
heartbeat, whereas other times, the bad guy is really software, a worm
rampaging through the Internet or a bot installed on a system. Sure, any
given worm or bot was created by a human at some point in the past, but,
once released, the original developer usually has little or no control over
how it propagates. Thus, whenever we use the terms attacker and bad guy
in this book, remember that we can be referring to a person or malicious
software going after a target.

Pictures and Scenarios

Although the terms attacker and bad guy are used throughout the book, we
do need to show pictorially which machine belongs to an attacker in our
figures. To do so, we borrow the imagery of the black hat. In pictures
throughout the book, the attacker's machines are always shown wearing a
black hat so they can easily be spotted, as shown in Figure 1.1.

Figure 1.1. Throughout the book, an attacker's machine is shown
wearing a black hat.

Additionally, the book includes numerous scenarios to highlight various
attack techniques. In many of these scenarios, we use a recurring cast of
characters named Alice, Bob, and Eve. Alice and Bob are innocent machines
trying to get some work done. Eve is the attacker, trying to undermine Alice
and Bob to gain access, steal information, corrupt data, or otherwise disrupt
Alice's and Bob's happy lives. Please note that the names Alice, Bob, and Eve
are frequently used in the cryptography and security communities and we
intend no slight of any gender whatsoever in calling the attacker Eve. Of
course, there are certainly tremendous gender and theological implications
to calling the attacker Eve. However, for our purposes, Eve is genderless,
referred to as he, she, or it. And discussions of the theology of calling the
bad guy Eve are often best had over several drinks, so we won't dwell on
them here. In the cryptography and security community, the attacker Eve
was given this name based on its phonetic similarity to the word
"eavesdropper." Others call the bad guy Mallory, which again raises those
gender issues we won't discuss here.

Naming Names

Another standard we'll observe throughout the book is to mention the name
or handle of the people who have created each of the tools that we discuss.
Some might feel that giving any publicity to folks who have created these
tools should be avoided. I disagree. Some of the tools can be used for both
good and malicious purposes. A well-written packet-capturing tool (a
"sniffer"), for example, can be used to troubleshoot a network (a beneficial
use) or to capture other users' passwords (often leading to a malicious
attack). Likewise, a vulnerability scanner can find holes so a system owner
can fix them, or so an attacker can pinpoint areas to attack. Other tools,
although entirely malicious, illustrate the importance of utilizing a particular
defensive technique, and therefore have value.

Although we might disagree with some of their motives, you have to respect
the great skill, time, and effort that went into developing many of these
tools. Therefore, as a form of respect to the many folks who have worked
countless hours to develop some of the attack tools described in this book
and the associated defensive techniques, we provide the name of the tool's
author and links so you can download the tools themselves.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Caveat: These Tools Could Hurt You

We have indeed included specific links where you can download each tool
described in this book on the World Wide Web. It is incredibly important that
you realize that you use these tools at your own risk! Although some of the
tools we discuss are written by software vendors, security consultants, and
open-source aficionados, other tools covered in the book were written by
people with more sinister motives. As with all software, you must be careful
about what you download and run on your production systems.

Many of the tools discussed in this book are designed to have some sort of
malicious capability, and they can harm your system in the way advertised.
It is also possible for an attacker to create a tool that is not only harmful in
the advertised way, but also includes hidden features that exploit your
systems. You think the handy tool you just downloaded will scan your
network for vulnerabilities. Unfortunately, the tool may also send a copy of
your vulnerability report to the attacker or load a nasty worm on your
machine. Making matters worse, perhaps the tool itself was developed with
the noblest intentions, and was released with no hidden nefarious
functionality. But then, a bad guy compromised the Web site used to

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

distribute the erstwhile safe tool. The attacker could add a backdoor to the
tool and place it on the now-compromised Web site. Anyone who downloads
the new version of the tool and installs it unwittingly cedes control of his or
her own machines to the attacker. This type of attack does happen, and has
been used by bad guys for over a decade. It's a tough world out there, and
you've got to be careful.

How should you face these concerns? Should you just avoid running the
tools discussed in this book altogether? You need to make that decision
yourself, but I do recommend that you experiment with these tools in a
controlled environment so you can get a good understanding for how the
attacks work and can better defend yourself.

Setting Up a Lab for Experimentation

By a controlled environment, what I mean is that I recommend that you
experiment with these attack tools on systems completely separated from
your production network. The tools described in this book do not require
much computing horsepower; you can use some old 700-MHz Pentium III
machines with 256 MB of RAM and 10-GB hard drives to experiment with
these tools. You can buy used machines with such specs at a very reasonable
price at your favorite auction site. Set up two or three machines on an
isolated LAN segment, with completely fresh operating systems. Make sure
there is absolutely no sensitive information on the hard drives. Link the
systems together with an inexpensive hub or switch, which you can purchase
for less than $50 at most computer stores.

To maximize the flexibility of your lab, I recommend that you create dual-
boot systems, installing operating systems such as Linux, Microsoft Windows
2000/XP/2003, OpenBSD, or Solaris x86. Most attack tools run on Linux and
Windows, the two favorite platforms of the computer underground, so make
sure you include them. Figure 1.2 shows one possible network configuration,
the one I use in my own lab at home.

Figure 1.2. An experimental lab for analyzing attack tools.

If you have a little more money to spend, you might want to take the
architecture of Figure 1.2 and virtualize the whole thing. Get a virtual
machine environment tool, such as the commercial VMware () or VirtualPC
() or the free Bochs (), Plex86 (), or Qemu (). These tools let you run
multiple operating systems on a single hardware machine. Get a laptop or
desktop with a lot of RAM (say, 1 GB or more), and install a host operating
system. Then, inside your virtual machine environment, install several guest
operating systems, which you could then run all at the same time. That way,
you'll be able to test tools and practice your attack, defense, and analysis
skills on a single handy machine.

Additional Concerns

Although most of the Web sites distributing software described in this book
are run by consulting firms or computer professionals, a few of the Web sites
referred to in this book are run by somewhat shady characters. When you
access these Web sites, you leave your computer's network address in their
logs, and could invite an attack. Although most of these site operators are
far too busy to start attacking you just because you've accessed their site, I
do recommend some discretion. Whenever you surf the Internet looking for
attack tools and techniques, I strongly recommend that you use a browser
on a machine dedicated to that purpose, without any sensitive data stored
on the system. Also, use an account with a different Internet Service
Provider (ISP) from the one that your organization relies on for Internet
service. There's no sense in leaving your organization's network addresses
or other information in the logs of the Web sites you are searching for attack
tools.

Additionally, when you download attack tools, you might want to review the

source code. Most of the tools include source code, some with reasonably
good comments. Although code review can be a painstaking process, you can
learn a lot from it. Additionally, you might be able to spot additional,
malicious functionality not documented by the tool's author.

If you plan to use the tools, make sure you have permission to run them
against your organization's computer systems. I don't want you to jeopardize
your job by experimenting with these tools! You could easily lose your job or
suffer criminal prosecution for doing something you merely thought you had
permission to do. Thus, make sure you get permission from the owner or
controller of your targets before running these tools. To help you get that
permission, I've included a free permission memo on my own Web site, at
This letter is designed to grant you permission to run computer vulnerability
assessment tools against your environment in an effort to improve its
security. In the penetration testing business, we refer to such a notice as a
"Get Out of Jail Free Card" (GOOJFC). Print this memo on company
stationary and take it to the appropriate person in your organization, such
as a Chief Information Security Officer (CISO) or your Chief Information
Officer (CIO). Don't take it to the janitor, because he or she cannot give you
permission to launch such attacks. Have the appropriate authority read and
sign it, and then keep a copy of your GOOJFC on file. It just might save your
neck someday.

Also, please do note that particular geographic locations impose limitations
on the use of these tools. In some countries, running attack tools across a
public network is illegal, even if you target your own computing systems.
Therefore, be sure to check with your legal folks before running these
attacks across any public network.

Finally, we are certainly not liable if you purposely or accidentally do any
damage to yourself or anyone else with these tools. That is an issue between
you, your victim, and your local law enforcement authorities.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Organization of Rest of the Book

The remainder of the book is ordered into three main sections: a technology
overview, a step-by-step description of attacks, and a final section offering
predictions for the future, conclusions, and references. Let's look at each of
these sections in more detail.

Getting Up to Speed with the Technology

To understand how our adversaries attack systems, it is important to have a
good grounding in the basic technologies that make up most of our systems
and that the attackers use to undermine our machines. The first three
chapters of the book provide an overview of several key underlying
technologies:

Chapter
2

Networking

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter
3

Linux and UNIX

Chapter
4

Windows

These three technologies are in widespread use in all types of organizations
today, and they are key components of the Internet itself. Most
organizations have built and deployed large numbers of Linux/UNIX and
Windows machines for internal use and access on the Internet. Even those
organizations that still have pockets of Novell NetWare, mainframes, VMS-
based systems, and other platforms often access these systems across a
TCP/IP network and use Linux/UNIX or Windows systems as front ends for
such access.

The attackers use these same technologies to launch their attacks.
Furthermore, even though these tools run on these platforms, many of them
are used to target any type of platform. For example, an attacker could use
a session hijack tool on a UNIX machine to take over a session between a
Windows system and your mainframe. Alternatively, an attacker could
launch a denial-of-service attack against your Novell network or IP-enabled
wireless Personal Digital Assistant (PDA) using many compromised Windows
systems. Keep in mind that even though a specific tool described in this book
runs on a given platform, the exact same techniques can be applied to attack
other types of platforms. Likewise, the same types of defenses should also be
applied to all systems to prevent the attacks.

Common Phases of the Attack

After our initial discussion of common technologies used today, the heart of
this book is built around the common phases used in a large majority of
attacks. Most attacks follow a general five-phase approach, which includes
reconnaissance, scanning, gaining access, maintaining access, and covering
the tracks. This book includes one or more chapters describing each attack
phase, the tools and techniques used during the phase, and proven defenses
for each tool or technique. The chapters on attack phases are organized as
follows:

Chapter
5

Phase 1: Reconnaissance

Chapter
6

Phase 2: Scanning

Chapter
7

Phase 3: Gaining Access at the
Operating System and Application
Level

Chapter
8

Phase 3: Gaining Access at the
Network Level

Chapter
9

Phase 3: Gaining Access and
Denial-of-Service Attacks

Chapter
10

Phase 4: Maintaining Access

Chapter
11

Phase 5: Covering Tracks

Once the various phases of attacks are covered, we explore how the tools
and techniques are used together by addressing several scenarios based on
real-world attacks. Three scenarios are presented in Chapter 12, Putting It
All Together: Anatomy of an Attack.

Future Predictions, Conclusions, and References

Finally, the book concludes with some predictions for how tools and attacks
will evolve in the future, as well as some references so you can keep up to
speed with new attack and defense techniques.

Yeah, But What's NEW?

This is the second edition of , which we've chosen to name in a subtle nod to
movie franchise. Some of you might have read the first edition, and for that
I thank you sincerely. But you might be thinking, "Why a new edition?
What's different about this one, and why should I consider it again?" The
world of computer attacks has progressed rapidly in the four years since the
original . As its name implies, this edition represents a massive update and
expansion of . My co-author, Tom Liston, and I went through every last jot
and tittle of the book, updating each and every attack to represent the latest
methodologies we see used by the bad guys in the real world. What's more,
we've expanded several sections to include new attack methodologies and
tools that have emerged since the original , so you can learn about the
latest attacks and benefit from the best new defensive strategies. In addition
to a general update of all of the materials in the book, here are some
specific, brand new sections to focus on in each chapter:

Chapter 2: Networking. We've updated this chapter generally, and added
a specific section on wireless LANs, an immensely popular attack vector
today.

Chapter 3: Linux and UNIX. This chapter's updates included a more
Linux-centric view of the world, given the rising prominence of Linus
Torvalds' offspring.

Chapter 4: Windows. In this chapter, we focused on the rapid evolution of
Windows in the post-Windows-2000 world, spending more time discussing
Windows XP, Windows 2003, and Active Directory.

Chapter 5: Phase 1: Reconnaissance. This chapter includes some nifty
tricks for caller ID spoofing, as well as a very powerful and popular attack
technique—using Google to hone an attack and find vulnerable systems.

Chapter 6: Phase 2: Scanning. Here, we extended the discussion to
include several war driving techniques used to find potentially vulnerable
wireless LANs. Going further, we've included new types of port scans,
including the very nifty idle scanning options of Nmap, as well as version
scanning. We've also extended the discussion of how to find active ports
on a system and shut down unneeded services, with a raft of tools
supporting this capability on both Windows and Linux/UNIX.

Chapter 7: Phase 3: Gaining Access at the Operating System and
Application Level. This chapter features some major expansions, with an
extended look at stack-based buffer overflows as well as a new section on
heap-based overflows. We also look at exploitation framework tools, like
Metasploit, some of the slickest attack capabilities we've ever seen
released publicly. We then discuss one of the most powerful tools around
today, the very flexible Cain & Abel suite, a full-featured tool for cracking

numerous kinds of passwords and a dozen other attack capabilities. We've
updated the Web application section in a big way to include some late-
breaking attack specifics, as well as a description of the Web Goat
environment for developing Web application assessment skills. Finally, we
added a section describing one of the most popular attack vectors today:
exploiting vulnerable Web browsers.

Chapter 8: Gaining Access at the Network Level. This chapter includes
new detailed discussions of passive operating system fingerprinting, port
stealing to sniff in a switched environment, and session hijacking with
Ettercap. We also address some of the unique problems we face in
wireless LAN environments regarding session hijacking. Finally, we've
extended the Netcat tool discussion to describe how to create persistent
listeners on a Linux/UNIX system using a little scripting, a technique very
valuable in setting up honeypots.

Chapter 9: Gaining Access and Denial-of-Service Attacks. This chapter
has been extended to address some major concerns with TCP Reset
attacks, as well as the bot threat in Distributed Denial-of-Service (DDoS)
floods. We look at reflected DDoS attacks, as well as the threat of pulsing
zombies.

Chapter 10: Phase 4: Maintaining Access. This chapter includes a plethora
of nifty new topics, reflecting the computer underground's major work in
this arena. We discuss the rise of bots and spyware. We address the topic
of detecting and possibly even escaping virtual machine environments,
something that is a rising and very scary threat. We next scrutinize some
of the most widespread rootkit tools today, including Hacker Defender and
FU, which run on Windows machines, and Adore-ng, a Linux kernel-mode
rootkit. The chapter finishes with a discussion of rootkit detection
programs for Linux/UNIX and Windows.

Chapter 11: Phase 5: Covering Tracks. In this chapter, we've expanded
the discussion of Alternate Data Streams and covert channels, showing
several tools employing each technique. We also address the notable
increase in the use of covert channels by malware and spyware,
especially tools that undermine Internet Explorer. Finally, we added a
section on passive covert channels with a tool called Nushu that lets the
bad guys embed their data inside of normal traffic generated by other
activity of a victim machine.

Chapter 12: Putting It All Together. This chapter features a whole new
scenario based on the massive credit card thefts we've seen in recent
headlines, as well as the immense security holes introduced by weak
wireless LANs. You'll read about how these two trends can be related,
costing financial institutions serious money, and jeopardizing consumers'

trust.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

As we load more of our lives and society onto networked computers, attacks
have become more prevalent and damaging. Because of this, we have
entered the Golden Age of Hacking. To keep up with the attackers and
defend our systems, we must understand their techniques. This book was
written just for that reason—to help system administrators, security
personnel, and network administrators defend their computer systems
against attack.

Never underestimate your adversary. Attackers come from all walks of life
and have a variety of motivations and skill levels. Make sure you accurately
assess the threat against your organization and deploy defenses that match
the threat and the value of the assets you must protect.

People who attack computers are called many things: hackers, crackers,
black hats, and so on. We refer to them throughout this book as attackers or
bad guys, and show them in diagrams as computers wearing black hats. We
also cover many scenarios showing Alice, Bob, and Eve. Alice and Bob are
good, and Eve is the attacker.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

If you want to experiment with the tools described in this book, be careful!
Run them on systems without any valuable data, physically separated from
your production network. Set up a small evaluation lab of two or three
machines. Make sure you get written permission from your management and
legal counsel before running any tools against your own machines or across
a public network.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 2. Networking Overview: Pretty Much
Everything You Need to Know About Networking
to Follow the Rest of This Book

To understand how attackers assail computer systems across a network, we
need a basic knowledge of the most popular network technologies. The
Transmission Control Protocol/Internet Protocol (TCP/IP) is a name applied
to an extremely popular, almost ubiquitous, family of protocols used for
computer-to-computer communication across a network. This chapter
presents an overview of the basic functions of TCP/IP and related underlying
network elements including hubs, switches, wireless devices, and routers. In
a sense, we will be somewhat morbid: We are going to analyze networking
concepts so that we can see later in the book how they can be ripped apart
and abused by an attacker. Indeed, for most major network functions
discussed in this chapter, there are pointers to areas in the rest of the book
where attacks exploiting each feature are described. These attack pointers
are indicated using the icon.

Please note that this chapter is not a detailed treatise on every aspect of
networking. Many fine books on the market cover the nooks and crannies of
TCP/IP, including Douglas Comer's (Prentice-Hall) series and W. Richard
Stevens's (Addison-Wesley) series. Both are fine works and are worthy of
your time if you want more details about the inner workings of TCP/IP. For a
great description of a variety of protocols and fascinating networking issues,
check out Radia Perlman's (Addison-Wesley, 1999). If wireless networking is
your primary interest, I whole-heartedly recommend by Matthew S. Gast
(O'Reilly, 2005).

Our focus in this chapter is TCP/IP. You might wonder why we analyze
TCP/IP in detail, instead of other perfectly respectable protocols. Our focus is
on TCP/IP simply because it is the most commonly used protocol in the
world. It has become the de facto computer communications standard, the
lingua franca of computers. Highly illustrative of this evolution of TCP/IP was
my first job after college—I had to design a protocol for communications
between payphones and a payphone rating system back in 1992, shortly
after the construction of the ancient Egyptian pyramids. The back-end
system would determine that your call to Aunt Myrtle should cost 65 cents
per minute, and send a message to the switch and payphone using my
protocol. Although perhaps not the most exciting of projects, it did present a
challenge: choosing the best underlying transport protocol. The project team
analyzed numerous protocols to make the right decision. Should we use
X.25? It was a solid protocol and widely used. Should we use SS7? It was
developed by phone companies for phone companies, so it should work well.
Should we use TCP/IP? No, that's just a toy, used in academia for research.

We ultimately chose X.25 and were later forced to port the message set to
SS7 to meet vendor needs.

Today, this vintage 1992 argument looks ridiculous. TCP/IP be considered,
and is likely the protocol of choice for nearly every application. Almost every
major computing system released today, ranging from massive centralized
mainframes to the smallest palmtops, have TCP/IP support. Telephone
switches, Web-enabled mobile phones, and payphones have TCP/IP stacks on
them. And, like kudzu, TCP/IP is spreading beyond these devices into
numerous aspects of our everyday lives, too. Today, some PVRs, which
record live television for pausing and later playback, include TCP/IP stacks
for sharing recorded video. Some soda machines interact with their suppliers
using TCP/IP packets. This stuff is almost everywhere, and makes the world
extremely hackable.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

The OSI Reference Model and Protocol Layering

Way back in 1980, the International Organization for Standardization (called
the ISO) released a proposal for computer communications called the Open
Systems Interconnection (OSI) Reference Model. This model was based on
the idea of protocol layering. That is, when two computers want to
communicate with each other, a series of small software modules on each
system would do a set of tasks to foster the communication. One module
would focus on making sure the data was formatted appropriately, another
module takes care of retransmitting lost packets, and yet another module
transmits the packets from hop to hop across the network. Each of these
modules, referred to as a layer, has a defined small job to do in the
communication. The communication modules taken together are called a
protocol stack, because they consist of a bunch of these layers, one on top of
the other. The OSI model includes seven such layers, each with a defined
role in the process of moving data across a network.

As pictured in Figure 2.1, in a layered communication stack, a layer on the
sending machine communicates with the same layer on the receiving
machine. Furthermore, lower layers provide services to higher layers. For

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

example, a lower layer can retransmit lost packets on behalf of a higher
layer, which is focused on formatting the data properly. This higher layer, in
turn, serves an even higher layer that might generate the data in the first
place. Although one layer relies on another layer to get things done, the
layers are created so that the software of one layer can be replaced with
another program, while all other layers remain the same. This modularity
has proven especially useful, as we shall see, in rapidly deploying new types
of networks, such as swapping out wireline Ethernet networks for wireless
access.

Figure 2.1. Generic protocol layers move data between systems.

The seven layers of the OSI Reference Model are as follows:

This layer acts like a window to the communications channel for the
applications themselves by interpreting data and turning it into
meaningful information for the applications.

This layer deals with how data elements will be represented for
transmission, such as the order of bits and bytes in numbers, the format
of floating point numbers, and so on.

This layer coordinates different sessions between the communicating
machines, helping to initiate, maintain, and manage them.

This layer is used to provide a reliable communications stream between
the two systems, potentially including retransmitting lost packets,
putting packets in the proper order, and providing error checking.

This layer is responsible for moving data from one system, across a
bunch of routers, to the destination machine, end to end across the

network.

This layer moves data across one hop of the network.

This layer actually transmits the bits across the physical link, which
could be copper, fiber, wireless link, or any other physical medium.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

How Does TCP/IP Fit In?

Concepts from the OSI Reference Model apply to a variety of network
protocols, but let's analyze a particular protocol family, our hero, TCP/IP.
TCP/IP adheres roughly to Layers 4 and 3 of the OSI Reference Model, with
a little interaction with Layer 2. It views everything above TCP/IP as the
responsibility of the application, so that the application, presentation, and
session layers of the OSI Reference Model are all folded into the application
program. TCP/IP concentrates on transmitting data for that application. As
shown in Figure 2.2 on page 30, from the viewpoint of TCP/IP, the following
layers are used for communication:

This layer isn't TCP/IP itself. It is made up of the particular program
trying to communicate across the network using TCP/IP. The
communicating module at this layer might include your Web browser and
a Web server, two mail servers, a Secure Shell (SSH) client and server,
a File Transfer Protocol (FTP) client and server, or other applications.

This layer includes the Transmission Control Protocol (TCP) and its
cousin, the User Datagram Protocol (UDP), a simpler protocol that we

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

analyze in more detail later in the chapter. The layer ensures packets
are delivered to the proper place on the destination machine. It also can
deliver packets in the proper sequence and retransmit packets, for those
applications requiring such functionality.

This layer is based on the Internet Protocol (IP). Its purpose is to deliver
packets end to end across the network, from a given source computer to
a given destination machine. Using terminology from the OSI Reference
Model, the IP layer is sometimes referred to as Layer 3.

This layer transmits the packet across each single hop of the network.
For example, this layer on your computer moves data from your
computer to the router for your Local Area Network (LAN). Then, the
router uses its Data Link to move data to another router. Again, using
the OSI Reference Model vernacular, the Data Link Layer is referred to
as Layer 2.

This layer is the physical media, such as the wire or fiber cable, that the
information is actually transmitted across.

Figure 2.2. Protocol layering in TCP/IP allows system Alice to
communicate with system Bob across a network.

[View full size image]

Taken together, the transport and network layers comprise the system's
TCP/IP stack, which is made up of software running on the computer. Just as
in the OSI model, one layer of the stack communicates with the same layer

on the other side. Furthermore, the lower layers provide service to the
higher layers.

Consider an example shown in Figure 2.2, where two systems, Alice and
Bob, want to communicate. Suppose a user on the Alice machine tries to surf
the Internet by running a Web browser. The browser on Alice wants to
communicate with the Web server on Bob, so it generates a packet and
passes it to the TCP/IP stack. The data, which consists of a Web request,
travels down the communications layers on system Alice, gets transmitted
across the network, which usually consists of a series of routers, and travels
up Bob's communications stack.

Alice's Transport Layer (that is, TCP software running on the Alice machine)
takes the packet from the browser application, and formats it so that it can
be sent reliably to the Transport Layer on system Bob. This TCP software
also engages in an elaborate packet dance to make sure all of Alice's packets
for this connection arrive in sequence. As we shall see, other Transport
Layer protocols, such as UDP, don't care about sequence, so they have no
elaborate packet dance for ordering packets.

Just as the two applications (the Web browser and Web server) communicate
with each other, so too do the Transport Layers. On Alice, the Transport
Layer passes the packet down to the Network Layer. The Network Layer
delivers the packet across the network on behalf of the Transport Layer. The
Network Layer adds the source and destination address in the packets, so
they can be transmitted across the network to Bob's Network Layer. Finally,
the data is passed to Alice's Data Link and Physical Layers, where it is
transmitted to the closest router on the way to the destination. Routers
move the packet across the network, from hop to hop. The routers include
the Network, Data Link, and Physical Layer functions required to move the
packet across the network. These routers are focused on moving packets, so
they do not require the Transport or Application Layers. The routers deliver
the packet to Bob. On the Bob side of the communication, the message is
received and passed up the protocol stack, going from the Physical Layer to
the Data Link Layer to the Network Layer to the Transport Layer to the
ultimate destination, the application.

So, how does this passing of data between the layers work? Each layer tacks
on some information in front of (and in some cases, behind) the data it gets
from the layer above it. This information added in front of the data is called
a header, and includes critical information for the layer to get its job done.
As pictured in Figure 2.3, the application generates a packet, which might be
part of a Web request, a piece of e-mail, or any other data to be transmitted.
The Transport Layer adds a header to this data, which will likely include
information about where on the destination machine the packet should go.
This header is kind of like an envelope for the data. If TCP is used, the

resulting header and data element is called a TCP . The TCP segment gets
passed to the Network Layer, where another header is added. The Network
Layer prepends information about the source and destination address in the
IP header that is added to the packet. The resulting packet is called an IP .
This package is sent to the Data Link and Physical Layers, where a header
(and trailer) are added to create a , so the data can be transmitted across
the link.

Figure 2.3. Adding headers (and a trailer) to move data through the
communications stack and across the network.

Upon receiving the data, the destination system opens all the envelopes,
layer by layer. The resulting packet is sent to the application, which can
process the Web request, accept the e-mail, or do whatever the application
is designed to do. Regardless of the application you are using on the
Internet, your computer is constantly passing data up and down the layers of
your protocol stack.

To understand how an attacker uses
protocol layering to tunnel secret data
into and out of a network, please refer
to the Chapter 11 section titled "Hiding
Evidence on the Network: Covert
Channels."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Understanding TCP/IP

Now that we have a fundamental understanding of protocol layering, let's
explore TCP/IP in more detail. The TCP/IP family of protocols includes
several components: TCP, UDP, IP, and the Internet Control Message
Protocol (ICMP), among others. Figure 2.4 shows how these protocols fit
together.

Figure 2.4. Members of the TCP/IP family.

TCP/IP is defined in a series of documents developed and maintained by the
Internet Engineering Task Force (IETF). John Postel, the father of the TCP/IP

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

family, developed a series of Requests for Comments (RFCs) documents
defining how TCP/IP works. RFCs 791 to 793, which define TCP, IP, and
ICMP, are available at , along with thousands of other RFCs defining various
other aspects of the Internet.

TCP/IP was initially developed for research and academia, and originally
included no built-in strong security capabilities. The traditional TCP/IP
protocol suite provides no means for ensuring the confidentiality, integrity,
and authentication of any data transmitted across the network. Without
confidentiality and integrity controls, when you send a packet across the
Internet, TCP/IP allows any other user to see or modify your data.
Furthermore, without authentication, an attacker can send data to you that
appears to come from other trusted sources on the network.

In the past, all security capabilities in TCP/IP networks were implemented in
the communicating applications, and not in the TCP/IP stack. However, the
IETF has retrofitted security into TCP/IP, in the form of a protocol extension
called IPSec, which we discuss in more detail later in this chapter. Today,
most TCP/IP stacks, such as those found in modern Windows boxes and
Linux machines, have built-in support for IPSec. Although IPSec offers some
very useful security capabilities, each communicating system must have
IPSec configured properly, along with a method for distributing its
cryptographic keys to other machines. Because of the complexity of such key
distribution, applications are still often left to themselves to implement
security, even in an IPSec-capable world.

Next, we explore in more detail the individual members of the TCP/IP family
to understand how they work and how an attacker can exploit them.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Transmission Control Protocol (TCP)

TCP is the workhorse of the Internet, used by a majority of applications
today. Among the thousands of applications that use TCP, the following are
some of the most notable:

Web browsing, using the Hypertext Transfer Protocol (HTTP)

SSH, offering remote command-shell access on an encrypted and
authenticated basis, using the SSH protocol

File transfer, using FTP

E-mail, using various protocols, including the Simple Mail Transfer
Protocol (SMTP) and Post Office Protocol (POP)

Each of these applications generates packets and passes them to the TCP/IP
stack of the local machine. The TCP layer software on the system takes this
data and creates TCP packets by placing a TCP header at the front of each
packet. The TCP header format is shown in Figure 2.5.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Figure 2.5. The TCP header.

Let's look at the purpose of several fields in the TCP header. In particular,
we discuss the port numbers, the sequence and acknowledgment numbers,
and the control bits.

TCP Port Numbers

The header of every TCP packet includes two port numbers: a source port
and a destination port. These 16-bit numbers are like little doors on the
system where data can be sent out or received. Ports aren't physical doors;
they are logical entities defined by the TCP/IP stack software. There are
65,536 different TCP ports on each machine (216). TCP port zero is reserved
and is not commonly used (although occasionally an errant packet has its
source or destination port set to zero). Each TCP packet goes out through
one of these doors (the source TCP port number) on the source machine,
and is sent to another door (the destination TCP port number) on the
destination machine.

When a TCP-based server application is running on a system, it listens on a
particular port for TCP packets to come from a client. A port with a listening
service is known as an open port, whereas a port where nothing is listening
is closed.

Application servers of various types listen on well-known port numbers. The
Internet Assigned Numbers Authority (IANA) maintains a list of these well-
known port numbers at . This list includes a wealth of different numbers
assigned to various aspects of TCP/IP-related protocols. Frequently used TCP
port numbers include the following:

TCP Port 21—FTP

TCP Port 22—SSH

TCP Port 23—Telnet

TCP Port 25—SMTP

TCP Port 80—HTTP

TCP Port 6000—The X Window System (X11)

To contact application servers listening on ports, the client TCP layer
generates packets with a TCP destination port corresponding to the port
where the server application is listening. Consider the example shown in
Figure 2.6. The source port for the request packet is typically assigned to the
client program dynamically by the operating system, and is set to a value
greater than 1,023, a so-called high-numbered port. The destination port of
the request corresponds with the application, where the server is listening,
such as TCP port 80, commonly used for HTTP traffic. For most applications,
the server sends response packets reversing the port numbers. The source
port of the response packet is the port number where the server was
listening (TCP port 80 in our example) and the destination port is from
where the client sent the original packet (TCP port 1234 in the example).

Figure 2.6. TCP source and destination ports.

[View full size image]

It's important to note that the common port numbers for network-based
servers are widely observed conventions. An administrator could configure a
service to listen on a different port, but the users of that service would
likewise have to tweak their client settings to communicate with the server
on a custom-chosen port. For example, an administrator could run a Web
server listening on TCP port 8080 instead of the typical TCP port 80. Then,
users would have to type URLs into their browser with a ":8080" after the
domain name they want to access. For example, if my Web site, , was set up
in this fashion, you'd have to type into your browser a URL formatted like .
Don't worry, though. I haven't put anything up on TCP port 8080 for you on
my Web site; that's just an example. The bottom line, though, is that unless
the client and user know about a custom destination port on the server, the

port numbers described in the IANA port numbers document are commonly
used.

Attackers often take an inventory of
open ports on a system. To see how an
attacker conducts various types of port
scans, refer to the Chapter 6 section
titled "Nmap: A Full-Featured Port-
Scanning Tool."

To see which ports are in use on a Windows, Linux, or UNIX system, you can
use the netstat command locally on the machine. If you type netstat –
na at the command prompt on Linux/UNIX or modern Windows machines, all
ports sending data and listening for data will be displayed, as shown in
Figure 2.7. The -na flags in the command mean show ports, and list the
network addresses in form (i.e., don't print out the full machine and service
names). As we shall see in later chapters, learning what is listening on
various ports is a useful technique in discovering an attacker's presence on
your system.

Figure 2.7. The netstat command shows ports in use.

[View full size image]

To understand how an attacker can
subvert the functionality of the netstat

program, refer to the Chapter 10
section titled "Additional Linux/UNIX
User-Mode Rootkit Hiding Techniques."

To get more detail about what is
listening on each given port on a
machine, refer to the Chapter 6 section
titled "Harden Your Systems."

TCP Control Bits, the Three-Way Handshake, and Sequence
Numbers

The TCP control bits, also known as the TCP flags, are a particularly useful
part of the TCP header. Some of these eight small fields (each is only one bit
in length) describe what part of a session the TCP packet is associated with,
such as session initiation, acknowledgment, or session tear down. Also, the
control bits can signify if the packet requires special, urgent handling by the
TCP Layer, or if a given connection is congested. A close-up view of the
control bits is shown in Figure 2.8.

Figure 2.8. A close-up view of the TCP header reveals the TCP control
bits.

Each control bit can be set independently, so a single TCP packet header
could include one or more of the control bits set to a value of zero or one.
Usually, only one or sometimes two control bits are set to one in a given
packet. The original six individual control bits have the following meanings:

The Urgent pointer in the TCP header field is significant. There is
important data in here that needs to be handled quickly.

The Acknowledgment field is significant. This packet is used to
acknowledge earlier packets.

This is the Push function, used to flush data through the TCP Layer

immediately rather than holding it waiting for more data.

The connection should be reset, due to error or other interruption.

The system should synchronize sequence numbers. This control bit is
used during session establishment.

There is no more data from the sender. Therefore, the session should be
torn down.

With the introduction of RFC 3168, two additional control bits were
introduced, which are located just before the original six control bits,
bringing the grand total of control bits to eight. These newer TCP flags are
the following:

Congestion Window Reduced, which indicates that, due to network
congestion, the queue of outstanding packets to send has been lowered.

Explicit Congestion Notification Echo, which indicates that the connection
is experiencing congestion.

The importance of the TCP control bits becomes obvious when we analyze
how sessions are initiated in TCP. All legitimate TCP connections are
established using a three-way handshake, a fundamental tool used by TCP to
get its job done. The three-way handshake, depicted in Figure 2.9, allows
systems to open a communication session, exchanging a set of sequence
numbers for packets to use throughout the session.

Figure 2.9. The TCP three-way handshake.

Suppose a machine called Alice has some data to send to a system named
Bob. Perhaps Alice is running a Web browser and Bob is a Web server. Alice
starts the three-way handshake to establish a TCP connection by sending a
packet with the SYN control bit set and with the sequence number set to
some initial value, known as the initial sequence number (which we'll call
ISNA because it comes from Alice and Alice starts with an A). This initial
sequence number is assigned dynamically by Alice's TCP Layer software, and

will be unique for this connection. When later packets are sent on this
connection, the sequence numbers are incremented for each data octet
transmitted for this connection. Bob receives this TCP SYN packet from Alice.
If the destination port in the packet is open on Bob, Bob performs the second
part of the three-way handshake with Alice. Bob sends back a single packet
with both the ACK and SYN control bits set. In this one response packet, Bob
also fills out the Sequence Number and Acknowledgment Number fields.
With this response, Bob essentially says, "Alice, I ACKnowledge your session
establishment request and Initial Sequence Number A (plus one), and I will
SYNchronize with you using this Initial Sequence Number B." So, Bob sends
a SYN-ACK packet with ISNB, as well as an acknowledgment of ISNA+1. Note
that Bob increments ISNA in the acknowledgment by one to indicate the
sequence number of the octet that Bob is expecting from Alice. In a sense,
one sequence number is used up in the three-way handshake itself, in each
direction. On receiving Bob's response, Alice will complete the three-way
handshake by sending a packet with the ACK control bit set, and an
acknowledgment to ISNB+1, again to indicate that Alice is expecting the
next octet.

In this way, Alice and Bob have used the control bits to establish a TCP
session. Both sides have agreed on a set of sequence numbers they will use
in the communication. All packets going from Alice to Bob will have
incrementally higher sequence numbers, with the number increasing by one
for each octet of data going from Alice to Bob, starting at ISNA+1. Likewise
all packets going from Bob back to Alice will have sequence numbers starting
at ISNB+1 and going up for each octet of data.

With this careful exchange and agreement on sequence numbers, TCP can
now make sure all packets in the session arrive in the proper order. If two
packets get reversed in transmission (because, for example, a later packet
took a shorter path than an earlier packet), the TCP Layer can discover the
problem and resequence the packets before passing them to the application.
Likewise, if a packet is lost during transmission, TCP can discover the
problem by looking at the sequence and acknowledgment numbers and
retransmit the missing packet. Therefore, the three-way handshake and the
sequence numbers that result from it allow TCP to have reliable, sequenced
transmissions.

Whereas the ACK and SYN control bits are heavily used to establish a
session, the FIN control bit is used to tear down a session. Each side sends a
packet with the FIN control bit set to indicate the session should be ended.

The RST control bit is used to stop connections and free up the sequence
numbers in use. If a machine receives a packet that it is not expecting (such
as a packet that includes the ACK bit set when no session has been

established), it could respond with a packet that has the RST bit set. This is
a machine's way of saying, "If you think a session exists, tear it down,
because I don't know what you are talking about!"

The URG control bit means that the data stream includes some urgent data.
If the URG control bit is set to one, the Urgent pointer field indicates where
in the data stream the really urgent data is. TCP doesn't specify how the
urgent data should be handled by the application; it merely allows the
application on one side of a connection to flag the urgent data for the other
side of the connection. The PSH control bit means that the TCP Layer should
flush the packet through the stack quickly, not queuing it up for later
delivery. The CWR and ECE control bits are associated with managing
congestion on a link, and are independent of the three-way handshake.

To see how an attacker can violate the
three-way handshake when scanning a
target, refer to the Chapter 6 section
titled "Types of Nmap Scans."

Other Fields in the TCP Header

Beyond the TCP header fields we've already discussed, several other fields
are included in the TCP header. These additional fields are as follows:

This field describes where in the TCP packet the header ends and the
data starts. It is equal to the length of the TCP header in 32-bit words.

This field is reserved for future use.

This field is used to control the number of outstanding octets that can be
sent from one system to another on a given connection. It gives each
side of the communication a way to control the flow of packets from the
other side to make sure that all packets are received properly and
acknowledged appropriately before new packets are sent.

This checksum is used to verify that the TCP packet (header and data)
was not corrupted in its journey across the network.

This field has a pointer into the data of the packet to indicate where
urgent information is located.

This set of variable length fields can indicate additional information
about the TCP processing capabilities of either side of the connection.

For example, if a TCP Layer can handle only TCP packets of a given
maximum size, the system can indicate this limitation in the TCP
Options.

This field includes enough bits set to zero to extend the length of the
TCP header so that it ends on a 32-bit boundary. It's just fluff included in
the header to make sure everything lines up evenly.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

User Datagram Protocol (UDP)

Although the protocol family name is referred to as TCP/IP, there are other
members of this family besides TCP and IP. UDP is another Transport Layer
protocol that can ride on top of IP. TCP and UDP are like cousins. TCP gets
more attention, and is used in the family name, but UDP is still the basis of
some very important applications. An application developer can choose to
transmit data using either TCP or UDP, depending on what the application
needs from a transport layer. A given packet and communication stream is
usually either TCP or UDP, and cannot utilize both protocols simultaneously.
Services that utilize UDP include many streaming audio and video
applications, database query/response-type services, and typical Domain
Name System (DNS) queries and responses. To understand why these
services are based on UDP, let's analyze UDP's characteristics in more detail.

UDP is connectionless—the protocol doesn't know or remember the state of a
connection. It doesn't have any concept of session initiation,
acknowledgment, tear down, or anything else. Furthermore, UDP itself does
not retransmit lost packets, nor does it put them in the proper order. So, if
packet 1, packet 2, and packet 3 are sent out, the destination may receive

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

packet 2, packet 1, and another copy of packet 1. Packet 3 is lost, and
packet 1 was somehow transmitted twice. Back in school, during a class on
computer protocols, my professor wrote on the lecture board: "UDP =
Unreliable Damn Protocol." Being the typical student, I dutifully wrote this in
my notebook and returned to my crossword puzzle (or nap). After cramming
for the final, that definition of UDP stuck in my brain. Years later, during a
technical meeting at my job, I mentioned how entertaining I thought it was
that folks had actually named a protocol the "Unreliable Damn Protocol." A
look of horror shot through the room, and I gradually sulked under the
conference table.

However, my professor was right in one sense: UDP inherently unreliable. It
might lose packets or send them out of order. But sometimes unreliability is
acceptable, particularly when it can buy you speed. Some applications are
much more interested in getting packets across the network quickly, and
don't need super-high reliability. Such applications do not want the overhead
of a three-way handshake, sequence numbers on every packet,
acknowledgments, and so on. Instead, for some applications, simplicity and
speed are the requirements.

What types of applications have these requirements? Often, applications that
transmit data meant for the human eye or ear, like streaming audio or
video, fit the bill. Although your eyes and ears will cover up (or fill in the
blank) if a packet is dropped on occasion, you are much more likely to notice
if all packets are slowed down by excessive processing. Additionally, some
query-response applications use UDP, most notably database access and
DNS. When looking up the IP address for a particular domain name, DNS
sends out one packet with a query to look up a domain name (e.g., a UDP
packet that says, "Please look up www.skoudisstuff.com") and receives a
single UDP packet in response (e.g., a packet that says, "The IP address for
is 10.21.41.3"). These applications do not want the overhead associated with
establishing a connection using the three-way handshake for just sending a
single packet and getting a single response.

The UDP header shown in Figure 2.10 illustrates the simplicity of UDP.
Essentially, only a source and destination port are included, together with
the message length and a checksum. No sequence numbers or control bits
are required.

Figure 2.10. The UDP header.

http://www.skoudisstuff.com

UDP has 16-bit port numbers, so there are 65,536 possible UDP ports
(including UDP port zero, which is reserved). Just like TCP, data comes from
one port on the originating system (the UDP source port), and is destined for
an open port on the destination system (the UDP destination port). One of
the most widely used UDP services, DNS, listens for DNS queries on UDP
port 53. Other UDP-based services include the following:

The Trivial File Transfer Protocol (TFTP), UDP port 69

The Simple Network Management Protocol (SNMP), UDP port 161

Real Player Data (Audio/Video), a range of UDP ports including 7070,
although some clients can be configured to use only TCP ports if desired

Is UDP Less Secure Than TCP?

Without a three-way handshake, is UDP less secure than TCP? In other
words, are applications running on UDP any more difficult to secure than
TCP-based services? Well, it is considerably harder for network components
(such as firewalls and routers) to understand and track what is happening in
an application using UDP as opposed to TCP. In particular, TCP's control bits
and sequence numbers give tremendous hints to firewalls and routers so
they can more easily control a connection. A network element knows when a
TCP session is being established, because it can refer to the SYN control bit.
Likewise, a router or firewall knows when a packet is being acknowledged or
a session is being torn down, simply by consulting the control bits and
sequence numbers.

With UDP's lack of control bits and sequence numbers, it's much more
difficult to track where the end systems are in their communications. UDP
packets coming in from the Internet could be responses for legitimate
services, or they could be malicious scans. By simply looking at the UDP
header, there is no way to tell if the packet is the start of communication or
a response. Therefore, controlling UDP is more difficult than securely
handling TCP. Later in this chapter, we discuss firewalls and analyze some of
the options for handling UDP in a more secure manner by adding stateful
inspection that remembers earlier UDP packets to make decisions about later
packets.

To understand how attackers conduct
scans for open UDP ports, refer to the
Chapter 6 section titled "Don't Forget

UDP!"

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Internet Protocol (IP) and Internet Control
Message Protocol (ICMP)

Once the TCP or UDP Layer generates a packet, it must be sent across the
network. The Transport Layer (TCP or UDP) passes the packet to the
Network Layer for end-to-end packet delivery. IP is the most commonly used
Network Layer today, and is used for all traffic moving across the Internet.
The current widely deployed version of IP is IPv4, which the vast majority of
Internet traffic relies on today. A newer version, called IPv6, offers increased
address lengths, among other options. We focus on IPv4, given its extreme
popularity. Although many systems today have software capable of speaking
IPv6, the protocol still is used only in concentrated pockets and not on a
widespread basis.

On receiving information from the Transport Layer, the IP Layer generates a
header, shown in Figure 2.11 for IPv4, which includes the source and
destination IP addresses. The header is added to the front of the TCP packet
to create a resulting IP packet, which will be used to carry the entire
contents (IP header, TCP header, and application-level data) across the
network.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Figure 2.11. The IP header.

IP: Drop That Acronym and Put Your Hands in the Air!

For some bizarre reason, lawyers like to use the acronym "IP" to designate
Intellectual Property, ignoring its widespread use as an abbreviation for the
Internet Protocol. I've been in several meetings where a lawyer has declared
"But we have to consider the IP implications!" confusing me as I try to think
my way through the protocol stack. I'm sorry, but us techies claimed IP first,
and we won't give it up. Tell all of your lawyer friends that they can't have
the term IP.

LANs and Routers

To understand how IP works, we need to spend some time understanding
how networks are constructed. The purpose of IP is to carry packets end to
end across a network. But what exactly is a network? Complete networks are
typically made up of fundamental building blocks called LANs. A LAN is
simply a bunch of computers connected together using a hub, switch, or
wireless access point, with no routers separating the systems. As their name
implies, LANs are typically geographically small, usually within a single
building or a small campus.

LANs are connected together using routers. A router's job is to move packets
between the LANs, thereby creating a big network, as shown in Figure 2.12.
One or more Network Layer protocols move data end to end across the
network, from a given end user computer across the originating LAN,
through a series of routers, across the terminating LAN to the ultimate
destination. Also, some systems are directly connected to routers or each
other using point-to-point links. The Internet itself is nothing but a giant
collection of LANs and point-to-point links connected together using a whole
bunch of routers.

Figure 2.12. A network is comprised of LANs and point-to-point links
connected by routers.

IP Addresses

IP addresses identify a particular machine on the network, and are 32 bits in
length for IPv4. Every system directly connected to the Internet has a
unique IP address. Because it is difficult for us limited human beings to read
and make sense of a block of 32 bits, IP addresses are usually written in so-
called dotted-quad notation. Dotted-quad notation lists each of the four
eight-bit bundles of the IP address as a decimal number between 0 and 255,
resulting in an IP address of the form w.x.y.z, such as 10.21.41.3. Figure
2.13 shows an example IP address.

Figure 2.13. The same IP address in dotted-quad notation and
binary.

Every IP packet contains a source IP address, identifying the system that is
sending the packet, and a destination IP address, which identifies the
destination system for the packet.

For an analysis of how an attacker
determines all IP addresses in use on a
target network, refer to the Chapter 6
section titled "Network Mapping."

Netmasks

Every IP address actually consists of two components: the network address
and the host address on that particular network. The network address
describes the particular LAN where traffic can be directed for delivery. The
host address identifies the particular machine on the given LAN.

So how does a computer or router know which part of an IP address refers to
the network, and which part refers to the host? It determines this
information based on something called the netmask. The netmask defines
which bits are in the network address (and all the rest of the bits in the IP
address are in the host component of the address). The netmask is a binary
number that has its bits set to 1 when a given bit in the IP address is part of
the network address. The netmask has a bit of zero when a given bit in the
IP address is part of the host address. Therefore, you can figure out what the
network address is by simply combining the whole IP address with the
netmask using the logical AND function, as shown in Figure 2.14. Like IP
addresses, netmasks are also written in dotted-quad notation.

Figure 2.14. Calculating the network address using the IP address
and netmask.

[View full size image]

Sometimes netmasks are indicated using Classless Inter-Domain Routing
(CIDR) notation, where the IP address is followed by a slash and then a
number (e.g., 10.21.0.0/16). The number after the slash indicates the
number of 1 bits in the netmask, or, in other words, the number of bits of
the given IP address that are associated with the network component of that
IP address. The remaining bits are associated with the host part of the IP
address.

To see how attackers play with
netmasks to determine a network's
broadcast address in launching a packet
flood attack, refer to the Chapter 9
section titled "Smurf Attacks."

Packet Fragmentation in IP

Various network transmission media have different performance
characteristics. Some media perform much better when packets are longer,
whereas others benefit from having shorter packet lengths. For example,
bouncing an IP packet off of a satellite is very different from sending a
packet down the glass fiber across your office. Given the latency associated
with sending information to a satellite, longer packets are better for
performance, and shorter packets give better performance across low-
latency networks. To optimize packet lengths for various communications
links, IP offers network elements (such as routers or firewalls) the ability to
slice up packets into smaller pieces, an operation called fragmentation. An
end system or network device can take large IP packets and break them
down into smaller fragments for transmission across the network. Each
fragment gets its own IP header and carries one piece of the puzzle that was
the original unfragmented packet. The end system's IP Layer is responsible
for reassembling the fragments into the original packet before passing the
data up to the Transport Layer.

The IP header offers a few fields to support this fragmentation operation.
First, the Fragment Offset field tells a system where the contents of a given
fragment should be included when the entire packet is reassembled. This
offset refers to the number of eight-octet slots (that's 64-bit chunks) in the
data field of the original packet to place the given fragment. Furthermore,
the IP Identification field is used to support fragment reassembly. The IP
Identification field is set by the originating system to a unique value for each
original unfragmented packet to help the destination system reassemble the
packet if it does get broken into fragments. Additionally, two flags in the IP
header, the Don't Fragment bit and the More Fragments bit, specify
information about fragmentation. The sending system can set the Don't
Fragment bit to indicate that a packet should not be fragmented as it travels
across the network. Also, if a packet is fragmented, the More Fragments bit
indicates whether more fragments of the original packet are still on the way.
These two bits can have the following values:

Flag Bit 1, the Don't Fragment bit: 0 = may fragment, 1 = don't
fragment.

Flag Bit 2, the More Fragments bit: 0 = last fragment, 1 = more
fragments.

To see how attackers carefully analyze
the IP Identification field while

launching a very stealthy form of scan,
refer to the Chapter 6 section titled
"Idle Scanning: An Even Better Way to
Obscure the Source Address."

To see how an attacker uses packet
fragmentation to avoid detection by
IDSs and blocking by IPSs, refer to the
Chapter 6 section titled "IDS and IPS
Evasion at the Network Level."

Other Components of the IP Header

Now that we understand the meaning of the IP address and fragmentation
fields in the IP header, let's look at the other fields that make up an IP
packet. The IP header includes:

These four bits describe which version of IP is in use. IP version 4 is the
one in widespread use all over the Internet. We're starting to see a very
long and slow transition to IPv6.

This field is the Internet Header Length, the total length of the IP
header.

This field is associated with quality of service, indicating to network
elements how sensitive the traffic might be to delays.

This item identifies the total length of the IP packet, including the IP
header and its data.

This field is used to support fragment reassembly, with each original
packet getting a unique IP Identification value from the originating
system.

These bits include the Don't Fragment bit, and the More Fragments bit,
as previously described.

This number indicates where this fragment fits into the overall packet.

This field is used to indicate the maximum number of router-to-router
hops the packet should take as it crosses the network.

This field describes the protocol that is being carried by this IP packet. It
is often set to a value corresponding to TCP or UDP.

This information is used to make sure the header does not get corrupted.
It is recalculated at each router hop.

This field indicates the network and host where the packet originates.

This field indicates the network and host where the packet is going.

These variable length fields indicate extended information for the IP
Layer. In particular, they are used in source routing, an operation
described in more detail next.

This catch-all field is used to round out the length of the IP header so
that it lines up on a 32-bit boundary.

To understand how attackers map a
network using the TTL field, refer to the
Chapter 6 section titled "Traceroute:
What Are the Hops?"

To understand how attackers determine
packet filter firewall rule sets using the
TTL field, refer to the Chapter 6 section
titled "Determining Firewall Filter Rules
with Firewalk."

To see how an attacker uses various
fields in the TCP and IP header to set
up hidden communications channels
across the network, refer to the
Chapter 11 section titled "More Covert
Channels: Using the TCP and IP
Headers to Carry Data with Covert_TCP
and Nushu."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

ICMP

The book describes networking in terms even a child could understand,
choosing to anthropomorphize the underlying packet structure. The ping
packet is described as a duck, who, with other packets (more ducks),
spends a certain period of time on the host machine (the wise-eyed boat).
At the same time each day (I suspect this is scheduled under cron), the
little packets (ducks) exit the host.

—An excerpt from a review of the children's book on Amazon.com by a
reader from El Segundo

Another critical member of the TCP/IP family is ICMP. ICMP is kind of like the
network plumber. Its job is to transmit command and control information
between systems and network elements to foster the transmission of actual
data and to report errors. One system can use ICMP to determine whether
another system is alive by sending it a ping, which is an ICMP Echo message.
If the pinged system is alive, it will respond by sending an ICMP Echo Reply
message. A router can use ICMP to tell a source system that it does not have
a route to the required destination (an ICMP Destination Unreachable

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

message). One host can tell another system to slow down the number of
packets it is sending with an ICMP Source Quench message. You get the
idea: ICMP is used for systems to exchange information about how data is
flowing (or not flowing) through the network.

ICMP uses the same header format as IP for source and destination IP
addresses, packet fragmentation, and other functions. The protocol field of
the IP header is loaded with a value corresponding to ICMP (the number 1
means ICMP). After the IP header, in the data component of the IP packet,
ICMP adds a field known as the ICMP type. The format of the remainder of
the ICMP packet depends on this ICMP type. There are numerous ICMP
message types, with a handful of the most widely used listed in Table 2.1.

Table 2.1. ICMP Message Types

ICMP
Message
Type

Value
in the
ICMP
Type
Field

Purpose of This
Message Type

Echo Reply 0
This message is used to
respond to a ping when
a system is alive.

Destination
Unreachable 3

This message indicates
that an earlier IP
message could not be
delivered to its
destination. It is possible
that a router along the
path does not have a
defined route to the
destination. Also, if the
destination machine
could not speak the
proper protocol, this type
of message will be
returned. Alternatively,
the end host could

return this message if
the destination port is
closed.

Source
Quench

4

When a system is
receiving packets too
fast to process them in
its incoming queue, it
might send back a
Source Quench message
to tell the sender to slow
down.

Redirect 5

This message is sent by
a router to indicate that
traffic should be directed
to another router, which
can deliver the traffic to
the destination more
efficiently.

Echo 8

This message type is
used to send a ping to
determine if a system is
running.

Time
Exceeded

11

This message indicates
that the maximum
number of hops in the
Time-To-Live field of the
IP header is exceeded.
Alternatively, it could
also indicate that the
amount of time needed
to reassemble fragments
has exceeded a

threshold in the
destination operating
system, meaning that
the packet cannot be
reconstructed and is
therefore being
abandoned.

Parameter
Problem 12

This message is sent by
a system in response to
an IP packet with a bad
parameter in one of its
header fields.

Timestamp 13

This message type
includes the time of the
sending machine, and
requests the time of the
destination machine.

Timestamp
Reply 14

On receiving an ICMP
Timestamp message, a
system will respond with
its own time included in
a Timestamp reply.

Information
Request

15

This message can be
used by a host to
determine which
network it is on.

Information
Reply 16

This message contains a
response to an
Information Request
message regarding the

network IP address.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Other Network-Level Issues
Routing Packets

To move data end to end across a network, the packets must be carried from
their source to their destination. Routing is the process of moving a packet
from one network to another network, with the goal of advancing the packet
toward its destination in a relatively efficient way. Routing is accomplished
by—you guessed it—routers. Routers determine the path that a packet
should take across the network, specifying from hop to hop which network
segments the packets should bounce through as they travel across the
network. Like Little Red Riding Hood trying to determine the best way to get
to Grandma's house, routing determines the path.

Most networks today use dynamic routing, where the routers themselves
determine the path that packets will use. The routers chat among
themselves using a variety of routing protocols to determine the best paths
for packets to travel. Back to our Little Red Riding Hood analogy, with
dynamic routing protocols, routers act like the trees in the forest outside of
Grandma's house calculating the best path and telling Little Red the proper
way to go. A large number of routing protocols of various complexity have

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

been devised, including the Routing Information Protocol (RIP), Open
Shortest Path First (OSPF) protocol, and the Border Gateway Protocol (BGP).

Another routing option involves static routes. With a static route, all traffic
with the same destination address is always sent the same direction,
regardless of potential link damage or any capacity concerns. With static
routes, Little Red Riding Hood is forced to go the same way to Grandma's
house always, even if the bridge is washed out on her path. Static routes are
often used for routers where routing seldom changes, and, due to security
issues, dynamic routes are not desirable. Static routers are often used in an
organization's Internet gateway, where they are hard-coded into the
firewalls and routers making up the Internet connection point.

IP offers yet another routing option known as source routing. With source
routing, the source machine generating the packet determines which route
the packet will take as it traverses the network. Each individual IP packet
contains a list of routers that the packet will travel through as it goes across
the network. If the packet is little Red Riding Hood, with source routing,
step-by-step directions to Grandma's house are tattooed to Red's forehead.

For an analysis of an attack based on
source routing, refer to the Chapter 8
section titled "IP Address Spoofing
Flavor 3: Spoofing with Source
Routing."

Network Address Translation

Blocks of IP addresses are assigned to various organizations and ISPs. Years
ago, not anticipating ever connecting to the Internet, some organizations
picked network address numbers at random and started building their own
internal IP networks using these random IP addresses. You would see
network architects picking their favorite number ("Gee, I like the number
4!") and building a whole network based around that number (giving
everything an IP address of 4.x.y.z). These addresses are often referred to
as illegal addresses because they are officially assigned to another
organization. Unfortunately, if someone using illegal addresses wants to
connect to the Internet, we could potentially have two networks on the
Internet with the same IP addresses. This situation would seriously mess up
routing, because the Internet routers would not know where to send traffic
for these duplicate destination addresses.

Furthermore, with the rush to connect to the Internet, there just aren't
enough spare IP addresses available for everyone who wants one. Therefore,
the IETF set aside some address numbers for creating private IP networks in
RFC 1918. You can build your own IP network using these set-aside IP
addresses such as 10.x.y.z, 172.16.y.z, or 192.168.y.z. Many organizations
are creating networks using these set-aside addresses. If you try to send
data to one of these addresses on the Internet, it will be dropped, because
these set-asides are not unique. They are referred to as "unroutable" or
"private" because no router on the Internet will know how to reach these
nonunique addresses.

So how do we support Internet access from a network that is using either
illegal addresses or the set-asides described in RFC 1918? The answer is to
map these problematic addresses to valid IP addresses at a network gateway
using a technique called Network Address Translation (NAT). To implement
NAT, a gateway (which might be a router or firewall) sits between the
network with the illegal or set-aside network and the Internet. As depicted
in Figure 2.15, when each packet goes from the internal network to the
Internet, this gateway alters the private source IP address of the internal
network in the packet header, overwriting it with a unique, routable IP
address. When responses come back, the gateway will receive these packets,
and rewrite the destination IP addresses before forwarding them through to
the internal network.

Figure 2.15. Network Address Translation overwrites the unroutable
IP addresses from the internal network.

[View full size image]

The gateway can map the addresses for NAT in a variety of ways, including
the following:

For this type of NAT, every packet coming from the internal network is
mapped to a single IP address. On the Internet, all traffic appears to be
coming from the NAT device's IP address. This very address-efficient
technique is commonly used to connect a large network to the Internet
when a limited number of IP addresses are available. To keep track of
the different connections going to each outside system, the NAT device
maintains state for each connection. Many NAT devices set a unique

source port number in all outbound packets whose address has been
translated, so that responses coming back to that port can be mapped
back to the proper internal IP address and original internal port. Such
port twiddling to implement NAT is sometimes called Port Address
Translation (PAT).

The gateway could map each machine on the internal network to a
unique valid IP address associated with each single machine.

Therefore, all traffic would appear to come from a group of IP addresses.
This technique is often used to map user requests across the Internet to
servers on a perimeter network, such as a Web server on a Demilitarized
Zone (DMZ).

The gateway could multiplex a large number of unroutable IP addresses
to a smaller number of valid IP addresses. This approach is less common
than the other techniques.

To conserve IP addresses, NAT is very commonly utilized on the Internet
today. However, does NAT improve security? It does help hide a network's
internal IP address usage, which an attacker could use to develop a network
topology. However, by itself, NAT offers few security benefits. Although
attackers cannot directly send packets to the private addresses on the
internal network, they can still send packets to or even through the NAT
gateway. The attacker might be able to take over the NAT device and then
compromise the internal network. Or, without compromising the NAT device
itself, the attacker could ride across the NAT, with the gateway mapping the
addresses back and forth on behalf of the attacker. For this reason, NAT
techniques must be combined with a secure firewall implementation if
security is required.

Firewalls: Network Traffic Cops and Soccer Goalies

Firewalls are tools that control the flow of traffic going between networks.
They sit at the border between networks, acting as a gateway that makes
decisions about what kind of traffic should be allowed through and what
should be denied. By looking at the services, addresses, data, and possibly
even users associated with the traffic, firewalls determine whether
connections should be transmitted through to the other network or dropped.
With this capability, firewalls act rather like network traffic cops, as shown in
Figure 2.16.

Figure 2.16. A firewall protects networks from each other.

[View full size image]

If configured correctly, systems on one side of the firewall are protected
from attackers on the other side of the firewall. Attackers can access the
protected system only in ways allowed by the firewall. Organizations
commonly use firewalls to protect their infrastructure from the big, bad
Internet and from attacks across business partner connections. Additionally,
internal network firewalls are proliferating, protecting sensitive internal
networks (such as human resources and legal support) from other locations
in the organization.

Another useful analogy for a firewall is a goalie in a soccer game. The
goalie's job is to prevent the opposing team from kicking the ball into the
net. The soccer ball is rather like a packet. A firewall's job is to prevent an
attacker from sending unwarranted packets into a network. However, a
goalie must allow the ball to be kicked out from the net, or else there won't
be much of a game. A firewall must allow some outgoing connections, so
internal users can access the external network, while denying most incoming
connections, except for specific services, as shown in Figure 2.17.

Figure 2.17. The goalie protects the internal network, while allowing
the ball to be kicked out from the net.

[View full size image]

The objective of an attacker is, therefore, to kick the ball past the goalie into

the protected net. To understand our defenses, let's look at the goalie's
capabilities by analyzing the firewall technologies in widespread use:
traditional packet filters, stateful packet filters, and proxy-based firewalls.
We'll also look at a highly related technology, network-based Intrusion
Prevention Systems (IPSs).

Traditional Packet Filters

Traditional packet filters can be implemented on a router or a firewall. As
their name demonstrates, packet filters focus on individual packets,
analyzing their header information and direction. A traditional packet-
filtering device analyzes each packet going through it to make a decision on
whether the packet should be transmitted or dropped. Traditional packet
filters make this decision based on the following information:

Does the packet appear to come from an IP address that should be
allowed into the network? This information, gathered from the packet's
IP header, indicates the apparent source machine or network sending
the packet.

Is the packet going to a server that should receive this type of traffic?
This field, also from the IP header of the packet, indicates the intended
destination machine or network of the packet.

What is the source port for the packet, and does it signify a specific
application? This information is gleaned from the TCP or UDP header.

What is the destination port? Because common services often use the
well-known ports in that list maintained by the IANA, the destination
port is used to allow some services while denying others. This
information is also gathered from the packet's TCP or UDP header.

Does the packet have the SYN bit set, meaning it is part of a connection
initiation, or does it have the ACK bit set, implying it is part of an
already-established connection? This information is very useful to a
packet filter trying to decide whether the packets should be allowed or
not. Of course, this data is not present in UDP packets, which have no
concept of control bits.

Should this protocol be allowed into the network? The packet filter might
allow TCP packets while denying UDP, or vice versa.

Is the packet coming into the packet-filtering device, or leaving from it?
The packet-filtering device can make filtering decisions based on this
direction of packet flow.

Did the packet come from a trusted network or an untrusted network?
The packet-filtering device can transmit or drop packets based on the
network interface on which they arrive.

Packet-filtering devices (whether routers or firewalls) are configured with a
series of packet-filtering rules, with each rule specifying whether a given
type of packet should be admitted or dropped. These rules are often called
packet-filtering Access Control Lists (ACLs), particularly when they are
implemented on routers. Each vendor's product supporting packet filtering
has its own syntax for creating these rules, with some products offering a
custom language and others offering a GUI to define packet-filtering rules.
Some common packet-filtering rules, using a vendorneutral, but
understandable definition language, are shown in Table 2.2.

Table 2.2. Some Sample Packet Filter Rules

Action Source
Address

Dest
Address

Protocol Source
Port

Dest
Port

Control
Bit

Allow
Inside
Network
Address

Outside
Network
Address

TCP Any 80 Any

Allow
Outside
Network
Address

Inside
Network
Address

TCP 80
>
1023 ACK

Deny All All All All All All

Let's analyze these filter rules in more detail. It is important to understand
that most packet-filtering devices apply their rules starting at the top of the
list and moving down. A few products take a "best-fit" approach instead of
this "first-fit" mentality, but let's focus on first-fit because it is more common
and more easily understood. The device takes the packet and starts scanning
the rules. The first rule that matches the packet's vital information is
applied. The first rule in our list will allow packets from the inside network to
the outside network to go to TCP port 80. This allows our internal users to
send packets to external Web servers. The second rule allows outside

systems to send TCP packets to the internal network to a high port number,
as long as the ACK bit is set and the source port is 80. This rule is designed
to allow responses from the external Web servers back into the internal
network (remember that the browser client is dynamically assigned a high-
number port by the TCP Layer). Finally, the last rule denies all traffic,
making sure everything will be dropped except the traffic explicitly allowed
by earlier rules. This deny-all statement at the end is crucial to make sure
nothing slips through the cracks.

One major concern about traditional packet filters like this is their extremely
limited view of what the traffic is actually doing. Notice the ACK rule in Table
2.2. This rule is a pretty big opening, allowing anyone on the external
network to send TCP packets into the protected network as long as the ACK
bit is set, the source port is 80, and the destination port is greater than
1023. Unfortunately, the packet-filtering device doesn't have a lot of
information on which to base its determination regarding whether that
incoming packet is a response to a Web request or an attack. It can only
look at each packet's header and decide. A similar problem is found with UDP
packets. Remember, UDP packets do not have control bits, so there is no
indication of whether a packet is part of a session initiation (like a TCP
packet with the SYN control bit set) or an acknowledgment (like a TCP
packet with the ACK bit set). Because a traditional packet filter can only look
at the packet headers to make its decisions, an attacker could pretty easily
kick the ball past this goalie.

Despite this limitation, however, packet-filtering devices are in widespread
use today, particularly at internal network routers and border routers
connecting companies to the Internet. A great benefit of traditional packet
filters is their speed. Because of their simplicity, a decision can be made
rapidly about whether a packet should be sent.

To see how an attacker conducts an
ACK scan against a network, refer to
the Chapter 6 section titled "Kicking the
Ball Past The Goalie: TCP ACK Scans."

Stateful Packet Filters

So, traditional packet filters are limited because they can only look at a
particular packet's information to make a decision. How can we improve on
this basic idea to create more powerful filters? Stateful packet filters deal
with the problems of traditional packet filters by adding some more

intelligence to the packet filter decision-making process. In addition to
making decisions based on all the elements used by a traditional packet
filter, stateful packet filters add memory to the process. A stateful packet
filter can remember earlier packets that went through the device and make
decisions about later packets based on this memory. That's why they are
called stateful—they remember packets.

This memory is implemented in a state table, which stores information about
each active connection and other memorable packets. Unlike the packet
filter rule we discussed earlier, which is static once it is defined by a network
administrator, the state table is dynamic, updated in real time as packets
traverse the device. This table remembers earlier packets so that the
stateful packet filter can make decisions based on packet filter rules as well
as the state table itself. An example state table is shown in Table 2.3.

Table 2.3. A Generic State Table from a Stateful
Packet-Filtering Device

Source
Address

Dest
Address

Source
Port

Dest
Port

Timeout
(Seconds)

10.1.1.20 10.34.12.11 2341 80 60

10.1.1.34 10.22.11.45 32141 80 40

When a packet that is part of a session initiation (a TCP packet with the SYN
control bit) is sent, the packet filter remembers it in its state table. When a
new packet tries to go through the device, the packet filter consults its state
table in addition to its rule set. If the rules allow a packet to be transmitted
only if it is part of an earlier connection, the stateful packet-filtering device
will transmit the packet if there is a suitable entry in its state table.
Otherwise, the packet is dropped. So, if there was an earlier SYN packet, an
ACK will be transmitted through the packet filter. Otherwise, the ACK will be
dropped, because it is not part of a legitimate connection.

The state table remembers various packets for a set amount of time, usually
ranging between 10 and 90 seconds, or even longer in some
implementations. After that interval, if no further packets are associated
with the entry in the state table, the entry is deleted, meaning no further
packets are allowed for that connection.

Let's consider our previous example of allowing responses to Web requests
by letting in any TCP packet going to a high-numbered port if the ACK bit is
set. An attacker could send packets through this filter simply by using a tool
that generates packets with the ACK bit set to scan our entire protected
network. A stateful packet filter, on the other hand, remembers the outgoing
SYN packet for the original Web request. Then, it will only let an ACK packet
into the network if it comes from a system that is reflected by a SYN entry in
the state table. If an attacker tries to send ACK packets from addresses and
ports for which there is no earlier SYN, the stateful packet filter will drop the
packets.

In addition to remembering TCP control bits, a stateful packet filter can also
remember UDP packets, and allow incoming UDP packets only if there was a
previous outgoing packet. Additionally, stateful packet filtering helps to
secure more complex services, like FTP, which requires two connections to
transfer a file: an FTP Control Connection (across which commands to get
directory listings and transfer files are sent) and an FTP Data Connection
(where the file listings and files themselves are sent). Stateful packet filters
can be configured to allow FTP Data Connections only when an FTP Control
Connection is established, thus policing the protocol more carefully than a
traditional (nonstateful) packet filter.

With these techniques, stateful packet filters have significantly better
security abilities than traditional packet filters. Because they have to consult
their state tables, stateful packet filters are usually slightly slower than
traditional packet filters. However, this change in performance is usually
negligible given the significantly improved security. Furthermore, with
custom Application-Specific Integrated Circuit (ASIC) chips, stateful filtering
can still operate quite quickly. Given these great benefits, many firewall
solutions today are based on stateful packet-filtering technologies.

Proxy-Based Firewalls

Packet-filtering devices, whether traditional or stateful, focus on packets,
looking at the information provided in the TCP and IP Layers. Proxies
represent an entirely different approach to controlling the flow of
information through a firewall. Rather than obsessing over packets, proxies
focus on the application level, analyzing the application information passing
through them to make decisions about transmitting or dropping.

To understand proxy firewalls and application-level control, consider this
analogy: My mom called the other night to speak with me. My wife answered
the phone. I was tremendously tired, having stayed up late the night before
writing about protocol layering. As much as I love my mother, I moaned to
my wife, "I'm way too tired to speak with her now. Tell her to go away!" My
wife, who had answered the phone, said to my mother, "Ed's very tired right

now. Can he please call you back tomorrow?" Likewise, when a telemarketer
called me looking to sell widgets, my wife didn't even tell me. She instead
told the caller that he had the wrong number.

In both of these situations, my wife acted as a proxy for me. I interacted
with my wife, and my wife interacted with the other party. She was able to
make decisions about what to say based on the application-level context of
what was happening. She cleaned up the protocol I used to speak with my
mom, and she denied altogether an interaction from the telemarketer
because she didn't want that application to contact me.

Proxy firewalls work the same way. As pictured in Figure 2.18, a client
interacts with the proxy, and the proxy interacts with a server on behalf of
the client. All connections for other applications, clients, or servers can be
dropped.

Figure 2.18. The proxy-based firewall implements application-level
controls.

[View full size image]

A proxy can authenticate users, as it operates at the application level and
can display a user ID and password prompt or other authentication request.
Web, telnet, and FTP proxies often include the ability to authenticate users
before passing the connection through the proxy.

A proxy-based firewall is not subject to the ACK attack scan issue we saw
with traditional packet filters, because the ACK is not part of a meaningful
application request. It will be dropped by the proxy. Furthermore, given its
focus on the application level, a proxy-based firewall can comb through the
application-level protocol to ensure that all exchanges strictly conform to the
protocol message set. For example, a Web proxy can make sure that all
messages are properly formatted HTTP, rather than just checking to make
sure that they go to destination TCP port 80. Furthermore, the proxy can
allow or deny application-level functions. So, for FTP, the proxy could allow

FTP GETs, so a user could bring files into the network, while denying FTP
PUTs, stopping users from transferring files out using FTP.

Also, a proxy can help optimize performance by caching frequently accessed
information, rather than sending new requests for the same old data to
servers. Web proxies frequently include this caching capability. It is
important to note that some vendors sell proxies that are focused on these
performance optimization measures only, without providing real security.
These proxies are useful for caching and other bandwidth optimizations, but
only a tool designed for securely proxying applications should be used as a
firewall.

Although particular vendor implementations vary greatly, generally
speaking, proxy-based firewalls tend to be somewhat slower than packet
filter firewalls, because of their focus on the application level and detailed
combing of the protocol. Proxies have much more control over the data flow,
but that control costs CPU cycles and memory. Therefore, to handle the
same amount of traffic, proxy-based firewalls usually require a higher
performance processor.

To see how an attacker can send a
command-line session through a
stateful packet filter or even a proxy-
based firewall by making it look like
Web traffic, refer to the Chapter 11
section titled "Reverse WWW Shell:
Covert Channels Using HTTP."

Not Exactly Firewalls: Network-Based Intrusion Prevention
Systems (IPSs)

Although not exactly firewalls, network-based IPSs share some important
characteristics. These tools monitor traffic going across a network and match
it against a set of signatures that identify various kinds of attacks, such as
the buffer overflows and related exploits we discuss in Chapter 7, Phase 3:
Gaining Access Using Application and Operating System Attacks. Some IPSs
even maintain a sense of normal traffic behavior and look for deviations
from normal patterns consistent with a scan or propagating malicious code
such as worms. If some network traffic matches an attack signature, the
network-based IPS can block the communication before it has a chance to hit
target systems. Those network-based IPS tools that monitor traffic patterns

can likewise throttle eruptions of traffic consistent with a scan or a worm to
slow down or even stop attacks.

Although both kinds of tools have the ability to filter, network-based IPS
tools are different from firewalls. Firewalls are typically configured to allow
only certain kinds of services or ports through the device, blocking all other
traffic. However, the firewall doesn't have signatures for specific kinds of
attack, nor does it typically have knowledge of normal traffic patterns. An
IPS, on the other hand, usually allows through all traffic, except those
packets that are associated with known attacks that match the IPS
signatures. Firewall-type rules can be defined on some network-based IPS
tools as well, but network-based IPS tools typically just focus on specific
attack signatures and behavior, pulling out the evil stuff they detect.

Which Technology Is Better for Firewalling?

Should you use stateful packet filtering or proxy-based firewalls to protect
your network? That depends on the specific services you need to support
through the firewall and the performance characteristics you require. If
implemented with properly optimized rule sets, either technology can
support the security needs of most organizations.

I like to see networks that employ an Internet gateway built with packet-
filtering systems and proxy-based systems in a layered fashion. For
example, an external stateful packet filter might shield your DMZ, whereas a
proxy-based firewall sits just inside that system to protect your internal
network, as shown in Figure 2.19. That way, you get the best of both worlds.
Of course, there are countless different architecture options of varying
complexity for creating an Internet gateway, each optimizing for a different
need.

Figure 2.19. A simple example architecture employing both packet
filtering and proxy technologies.

[View full size image]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Don't Forget About the Data Link and Physical
Layers!

Let's continue our journey down the protocol stack by talking about the
common technologies used to construct the Data Link and Physical Layers
underlying most TCP/IP stacks. Officially, these Data Link and Physical Layer
protocols are not part of the TCP/IP family. Still, attackers frequently take
advantage of these underlying technologies, so we need to understand them.

What makes up the Data Link and Physical Layers? The Data Link Layer
consists of the software drivers for your network interface card, plus some
firmware on the card itself. The Physical Layer is the hardware of your
network interface card, plus the actual physical media (the wires, fiber, or
radio frequency spectrum) making up the network.

The Data Link and Physical Layers are used to construct LANs, point-to-point
connections, and Wide Area Network (WAN) links. The IP Layer generates an
IP packet, and passes it down to the Data Link and Physical Layers, which
transmit the data across a single link (the LAN, point-to-point connection, or
WAN) on behalf of the IP Layer. The Data Link and Physical Layers move

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

packets from one system across one hop to another system or a router.
Additionally, these layers are used to move packets from one router to
another router. By far, the two most popular LAN technologies today are
Ethernet for wireline communication and the 802.11 family of protocols for
wireless communication.

Ethernet: The King of Wireline Connectivity

Numerous options are available today for implementing the Data Link and
Physical Layers for wireline transmissions, each based on a different LAN
technology. Wireline LAN technologies include Fiber Distributed Data
Interface (FDDI), token ring, Ethernet, and numerous others. Among this
plethora of options, one stands out as the most widely used wireline LAN
technology of all: Ethernet. Call it the king of connectivity. The vast majority
of corporate networks (and numerous home networks) are based on
Ethernet. Because Ethernet is so dominant and attackers have devised
several ingenious methods for attacking it, we analyze it in more detail.

Ethernet is not exactly a monolith, however. Several different versions of
Ethernet have evolved, each with different speeds: 10 megabits per second
(the original version of Ethernet), 100 megabits per second, Gigabit
Ethernet, and beyond.

Each type of Ethernet includes the concept of a Media Access Control (MAC)
address. MAC is a subset of the Data Link Layer associated with controlling
access to the physical network wire. MAC is not limited to just Ethernet, as it
is used in various LAN technologies, including the wireless technologies we
discuss later in this chapter. But in the Ethernet realm, each and every
Ethernet card has a unique MAC address, which is 48 bits long. To ensure
these MAC addresses are globally unique, each Ethernet card manufacturer
has received a specific allocation of addresses to use, wiring (or hard-coding)
a unique address into every Ethernet card manufactured. Because the MAC
address is unique, this number can be used to unambiguously identify every
network interface.

ARP ARP ARP!!

When a machine has data to send to another system across a LAN, it has to
figure out what physical node should receive the data. Remember, the data
that was pushed down the TCP/IP stack includes a destination IP address in
the header. However, we can't just blurt out the data to an IP address
somewhere on the LAN, because the IP Layer isn't sitting listening to the
wire. We have to send the data to a physical network interface implementing
the Data Link and Physical Layers. So, how do we identify the appropriate
destination Data Link and Physical Layers? The network interface card can
be identified using the MAC address. That's great, but how do we know which

MAC address to send the packet to, given that the TCP/IP stack has just
passed us the destination IP address?

To map a particular IP address to a given MAC address so that packets can
be transmitted across a LAN, systems use the Address Resolution Protocol
(ARP), illustrated in Figure 2.20. ARP can be applied to LAN technologies
besides Ethernet, but RFC 826 defines ARP and how it should be used for
Ethernet.

Figure 2.20. The Address Resolution Protocol.

[View full size image]

When one system has a packet to send across the LAN, it sends out an ARP
query. The ARP query is typically broadcast to all systems on the LAN, and
asks, "Who has the MAC address associated with IP address w.x.y.z?" where
w.x.y.z is the destination IP address for the packet to be delivered. Every
system on the LAN receives the broadcast, and the system configured with
that requested IP address sends an ARP response. The response essentially
says, "I've got that IP address, and my MAC address is AA.BB.CC.DD.EE.FF."
The sending system then transmits the packet to this destination MAC
address and stores the information mapping IP address to MAC address in its
ARP cache. The ARP cache is a table containing IP-to-MAC address mappings,
and is used to minimize future ARP traffic. The ARP cache maps Layer 3 (the
IP address) to Layer 2 (the MAC address), and is stored on each system
communicating on the LAN. When another packet needs to go to the same
destination again on the LAN, the sending system will look up the IP address
to determine the MAC address from its ARP cache, rather than sending
another ARP query. ARP cache entries have a lifetime that depends on the
operating system type, but typically last between several minutes and half
an hour. After this lifetime expires, ARP is used to refresh the ARP cache.

It is important to note that ARP, which is a Data Link Layer concept, applies
only across LANs, and is not transmitted by routers from one LAN to
another. Therefore, ARP queries and responses are not transmitted across

the Internet or anywhere beyond a given LAN.

To see how an attacker can forge ARP
messages to hijack a session, refer to
the Chapter 8 section titled "Session
Hijacking."

Hubs and Switches

Ethernet LANs are constructed using hubs or switches, devices that have
various physical interfaces for plugging in Ethernet cables. Each system on a
LAN has an Ethernet cable plugged into one of these physical interfaces on a
switch or hub. The switch or hub has an internal backplane where all data is
transmitted between the appropriate physical interfaces. Although hubs and
switches share similar physical appearances (a box with a bunch of plugs),
they have very different ways of handling data, as shown in Figure 2.21.

Figure 2.21. Comparing broadcast Ethernet to switched Ethernet.

A hub is a very simple device. It simply broadcasts information received on
one physical interface to all other physical connections on the box. A hub is
therefore a broadcast device, acting like a repeater. When one system wants
to send data to another system on a LAN implemented with a hub, all other
systems on that LAN can see the data.

To understand how an attacker can
easily capture data sent through a hub,
refer to the Chapter 8 section titled
"Sniffing Through a Hub: Passive
Sniffing."

A switch, on the other hand, has additional intelligence so that it doesn't
have to broadcast data to all physical interfaces. A switch listens to the
traffic flowing through it and associates particular source MAC addresses
from that traffic with each physical plug on the device. The switch has
memory where it stores the mapping of MAC address to physical port (that
is, Layer 2 to Layer 1). Some vendors refer to this table as the Content
Addressable Memory (CAM) table. When packets are transmitted through a
switch, the switch will send the data to the single physical interface
associated with the destination MAC address, as shown in Figure 2.22.
Therefore, data is physically isolated to the plug and wire connection of the
destination system, and is not sent to every machine on the LAN. The switch
auto-discovers which machines are connected to which physical interfaces by
listening to the MAC addresses of traffic of the LAN. Alternatively, a network
administrator could configure the switch to hard-code the MAC address
associated with each physical interface right into the switch.

Figure 2.22. A switch helps isolate data.

Attacking a LAN implemented with a hub can be quite trivial. For switches,
which are more intelligent devices, attackers have created some very
interesting attacks against these more sophisticated LAN components.
Today, most networks are made up of switches, a much more popular
technology given their better performance characteristics and (very slight)
improvement in security.

To understand how an attacker can
gather data from a switched LAN, refer
to the Chapter 8 section titled "Active
Sniffing: Sniffing Through a Switch and
Other Cool Goodies."

802.11: The King of Wireless Connectivity

Although Ethernet still remains popular, the world is also awash in wireless.
From cell phones to wireless LANs (WLANs), the convenience and mobility
brought about by wireless technologies has fostered their rapid deployment
and widespread use. The explosive growth of WLAN technologies, with new
access points popping up all over the place, is particularly good news for the
bad guys. Unsecured wireless access is often one of the easiest ways to
break into an otherwise well-fortified network. What's more, using a
"borrowed" access point left open by a neighbor, Internet café, or fast-food
restaurant, attackers can achieve a level of untraceability that used to

require a lot of work in setting up relay points to bounce through
compromised systems in the wireline world.

From a wireless networking perspective, one of the most popular
technologies is the 802.11 family of protocols, defined by the Institute of
Electrical and Electronics Engineers (IEEE). This set of protocols was
designed as a seamless replacement of the Data Link and Physical Layers of
Ethernet. This design is very helpful for the good guys, because new
applications can be carried across wireless without redevelopment effort. But
it's even better news for the attackers for three reasons. First, all of the
attacks designed to work in IP networks can be carried right across most
WLANs without any changes whatsoever. All of the major sniffers and ARP
cache poisoning attacks we discuss in Chapter 8, Phase 3: Gaining Access
Using Network Attacks, work very well against WLANs based on 802.11
technology. Likewise, the buffer overflows and other attacks discussed
throughout the book can be carried without a glitch across wireless
networks.

Second, attackers now have great new Physical Link and Data Link
properties to attack. They can gain "physical" access to a network without
having to jack into a plug in the wall. Wireless signal bleed is a very
beautiful thing for the bad guys, who can sometimes join WLANs from
hundreds of yards or more away! From a data link perspective, a whole new
message set is available to manipulate in attempting to gain access to
WLANs. We'll look at these wireless messages later in this section.

Finally, being able to replace just the Data Link and Physical Layers of
existing network protocol stacks with wireless devices has made an already
very hackable world even more hackable. As organizations and individuals
race to deploy wireless without much regard for its security implications, the
bad guys now have a vast number of systems to target.

Given that WLANs are designed to be easily swappable for wireline Ethernet
networks, some people refer to 802.11 as wireless Ethernet, a phrase I'm
not too fond of, given its technical inaccuracy. Still, you do hear it, and it
does sum up the goals of wireless connectivity. Another popular term is Wi-
Fi, which refers to an industry alliance of vendors and other interested
parties that test interoperability. Although the term Wi-Fi refers to this
alliance, many people use it as a name for any 802.11 WLAN technologies.

One important similarity between Ethernet and the 802.11 family is their
reliance on MAC addresses, the ARP protocol, and ARP caches. Just as
systems on wireline Ethernet LANs use ARP to create a mapping of IP
addresses to MAC addresses, so too do systems communicating on a WLAN.
Wireless MAC addresses are also 48 bits in length.

The 802.11 family includes numerous members, but some of the most
popular and important protocols within this family include the following:

This protocol, originally defined in 1997, was the first standard in the
family, describing the MAC layer and frequency-hopping techniques,
providing a paltry maximum bandwidth of 2 Mbps. Given that relatively
slow speed, this particular protocol didn't gain widespread use. Today,
this term is applied to the whole family of 802.11 protocols, instead of
just that one ancient standard from 1997.

This was the second physical layer standard for the 802.11 family,
defined in 1999, with a maximum bandwidth of 54 Mbps. Released about
the same time as 802.11b, solutions using this protocol were more
expensive than the 802.11b, giving them lower popularity despite their
higher bandwidth.

This third physical layer defined in the family, standardized back in
1999, became the first widely deployed member of the 802.11 family
given its low cost and acceptable maximum bandwidth of 11 Mbps,
comparable to traditional wireline Ethernet.

This standard, finalized in 2003, has gained widespread acceptance
because of its higher bandwidth (maxing out at 54 Mbps) and low cost,
combining the best features of 802.11a and 802.11b.

This standard, ratified in 2004, offers improvements to the security of
802.11, including stronger encryption (based on the Advanced
Encryption Standard, better known as AES) and better key exchange
using a protocol called the Temporal Key Integrity Protocol (TKIP).

WLANs implemented using 802.11 technologies can operate in two modes:
independent (sometimes called peer-to-peer) mode, where each system is
an equal partner on the LAN, and infrastructure (sometimes called access-
point) mode, where one system is in charge. In independent mode, a group
of wireless computers can create an ad-hoc network and start exchanging
data directly with each other. In infrastructure mode, an administrator
deploys an access point, a central point for the WLAN. All computers using
that WLAN then send all data through the access point. The access point
itself might have a connection to a wireline network, acting as an on-ramp
for accessing the Internet itself.

Regardless of whether the network is independent or infrastructure in
nature, all 802.11 wireless communications must be controlled with various
management frames, special packets sent by the devices communicating
wirelessly to coordinate communication. The wireless management frame
types supported by 802.11 include the following:

In infrastructure networks, access points use these frames to announce
the existence of a WLAN, sending them at regular intervals, typically
approximately every 100 ms by default.

Wireless devices can use these frames to find existing 802.11 networks,
requesting which access points are nearby.

An access point can respond to a probe request with this type of frame,
indicating that it is present.

This frame is used to join a WLAN.

An access point uses this frame to grant access to the WLAN.

This frame is used to tear down a relationship with a WLAN.

These management frames are highly useful to attackers in a variety of
ways in locating and attempting to undermine a wireless access point.

To see how an attacker uses probe
request frames to find wireless LANs,
refer to the Chapter 6 section titled
"War Driving Method 1: Active Scanning
—Sending Probe Packets with
NetStumbler."

To see how an attacker listens for
beacon frames to find WLANs, refer to
the Chapter 6 section titled "War
Driving Method 2: Listening for Beacons
and Other Traffic with Wellenreiter."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Security Solutions for the Internet

Unfortunately, the original designs of TCP/IP and related technologies did
not include security capabilities. Traditional TCP/IP stacks offer no real
protections for ensuring the confidentiality, integrity, authentication, and
availability of data as it is transmitted through the network. Although these
base technologies ignore security, a few significant and somewhat successful
efforts have been launched to slap security on top of or retrofit it into the
existing Internet. Let's explore several efforts to add security to TCP/IP-
based networks, including application-level security, the Secure Sockets
Layer (SSL), and IPSec.

Application-Level Security

Through much of its history, TCP/IP did not include security functionality,
instead relying on the applications using TCP/IP to secure the data
themselves. If the application required confidentiality, the application
developers had to build encryption capabilities into the application level. For
authentication, the application developers sometimes used digital signatures
to verify who sent the data. When an application required checks of the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

integrity of data, it had to include a cryptographically strong hash. The
application would secure the data using these techniques before passing it to
the TCP/IP stack for transmission.

Numerous applications were created that have built-in application-level
security, including financial applications, databases, medical history systems,
and so on. Additionally, a large number of tools have been developed that
protect data at the application level, but are useful for a variety of
applications. Table 2.4 contains a variety of these application-level security
tools widely used for various TCP/IP-based applications.

Table 2.4. Some Widely Used Application-Layer
Security Tools

Application-Level
Security Tool

Purpose

Pretty Good Privacy
(PGP) and Gnu
Privacy Guard
(GnuPG)

PGP was created by Phil
Zimmerman to encrypt
and digitally sign files,
which could then be
transferred using any file
sharing application, such
as the Network File
System, Windows file
sharing, or FTP. Both the
free and commercial
versions of PGP are in
widespread use today for
file transfer and e-mail.
A standards-compliant,
free, open-source
replacement for PGP has
been released called
GnuPG, available at .
The commercial version
of PGP is available at .

S/MIME is a widely used

Secure/Multipurpose
Internet Mail
Extensions
(S/MIME)

standard for securing e-
mail at the application
level. Most major e-mail
clients support S/MIME
today.

SSH

SSH gives a user remote
access to a command
prompt across a secure,
encrypted session. It can
also be used as a tunnel
to carry encrypted
sessions for any other
TCP-based service. A
free, open-source
version is located at ,
and commercial versions
of SSH are available at .

The Secure Sockets Layer (SSL) and Transport Layer
Security (TLS)

Another option for providing security services to TCP/IP applications involves
implementing security at a layer just above TCP/IP, known as the Sockets
Layer. An application can include its own implementation of a Sockets Layer
that has security capabilities, which sits between higher level application
functions and the TCP/IP stack, as illustrated in Figure 2.23. Originally
published by Netscape, SSL is a specification for implementing just this kind
of security at the Sockets Layer. In 1999, the IETF released RFC 2246,
which specifies the successor to SSL, known as Transport Layer Security
(TLS). TLS represents a very small change to SSL, including tweaks to its
message format and various cryptographic options. Because of the vast
popularity of the original SSL and the extremely close relationship of SSL
and TLS, most people still use the term SSL when referring to either SSL or
TLS. In following this popular parlance, we use the term SSL throughout this
book, but keep in mind that all of our discussions apply to both SSL and TLS.

Figure 2.23. How SSL fits in: SSL is included in the application
program.

SSL and TLS allow applications to have authenticated, encrypted
communications across a network. Both communicating sides of the
application requiring security must include an implementation of SSL, which
encrypts all data to be transported and sends the information to the TCP/IP
stack for delivery. SSL includes a variety of encryption algorithms to secure
data as it is transported. SSL relies on digital certificates to authenticate
systems and distribute encryption keys. These digital certificates act like
cryptographic identification cards, which can be used to verify another
party's identity. A certificate contains the public key of a given machine,
which has been digitally signed by a certificate authority the other side
needs to be configured to trust. SSL can provide one-way authentication of a
server to a client (so that you can cryptographically verify you are dealing
with a given e-commerce merchant, for example). Additionally, SSL can
support mutual authentication of both the client and the server, provided
that both sides have recognized digital certificates.

You probably use SSL quite often, perhaps without realizing it. When you
surf to a secured Web site, and the key or lock in the lower corner of your
browser appears, your browser has established an SSL connection with the
site and verified its certificate. When you use HTTPS, you are actually
running the HTTP protocol over SSL, which of course, is being carried by
TCP/IP (pardon the alphabet soup of acronyms!).

To establish an SSL session between two systems, SSL defines a carefully
orchestrated handshake so the two machines can agree on various
encryption algorithms and settings, as well as exchange keys, as illustrated

in Figure 2.24. The systems first complete the TCP three-way handshake,
with its SYN, SYNACK, and ACK messages to exchange TCP sequence
numbers. Next, the client sends an SSL CLIENT_HELLO message that
specifies the particular cryptographic algorithms it can support, compression
algorithms it wants to use, an SSL session ID number, and the highest SSL
or TLS protocol version it can handle. This message also includes some
random data that will be used in the session key generation process later.
The server responds with, as you might guess, a SERVER_HELLO message,
which includes the server's choice of SSL or TLS version, the particular
encryption algorithms to use, and chosen compression methods, all sent with
that same SSL session ID number. This message also includes some
randomly generated data for use in the session key generation process later.

Figure 2.24. Establishing an SSL session.

The server follows up with some pretty important data, the CERTIFICATE
message, which includes the server's digital certificate, that crucial data
structure that holds the server's public encryption key digitally signed by a
certificate authority. This server public key in the certificate corresponds to a
private key stored on the server. No one should know the private key except
the server itself (and, of course, its human administrators). In this
CERTIFICATE message, the server can also optionally send a chain of
certificates of various certificate authorities that have signed the server's
own certificate or each other's certificates. The server completes its part of
the communication with a SERVER_DONE message.

Next, if the client has its own digital certificate, it can submit this to the

server. The vast majority of SSL deployments today rely on server-side
certificates only, so this step is often skipped. Regardless of whether client
certificates are used or not, the next step involves a CERTIFICATE_VERIFY
message, indicating that the client has checked out the server's certificate
and has decided to trust it; that is, the server certificate was signed by a
certificate authority the client was configured to trust, or the client walked
the chain of certificates provided by the server until it reached a certificate
authority that was trusted. Web browsers, by default, are configured to trust
several dozen certificate authorities from around the world. If the client
software itself cannot verify the certificate, it might even prompt the user,
asking whether the given certificate should be trusted. The client then issues
a CHANGE_CIPHER_SPEC message to indicate that it is ready to start
communicating in an encrypted fashion. The client's final unencrypted
message says that it is FINISHED, with a hash of all of the data sent in the
communication so far to make sure that no one snuck in an evil message
during the handshake itself. The server then issues its own
CHANGE_CIPHER_SPEC and FINISHED messages to complete the
handshake.

Now, we get to the payoff—using random data created by the client and
server exchanged during the handshake, the client formulates a session key.
The client encrypts the session key with the server's public key that it
retrieved from the server's certificate. The encrypted session key is sent to
the server. The server then uses its private key, which, remember, it keeps
very secret, to decrypt the message from the client. Because only the server
knows the server's private key, only the server can decrypt this message to
determine the session key. The session key, then, known only to the client
and server, is used to encrypt all data for the SSL session going forward. In
this way, SSL uses the server's public and private key pair to exchange a
session key that is used to encrypt all of the traffic.

You might be wondering why the client doesn't just encrypt all of the data
for the session using the server's public key from the server certificate. Keep
in mind that public key crypto algorithms have much lower performance
than shared-key systems (often called symmetric key cryptosystems). Thus,
SSL relies on public key algorithms to exchange a symmetric key, and then
encrypts all of the data using the symmetric key on both sides. Public key
cryptography is used here to bootstrap symmetric cryptography by
exchanging a symmetric key.

There is one major concern associated with this SSL exchange. Did you spot
it? It all depends on how much the client can trust that server certificate. If
the server certificate is bogus but the client still accepts it, all of this
handshaking is for naught. With a bogus certificate trusted by the client, the
client will be encrypting information and sending it to someone evil, thinking

that it is sending the data to someone good. In other words, the trust placed
in the server certificate is paramount. If attackers can trick a legitimate
certificate authority that the clients trust into signing their certificates, SSL
will be undermined. There is some historical precedent here, with the
certificate authority VeriSign issuing two certificates in 2002 to people
claiming to be from Microsoft. These certificates weren't for SSL, though.
Instead, they were code-signing certificates, which are used by browsers to
verify the author of software before running it. That's pretty scary; someone
managed to get certificates that they could use to impersonate Microsoft
itself! These certificates were rapidly revoked, and a new version of Internet
Explorer was released that automatically refused to accept those two
certificates. Alternatively, instead of fooling a certificate authority, if the
attacker can fool the certificate-checking software on the browser, SSL again
fails to provide any real security. Every year or two, someone finds a
browser flaw that can be exploited in this way, forcing vendors to release
patches to their browser logic and users to upgrade. Finally, and of most
concern, in most SSL implementations, the user gets a shot at saying
whether he or she wants to trust a certificate. This user request is often the
weakest link in the SSL process, giving the attacker an opportunity to dupe
unsuspecting victims into trusting evil certificates.

To see how an attacker can undermine
SSL (as well as SSH) by tricking a user
into accepting evil certificates and
public keys, check out the Chapter 8
section titled "Sniffing HTTPS and SSH."

SSL is most often associated with Web browsing and HTTP, and indeed that
is its biggest use today. However, other applications can use SSL, such as
telnet, FTP, e-mail transfer, or anything else. Unfortunately, an application
developer must typically modify both the client and the server of the
applications to include SSL functionality. Alternatively, some products
provide an SSL tunnel between two systems, carrying all traffic from various
applications encrypted using SSL. A separate application is installed on both
sides that authenticates and encrypts all data between the two
communicating machines using SSL. These products are sometimes referred
to as SSL Virtual Private Networks (VPNs). I typically avoid the phrase "SSL
VPNs" myself. VPNs have historically been a construct of the network layer,
as we'll discuss next, not something at the Sockets Layer. Still, these
products can be used to encrypt data with SSL for a variety of applications.

To understand how an attacker can
manipulate a Web application even
though SSL is in use, refer to the
Chapter 7 section titled "Web
Application Attacks."

Security at the IP Level: IPSec

Wouldn't it be great if we could have secure communications without having
to build security into our applications or integrate the applications with SSL?
What if we could have support for security built right into our TCP/IP stack,
so that any application using IP would be able to communicate securely,
without any modifications to the application or a separate SSL tunneling
application installed? The IETF tried to answer these questions in the mid-
1990s by defining how security could be added to IP. The resulting
specification is known as IP Security, or IPSec for short, and can be used to
create VPNs.

IPSec functions at the IP Layer, offering authentication of the data source,
confidentiality, data integrity, and protection against replays. Any two
systems with compatible versions of IPSec can communicate securely over
the network, such as my computer and your server, or my server and your
firewall, or your firewall and my router. Of course, to pull this off, the two
communicating systems must have some method for exchanging encryption
keys, a difficult but not insurmountable issue we discuss in more detail
shortly.

Because IPSec is offered at the IP Layer, any higher layer protocol, such as
TCP, UDP, or anything else, can take advantage of IPSec. More important,
any application riding on top of that higher layer protocol will benefit from
the security capabilities of IPSec. IPSec has been retrofitted into IPv4, the IP
that you and I use every day on the Internet. IPSec is also built into IPv6.

IPSec is really made up of two protocols, the Authentication Header (AH)
and the Encapsulating Security Payload (ESP), each offering its own security
capabilities. It should be noted that AH and ESP can be used independently
or together in the same packet.

The IPSec Authentication Header

The AH provides authentication of the data source, data integrity, and,
optionally, protection against replays. In essence, AH provides digital

signatures for IP packets so that attackers cannot send packets
impersonating another machine, or alter data as it moves across the
network. Using AH, I can verify where a packet came from and ensure that it
was not altered in transit. Figure 2.25 shows how AH fits into an IP packet
(using IPv4). In the example shown in Figure 2.25, AH is just sandwiched in
after the IPv4 header, using a method known as transport mode IPSec.
Another IPSec option, called tunnel mode, involves applying AH to an entire
IP packet (not just the TCP or UDP component), and then putting a new IP
header in front of the resulting package.

Figure 2.25. The IPSec Authentication Header used in transport mode
with IPv4.

The AH format itself, depicted in Figure 2.26, includes several parameters.
Of particular interest are the Security Parameters Index (SPI), the Sequence
Number Field, and the Authentication Data. The SPI is simply a reference
number, agreed on by both sides of the communication, that indicates which
IPSec connection this packet is part of. The SPI refers to a specific
agreement between the two machines to use particular encryption
algorithms, encryption keys, and other parameters for the communication.
The Sequence Number Field is used to apply a unique sequence number to
each packet in the IPSec session to prevent an attacker from replaying data.
Finally, the Authentication Data includes information used to verify the
integrity of the packet. IPSec does not specify which encryption algorithms
to use, so this data could include a digital signature or a hash function of the
data.

Figure 2.26. The Authentication Header format.

The IPSec ESP

The other IPSec protocol, ESP, supports confidentiality, and optionally
supports authentication of the data source, data integrity, and protection
against replays. In essence, ESP is used to encrypt packets so attackers
cannot understand protected data, and to support digital signatures. Figure

2.27 shows how ESP is applied to an IPv4 packet in transport mode. Like AH,
ESP also supports tunnel mode, where an entire IP packet is encrypted, not
just the TCP, UDP, or other Transport Layer protocol.

Figure 2.27. The IPSec Encapsulating Security Payload used in
transport mode with IPv4.

[View full size image]

ESP includes both a header and a trailer, encrypting all information in
between, which includes the TCP header and the data inside the TCP packet.
Figure 2.28 shows a more detailed view of ESP.

Figure 2.28. The Encapsulating Security Payload format.

As with AH, ESP also includes a Security Parameters Index and Sequence
Number Field, serving the same purpose they do in AH. Additionally, ESP
includes the encrypted data, referred to as opaque because it is encrypted
and cannot be understood by anyone without the decryption key. ESP pads
the packet to make the contents line up evenly on 32-bit word boundaries.
The Next Header field has a pointer to any additional headers included in the
packet. Finally, the Authentication Data allows ESP to provide authentication
and integrity services, such as digitally signed packets.

IPSec and IPv6: Will They Save Us?

So IPSec has been retrofitted into IPv4, and is built into IPv6, offering up
security at the Network Layer for any application that wants to use it. All of
our security problems are now solved, right? Unfortunately, the short
answer to this question is an emphatic "No!" Although IPSec does offer great
security capabilities, it tends to be deployed in pockets. Many organizations
are using it today to create secure tunnels between their main network and

satellite offices, or between the main network and individual users, creating
VPNs. However, IPSec is not currently used as a general-purpose tool to
secure all communication over the Internet. There are several reasons for
this somewhat limited use of IPSec. A major issue limiting the widespread
deployment of IPSec involves the distribution of encryption keys and digital
certificates. IPSec depends on both sides of the communication having
encryption keys to use for securing the communications channel. Remember,
digital certificates include cryptographic keys used to verify identities and
exchange encrypted information. Unfortunately, we don't have a giant
certificate exchange system that we can use to move trusted certificates
throughout the world. Without such an infrastructure, IPSec requires users
and administrators to exchange keys manually or set up their own (usually
private) certificate distribution systems.

So once we've deployed a giant certificate distribution mechanism, we'll all
be secure, right? Again, I'm sorry to say that the answer is still negative. As
long as vendors continue to ship sloppy software out the door in an effort to
grab market share, we will be plagued with security holes, with or without
IPSec. As long as our organizations continue to deploy this software junk
into our networks, we'll have problems. As long as inexperienced
administrators accidentally misconfigure systems, offering open access to the
world, attackers will vanquish their prey. Furthermore, even if the
communication itself is encrypted, an attacker can still try to hack your
system. Sure, you might implement rock-solid encrypted access of your
sensitive data, but can an attacker find another, nonencrypted path into
your machine? Or, better yet, can the attacker hack you right over your
encrypted path?

I don't want to sound too pessimistic. However, the job of security involves
more than just protecting data as it moves across the network. Network-
level security tools, such as IPSec, are extremely useful in helping to protect
data from network-based eavesdroppers. IPSec is definitely needed, but it is
not sufficient by itself to address all security problems.

Some day, perhaps five to ten years in the future, we'll have a robust,
ubiquitous network security solution, perhaps based on IPSec. Our worldwide
security infrastructure will be well tested to ensure no vendor errors allow
an attacker to undermine the system. Furthermore, it will be much more
foolproof and not subject to simple configuration errors on the part of end
users or administrators. When we reach this network security nirvana, we
will have taken a major stride in protecting our society against computer
attacks.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

As we have seen throughout this chapter, TCP/IP and related protocols are
incredibly flexible and can be used for all kinds of applications. However, the
inherent design of TCP/IP offers many opportunities for attackers to
undermine the protocol, causing all sorts of problems with our computer
systems. By undermining TCP/IP, attackers can violate the confidentiality of
our sensitive data, alter the data to undermine its integrity, pretend to be
other users and systems, and even crash our machines with denial-of-
service attacks. Many attackers routinely exploit the vulnerabilities of
traditional TCP/IP to gain access to sensitive systems around the world.
Sure, there is great functionality in network security tools like SSL and
IPSec, but other concerns still loom on the horizon.

Now that we understand the building blocks of the networks that connect
most of our systems together, we explore the basic architecture of those
systems by analyzing the features of Linux and UNIX as well as Windows
from an attacker's point of view.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

The TCP/IP suite of protocols is widely used for computer communication
today. The OSI Reference Model is based on the concept of protocol layering,
where each layer provides a specific function for the communicating
systems. The OSI Reference Model includes seven layers, and TCP/IP
roughly corresponds to two middle layers of the model: the Transport Layer
and the Network Layer.

The primary members of the TCP/IP family are TCP, UDP, IP, and ICMP.

TCP is the primary transport layer used for a majority of the applications on
the Internet, such as Web browsing, file transfer, and e-mail. Every TCP
packet includes a header with source and destination port numbers, which
act as little logical doors on a machine that packets go out of and come into.
Particular services usually listen on a set of well-known ports, which are
defined by the IANA.

The TCP control bits, also called the TCP flags, are also included in the TCP
header. The control bits indicate what part of the TCP session the packet is
associated with, and include SYN (for synchronize), ACK (for

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

acknowledgment), RST (for resetting a connection), FIN (for tearing down a
connection), URG (indicating the Urgent Pointer is significant), and PSH (for
flushing data through the TCP Layer). Others include CWR and ECE, both
associated with congestion control.

All legitimate TCP connections start with a three-way handshake, where the
initiator sends a packet with the SYN control bit set, the receiver responds
with a packet with both the SYN and ACK control bits set, and the initiator
finishes the handshake by sending a packet with the ACK control bit set. The
three-way handshake lets the two communicating systems agree on
sequence numbers to use for the connection, so that TCP can retransmit lost
packets and put packets in the proper sequence.

UDP is simpler than TCP; it doesn't have a three-way handshake, control
bits, or sequence numbers. UDP offers unreliable transmission because it
doesn't resend lost packets or order packets that arrive out of sequence. It is
primarily used for query-response services (such as DNS) or audio/video
streaming services. UDP also includes the concepts of ports, with every
packet having source and destination ports in the UDP header.

IP, the Network Layer protocol used on the Internet, has a header that
includes the source and destination IP address of the packet. IP addresses
are represented in dotted-quad form, such as 10.21.41.3. IP packets can be
broken down into smaller packets called fragments to optimize transmission
performance.

ICMP is used to transmit command and control information between
systems. Common ICMP messages are ping (Echo Request), Destination
Unreachable, and Source Quench.

Routing is the process of moving packets from one network to another
network. Routing can be done using dynamic routing protocols, static routes,
or source routing, where the originating system determines the route.

NAT involves overwriting the IP addresses of packets as they move through
a router or firewall. NAT allows a large number of machines to use a small
number of valid IP addresses when accessing the Internet.

Firewalls control the flow of traffic between networks. Firewall technologies
include traditional packet filtering, stateful packet filtering, and proxies.
Traditional packet filters look at the header of packets to make filtering
decisions. Stateful packet filters not only look at the header, but also
consider previous packets that went through the firewall. Proxies operate at
the application level, giving them fine-grained control in filtering. Network-
based IPSs can also block traffic, but focus on signature matching of known
attacks or looking for attack behavior in network traffic, unlike firewalls,

which focus on ports or services.

One of the most widely used Data Link and Physical Layers is Ethernet.
Every Ethernet network interface card includes a 48-bit MAC address,
uniquely identifying that card. ARP is used to map IP addresses to MAC
addresses.

Ethernet hubs implement a broadcast medium, so all machines connected to
the LAN can see all data on the LAN, regardless of its destination. Switches
look at the MAC address of Ethernet frames so that data is only sent to the
particular switch plug where the destination machine resides.

The 802.11 family of protocols are the most popular WLAN types today.
These protocols, which include 802.11b and 802.11g, support a variety of
wireless management frames, including beacons (sent approximately every
100 ms) and probe requests. Like Ethernet, the 802.11 family also uses ARP
so systems can map IP addresses to MAC addresses for transmission of
packets across the WLAN.

Because TCP/IP has historically included no strong security features, many
applications have been developed with built-in security. These applications
are in widespread use today, and include PGP and SSH, as well as e-mail
standards like S/MIME.

The SSL protocol can be used to add security to applications. It is most
widely used for secure Web browsing, in the form of HTTPS.

IPSec is an add-on to the current widely used version of IP, IPv4. IPSec is
built into the next-generation version of IP, IPv6. IPSec includes the AH and
ESP, two protocols providing authentication, integrity, confidentiality, and
other security services. Although IPSec is certainly a step in the right
direction, its deployment is limited by the lack of an infrastructure to
distribute cryptography keys. It is currently used primarily by organizations
creating VPNs for satellite offices and telecommuters.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 3. Linux and UNIX Overview: Pretty
Much Everything You Need to Know About Linux
and UNIX to Follow the Rest of This Book

Introduction

Architecture

Accounts and Groups

Linux and UNIX Permissions

Linux and UNIX Trust Relationships

Common Linux and UNIX Network Services

Conclusion

Summary

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Introduction
My mistress' eyes are nothing like the sun;
Coral is far more red than her lips' red:
If snow be white, why then her breasts are dun;
If hairs be wires, black wires grow on her head.
I have seen roses damask'd, red and white,
But no such roses see I in her cheeks;
And in some perfumes is there more delight
Than in the breath that from my mistress reeks.
...
And yet, by heaven, I think my love as rare As any she belied with false compare.

—, Sonnet 130

To understand how numerous attacks function, it's very helpful to have a
basic knowledge of the Linux and UNIX operating systems because they are
so popular as target platforms and as operating systems from which to
launch attacks. This chapter presents an overview of the Linux and UNIX
operating systems, describing underlying concepts that are required to
understand numerous attacks throughout the rest of this book.

UNIX is a beautiful but strange beast. Originally introduced as a research

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

project at AT&T more than 35 years ago, the UNIX operating system is
widely used throughout the world on servers and workstations. Much of the
Internet was built using UNIX, and UNIX systems remain incredibly popular
as Internet hosts. In recent years, open-source UNIX and UNIX-like
environments (such as OpenBSD, Linux, and others) have helped to push
UNIX to the desktop and even to palmtop devices.

UNIX is beautiful because it is so powerful. Millions of people have worked
on developing UNIX over the years, optimizing routines and creating a huge
number of useful tools. A variety of kinks that often plague new operating
systems have been worked out in the decades-old UNIX. This operating
system has clearly been around the block a couple of times. Because of this,
many UNIX systems have great reliability, high levels of performance, and
strong security features. Given UNIX's origins as a research tool, its close
relationship with the Internet, and critical role in the free software and
open-source movements, system administrators can find a variety of tools
freely available on the Internet and can ask questions of a large and
relatively friendly community of UNIX system administrators and users
through mailing lists and newsgroups.

Although it is beautiful, UNIX is also a strange beast, for two reasons in
particular. First, there is no single operating system called UNIX. Instead,
UNIX is a family of operating systems, with members of the family
constantly being updated by many competing vendors, individuals, and even
standards bodies with different visions and goals. Several popular variants of
UNIX include the following:

Solaris by Sun Microsystems

MacOS X by Apple Computer

HP-UX by Hewlett Packard

IRIX by sgi (the new name for Silicon Graphics)

AIX by IBM

FreeBSD, a free, open-source version of the Berkeley Software
Distribution (BSD) variant of UNIX

OpenBSD, another free variant of BSD whose goal is to "Try to be the
#1 most secure operating system"

This list just represents some of the UNIX variations available today.
Although they might have the same genetic root in the first AT&T UNIX of
decades ago, the members of this family were clearly raised by vastly
different parents, some of whom nurtured their UNIX to be computing

virtuosos, whereas others appear to have severely neglected their
descendents. Of course, the UNIX variation that one person considers the
absolute best and most elegant is often considered horrible and outdated by
another person. Arguments about which is the best UNIX variation often
turn into pseudo-religious flame wars.

File system organization, system calls, commands, and options within
commands differ for different types of UNIX. There are two main lines in the
UNIX family: the AT&T and BSD lines. Most UNIX systems resemble one of
these family lines more closely than the other. For example, Solaris and HP-
UX machines tend to look more like the AT&T family line, whereas FreeBSD
and MacOS X operate more like the BSD line. Of course, just to make things
more complex, some systems, like IRIX and AIX, have interesting mixtures
of both bloodlines and many additional nuances.

Linux tends to lean more toward BSD, but has some AT&T quirkiness thrown
in for good measure. Strictly speaking, Linux, the open-source project
spearheaded by Linus Torvalds, is not a variation of UNIX (that's why we
didn't include it in the list above). Linux was created without using any of
the underlying UNIX code (although some lawsuits have alleged otherwise,
officially Linux doesn't contain real UNIX code). Instead, Linux is a UNIX-like
environment, which borrowed heavily from the ideas and tools developed in
UNIX. Even more strictly speaking, the term Linux itself just refers to the
kernel at the heart of various operating system distributions. Various
vendors and open-source aficionados have built operating systems around
the Linux kernel, with each separate flavor referred to as a particular Linux
distribution, or "distro" for short. Some of the most popular Linux
distributions include Debian, Gentoo, Mandrake, Red Hat, Slackware, and
SuSE.

This chapter, and the rest of the book, tries to deal with generic Linux and
UNIX concepts, focusing on ideas that apply across all members of the Linux
and UNIX family, or at least most of them. When discussing these numerous
Linux and UNIX types, many people refer to them as different UNIX flavors,
variants, varieties, or even un*x. This book refers to them as Linux and
UNIX flavors, variants, or varieties, using the terms interchangeably.

A second reason that many people consider Linux and UNIX to be strange
beasts is that they have traditionally been—how shall I put this delicately—
not optimized for ease of use. Reflecting their early roots, many varieties of
Linux and UNIX do not shield their users from the complexity of the
underlying system. Their user interfaces were, and to some extent still are,
often not designed for complete GUI-based administration and use. Many
aficionados love this command-line orientation in an operating system, an
attitude I share. However, a new user accustomed to a GUI environment is
often overwhelmed by the available command-line options. Also, interfaces

and some underlying concepts vary greatly among UNIX flavors. For
example, a grand master of Solaris might be nearly helpless in a Linux
environment. Still, once mastered, the beautiful power of Linux and UNIX
shines through. Truth be told, Linux and most UNIXes are actually far
simpler than Microsoft Windows. Windows just tries to cover up its
monstrous complexity under the veneer of a GUI. However, once you learn
the guts of Windows, you'll see that it really is more complicated than Linux
or UNIX, with so many more options and quirks. If you think that Windows is
easier than Linux, you probably don't know Linux that well. What's more, if
you think that, it's quite possible that you don't know Windows that well
either.

Learning About Linux and UNIX

In this chapter, we cover Linux and UNIX briefly to gain a grounding to
understand attacks described throughout the rest of the book. If you want to
get deeper into the guts of Linux and UNIX, I strongly recommend the
excellent by Evi Nemeth (Prentice Hall, 2002).

Another incredibly useful source of information about Linux and UNIX is the
online system documentation known as the man pages, which is an
abbreviation for manual pages, and has nothing to do with the masculine
gender. Linux and UNIX systems with man pages installed include detailed
information about the usage and function of most system commands and
critical system concepts. Often times, the man pages for a given program or
features are written by the author of the program and tell you exactly what
you need to know about a function. To look up a man page for a given
command, simply type the following at a command prompt:

$ man [system command]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Architecture
Linux and UNIX File System Structure

Linux and UNIX are very much organized around their file system structure.
Showing UNIX's late 1960s and early 1970s vintage, darn near everything is
treated as a file: many devices, certain elements of processes, and, of
course, files. Exploring the Linux and UNIX file system is like traveling
through a city, with different directories acting like streets to lead you to the
buildings, which are individual files. Although some particular flavors of
Linux and UNIX might have subtle variations, a high-level map of the UNIX
file system is shown in Figure 3.1.

Figure 3.1. A high-level roadmap of the UNIX file system.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The tip-top of the UNIX file system is known as the "root" directory, simply
because it's at the top and all other directories are under it. I know, the
roots are usually at the bottom of a tree, but this one is inverted, with the
root directory at the top. The root directory is conveniently named /, which
is often pronounced "slash." By changing the directory to / (using the
"change directory" command like this: cd /), you will find yourself at the
top, overlooking all directories on the system. Every file is referred to on the
system relative to this slash directory. So, the file hack.txt located in the
/home/fred directory would be identified as /home/fred/hack.txt
(pronounced "slash-home-slash-fredslash-hack-dot-T-X-T"). At the next level
down from the root directory, a number of other directories hold the rest of
the information on the machine, including system configuration, system
executables, and user data, as described in Table 3.1.

Table 3.1. Important Directories in the Linux
and UNIX File System

Directory Purpose

/
The root directory, which is the
top of the file system, and is
often called slash.

/bin
(along
with
/sbin
on some
systems)

Critical system executables
needed to boot the system or run
it.

/dev
Devices connected to the system,
such as terminals, disks, CD-
ROMs, modems, and so on.

/etc

System configuration files,
including accounts and
passwords, network addresses

and names, system start-up
settings, and so on.

/home Location of user directories.

/lib The home of various shared
libraries for programs.

/mnt

The point where file systems
exported from another system
are temporarily mounted, as well
as removable devices, like CD-
ROMs, DVDs, and USB memory
tokens.

/proc

Images and data about currently
executing processes on the
system. The /proc directory
isn't even on your hard drive.
Instead, it's a virtual component
of your file system, a portal
created by the heart of your
machine, the kernel. This
directory was designed so you
could peek in on what your
kernel and various running
processes are doing.

/tmp
Temporary files created by
applications, which can be
removed without damaging the
system.

/usr

A variety of critical system files,
including some standard system
utilities (/usr/bin), manual
pages (/usr/man), headers for
C programs (/usr/include),
and administration executables
(/usr/sbin).

/var

A place to store various types of
files, often used for
administration. The /var
directory commonly stores log
files (/var/log) and temporary
storage space for some services
(such as spooling for mail,
printers, etc.).

Two other directory names are of paramount importance in UNIX: the names
"." and "..". These names don't refer to just one directory in the file system,
however. They are links included inside every directory to refer to the
current directory and the parent directory, respectively. For example, if you
are working in the /etc directory, you can use the ls –a command to list
the contents of the directory. The –a indicates that you want to see of the
contents of the directory, including files with names that start with a dot. If
you run ls without the –a option, these so-called dot-files will be omitted
from the output, because they contain a lot of configuration information that
could clutter a user's experience. When you run ls –a, you will see . and ..
in the output. The . refers to the current directory itself, in this example
/etc. You can refer to files in this directory as ./filename when running
commands. Likewise, the directory .. refers to the directory just above the
current directory in the file system hierarchy, the parent directory. So, if
you are in the /etc directory, and you refer to .., you are referring to its
parent, which is the / directory.

Now that we have a high-level view of the file system structure, let's
analyze how the underlying operating system is organized.

The Kernel and Processes

Linux and UNIX systems tend to have a very modular architecture, with a
central core and various programs around the core. On a Linux and UNIX
machine, the special program at the core is called, appropriately enough, the
kernel. The kernel is the heart and brain of the system, controlling critical
system functions, such as interactions with hardware and doling out
resources for various user and administrator programs running on the
machine. When a running program needs to access hardware components,
such as disks or network interfaces, it calls on the kernel, which provides the
required functions to access the hardware.

When a program runs on a Linux or UNIX system, the kernel starts a process
to execute the program's code. A process contains the running program's
executable code, the memory associated with the program, and various
threads of execution that are moving their way through the code executing
its instructions. User programs, administrative tools, and even services (like
Web servers or mail servers) are processes on the machine. Think of a
process like a bubble that contains all of the guts of a running program. The
kernel inflates the bubbles (by creating processes), controls the flow of
bubbles, and tries to keep them from popping one another. A single UNIX
system often has hundreds or even thousands of active processes at any
given time. However, one Central Processing Unit (CPU) on a machine can
run only one process at any given instant. The kernel juggles the CPU
among all of the active processes, scheduling each one so that the system's
processor can be shared among the processes. Additionally, the kernel
carefully allocates and manages the memory used by processes. Each
process has its own limited view of memory, and the kernel prevents one
process from accessing the memory used by another process. With this
memory protection capability, a renegade process trying to read or overwrite
the memory of another process will be stopped by the kernel.

Figure 3.2 contains a high-level diagram showing the relationship between
processes, the kernel, and the systems hardware.

Figure 3.2. High-level view of generic UNIX or Linux architecture.

Many processes on Linux and UNIX systems run in the background
performing critical system functions, such as spooling pages to be sent to a
printer, providing network services such as file sharing or Web access, or
providing remote management capabilities. These background processes are
known as daemons, which is pronounced "day-muns" or "dee-muns,"
depending on whom you ask.

Daemons are commonly given names based on the function they perform,
followed by a "d" to indicate that they are a daemon. For example, the SSH
daemon (known as sshd) allows users and administrators to access the
system securely across the network using a command line. Similarly, httpd
is a daemon providing HTTP access to the system, or, in more common
parlance, a Web server.

Automatically Starting Up Processes: Init, Inetd, Xinetd, and
Cron

All processes running on a Linux or UNIX system, from the mightiest Web
server to the lowliest character generator, have to be activated by the
kernel or some other process to start running. During system boot, the
kernel first gets loaded into memory. Then, the kernel itself activates a
daemon called init, which is the parent of all other user-level processes
running on the machine. Init's job is to finish the bootstrapping process by
executing start-up scripts to finalize the configuration of the machine and to
start up a variety of system processes. The location of these start-up scripts
varies on different Linux and UNIX flavors, but /etc/init.d or
/etc/rc.d are common locations. Init runs these shell scripts, which
include capabilities for starting system logging, scheduling tasks for the
machine, and initiating network interfaces.

Init also starts a bunch of processes associated with network services. These
network service daemons are activated, listen on a specific port for incoming
traffic, and interact with the network traffic. Some of the most common
network services daemons started by init include the following:

A Web server, handling HTTP or HTTPS requests

The SSH service, offering strongly encrypted and authenticated remote
shell access

A common UNIX implementation of an e-mail server

The Network File System, originally created by Sun Microsystems, used
to share files between UNIX systems

We'll discuss each of these services in a bit more detail at the end of this
chapter. When the init daemon starts up one of these network services, the
process associated with the service listens to the network for incoming
traffic. For example, most Web servers listen on TCP port 80, and e-mail
servers listen on TCP port 25. These processes just sit there and wait for
incoming traffic to service.

Some network services, like Web, mail, and file sharing, usually have a lot
of incoming traffic, so they need to be constantly ready to handle the
incoming onslaught. Other services, like telnet or FTP, are usually not as
frequently accessed. Having a large number of different processes just
sitting around waiting for infrequent traffic is inefficient, because each
infrequently accessed service requires system resources, including memory
and some CPU time. To improve performance, some Linux and UNIX network
services are not started by init and don't just sit and wait for traffic. Instead,
another process, called the Internet Daemon, or inetd for short, does the
waiting for them. On some Linux and UNIX variations, inetd has been
replaced with xinetd, an extended version that offers better access control
and logging.

Either inetd (pronounced "I-Net-D") or xinetd (that would be "X-I-Net-D")
are activated by the init daemon during the boot process. Once activated,
inetd consults its configuration file, located in the /etc directory and called,
appropriately enough, inted.conf. This configuration file tells inetd to
listen on the network for traffic for a specific set of services. The TCP and
UDP port numbers for these services are defined in the file
/etc/services, which just contains a service name, port number, and
indication of whether a service is TCP or UDP. For systems that use xinetd,
several configuration files are used, one for each service that is started by
xinetd, such as the telnet or FTP servers. These configuration files are
typically located in the /etc/xinetd.d directory.

When traffic arrives at the machine destined for a specific service identified
in its configuration file or directory, inetd or xinetd activates the process
associated with the service. The particular network service process then
handles the traffic and stops running when it is finished. Inetd or xinetd then
continues to wait for more traffic for that service and others. Numerous
services are commonly activated using inetd or xinetd, including the
following:

A service that just echoes back the characters sent to it, sometimes used
to troubleshoot network connectivity problems.

A service that generates a repeating list of letters, sometimes used to
measure performance.

The FTP daemon, used to move files between machines.

A telnet server for remote command-line access offered on a clear-text
(and thus quite unsecure) basis.

These are the UNIX r-commands for remote shell (rsh) and remote
login (rlogin), respectively, which allow a user to execute commands and
log in remotely to the system, again in a very unsecure manner.

TFTP, a bare-bones file transfer mechanism.

To make inetd listen for a particular service, an entry in the
/etc/inetd.conf is required for each service. A sample inetd.conf
file contains the following information (note that the "#" character indicates
that a line is a comment and will not be processed by inetd):

The various fields of the inetd.conf file describe the particular
characteristics of the service to be launched by inetd, and include, from left
to right:

This field refers to a specific service, such as telnet or FTP, which is
defined in the /etc/services file. The /etc/services file is just a
simple mapping of service names to TCP or UDP port numbers.

This field describes the type of connection used by the service, and can
be set to stream, dgram (for datagram services), raw, rdm (for
reliably delivered message), or seqpacket (for sequenced packet
sockets). stream and dgram are by far the most commonly used values
for TCP and UDP services, respectively.

The particular network protocol type is described here, usually tcp or
udp. This field could also be set to rpc/tcp or rpc/udp to indicate an
RPC service.

This field indicates whether a single server process can handle multiple
requests at once. If so, this field is set to wait, preventing inetd from
creating a bunch of processes to handle individual requests for the

service. Otherwise, the field is set to nowait, so inetd will create one
process to handle each incoming request.

This element gives the Login Name that the network service should run
as. The network service will run with all of the permissions of this user.

This field indicates which program to run to activate the network service.

This file field lists the arguments and configuration flags that should be
passed to the network service when it starts to run.

To see how an attacker targets
inetd.conf to create attack relays,
please refer to the Chapter 8 section
titled "Relaying Traffic with Netcat."

The relationship between init and various daemons is shown in Figure 3.3.
To summarize, there are two basic types of network services on a Linux or
UNIX machine: services that are started by init and constantly wait
themselves for traffic from the network, and services that use inetd or
xinetd to listen for traffic and are activated only when traffic arrives for the
service. The chkconfig command included in some Linux distributions can
be used to display a list of all services configured to start up at system boot
and by xinetd, by simply typing (as root):

Figure 3.3. The relationship between init, xinetd, and various
network services.

chkconfig --list

We look at the chkconfig command in more detail in Chapter 6, Phase 2:
Scanning.

Beyond init, inetd, and xinetd, another way to automatically start processes
is through the cron daemon. This daemon is used to schedule the running
of specific system commands and programs at predetermined times.
Administrators frequently use cron to schedule regular automatic processes
to ease the job of system administration. If you want to run a program that
scans the system for viruses every night at midnight or backs up the system
at 3 , you will likely use cron to schedule the job. It reads one or more
configuration files, known as crontabs, to determine what to run and when
to run it. These crontab files are stored in different locations on various
flavors of Linux and UNIX, but common locations include
/usr/lib/crontab and /etc/crontab.

Just as system administrators use cron to get their work done, attackers also
employ cron to accomplish their job of exploiting systems. Rather than
manipulating inetd or xinetd on the victim machine to set up remote access,
an attacker with access to a victim machine could edit the crontab files to
run various commands on the victim. Such commands could include a
denial-of-service attack program shutting down critical system services at a

specified time, a backdoor listener granting remote access to the machine, or
any other kind of timed attack against the system.

For more information about a variety of
denial-of-service attacks, please refer
to Chapter 9, Phase 3: Denial-of-
Service Attacks.

For more information about placing
backdoor listeners on a victim machine,
please refer to the Chapter 10 section
titled "Backdoors."

Manually Starting Processes

Init, inetd (or xinetd), and cron automatically start processes running on a
machine. Of course, users and administrators can manually start processes
as well. Whenever you run a program on a Linux or UNIX machine by typing
its name at the command line, a process is started to execute the program.
When a user runs a program, the resulting process typically executes with
the permissions of the user that activated the program.

When a user types a program name at a command prompt, the system looks
for the program in a variety of directories that can be custom-tailored for
that specific user. The directories searched for the program make up the
search path for that user, or simply the path. The user's search path is really
just a variable that contains all of the directories that are searched by
default, with each directory in the path separated by a colon. To see the
setting of your search path, type the following command at a command
prompt:

$ echo $PATH

You will get a response similar to this:

/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin

This response indicates that when I type a particular program's name, the
system will attempt to find the program first in the /usr/local/bin
directory, then in the /bin directory, then /usr/bin/, and finally the
/usr/X11R6/bin directory. If it cannot find a program with the name I
typed in those directories, the system responds with a "command not found"
message.

It is very dangerous to have the current working directory, ., in your search
path. To understand why, consider what happens when you type a normal
command, such as ls to get a listing of the contents of the current
directory, but you have . in your search path. If the . in your path comes
before the directory where the real ls program is located, you will
unwittingly execute a program named ls in your current directory. This
program could be anything that happens to be named ls. Attackers love to
see . in someone's search path. If it's there, an attacker can put an evil
program with a name of a commonly used command (like ls) in one of your
most often used directories to trick you into executing it. The evil program
that the attacker tricks you into executing might be a backdoor, password
stealer, denial-of-service attack, and so on. By default, all major Linux and
UNIX distributions leave . out of your path, and you should keep it that way!

Interacting with Processes

The kernel assigns each running process on a machine a unique process ID
(called a PID, and often pronounced "P-I-D"), which is a number used to
reference the process. Users can run the ps command to display a list of
running processes. The ps command can also be used to show the PID,
program names, CPU utilization, and other aspects of each running program.
To show the details of all running processes on a system with BSD
characteristics, use the –aux flags with the ps command. For a UNIX
machine with AT&T family characteristics, the –edf flags give a detailed
display of all running processes.

Here is an example of the output from the ps command run on a typical
Linux installation (note that I've edited out several processes and bolded
others from this list to make it easier to read). In the following list, you can
clearly see the init, crond, and xinetd processes running on the system.
Additionally, the user's command shell (bash) is a process, as is the ps
command itself that is run to generate the list of processes.

ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.2 0.7 1120 476 ? S 22:13 0:04 [3]

root 2 0.0 0.0 0 0 ? SW 22:13 0:00 [kflushd]
root 3 1.1 0.0 0 0 ? SW 22:13 0:19 [kupdate]
root 4 0.0 0.0 0 0 ? SW 22:13 0:00 [kpiod]
root 5 0.0 0.0 0 0 ? SW 22:13 0:00 [kswapd]
root 6 0.0 0.0 0 0 ? SW 22:13 0:00 [mdrecoveryd]
bin 288 0.0 0.6 1212 420 ? S 22:13 0:00 portmap
root 303 0.0 0.0 0 0 ? SW 22:13 0:00 [lockd]
root 304 0.0 0.0 0 0 ? SW 22:13 0:00 [rpciod]
root 433 0.0 0.9 1328 620 ? S 22:13 0:00
root 462 0.0 0.8 1156 520 ? S 22:13 0:00
root 995 3.5 1.5 1736 976 pts/0 S 22:46 0:00 bash
root 1005 0.0 1.3 2504 820 pts/0 R 22:46 0:00 ps -aux

Beyond ps, another really handy command for looking at what processes are
up to is lsof, a command included in many Linux and UNIX variants, and
available as a separate download for others. This command merely gives a
"list of open files" for each running process on the machine. But, remember,
on a Linux or UNIX system, pretty much everything is treated as a file,
including files (of course), terminals, and even network ports (the TCP and
UDP ports we discussed in Chapter 2: Networking Overview). You can run
lsof by itself to get an enormous amount of information about every file
that every process on your system is accessing. You can then take the
output of lsof and feed it as input using a pipe to the grep command to
find specific patterns, such as the string "bash" by running lsof | grep
bash. That way, you'll see all of the bash command shells on your machine.
Then, to zoom in on a specific process, you can run lsof –p [pid] to see
all of the files that a specific process is currently accessing. Finally, the
command lsof –i shows all TCP and UDP port usage on a machine, as well
as the processes using those ports. We look at lsof in more detail in
Chapter 6.

One way to interact with processes is to send them a signal. A signal is a
special message that interrupts a process telling it to do something. One of
the most common signals is the TERM signal (short for terminate), which
instructs the process and the kernel to stop the given process from running.
Another frequently used signal is the hangup signal (HUP), which causes
many processes (particularly inetd or xinetd) to reread their configuration
files. A user can run the kill command to send a signal to a specific
process, by referring to the PID. Similarly, the killall command is used to
send a signal to a process by referring to its name on Linux systems. Be

careful with the killall command on Solaris, because it will do what its
name implies: kill everything! On Linux, for example, suppose an
administrator or attacker alters the configuration of xinetd by making a
change to one of the files in the directory /etc/xinetd.d. To make the
changes active on the system, xinetd must be forced to reread its
configuration. To cause the xinetd process from the process list shown
previously to reread its configuration files, an administrator or
attacker could use the kill command to refer to its PID:

kill –HUP 462

Or, alternatively, on Linux, the administrator could use the killall
command to refer to the process name:

killall –HUP xinetd

Now that we have an understanding of processes, let's turn our attention to
other fundamental UNIX concepts, accounts, and groups.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide
to Computer Attacks and Effective Defenses

Accounts and Groups

To log in to a Linux or UNIX machine, each user must have an account on the system.
Furthermore, every active process runs with the permissions of a given account.
Without these accounts, no one can log in and no processes can run. Clearly, in Linux
and UNIX, to get anything done, an account is required. Let's analyze how accounts are
configured.

The /etc/passwd File

Accounts are created and managed using the /etc/passwd file, which contains one
line for each account on the machine. An example /etc/passwd file might contain the
following information:

root:1sumys0Ch$aO0lLX5MF6U/85b3s5raD/:0:0:root:/root:/bin/bash
bin:*:1:1:bin:/bin:
daemon:*:2:2:daemon:/sbin:
ftp:*:14:50:FTP User:/home/ftp:
nobody:*:99:99:Nobody:/:

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

alice:1hwqqWPmr$TNL0UManaI/v0coS6yvM21:501:501:Alice T.
 User:/home/users/alice:/bin/bash
fred:$1$0UDutmr8$TeFJcr9xiaMILQmzU9LW.0:502:502:Fred
 Smith:/home/users/fred:/bin/bash
susan:1UWT1L5r7$7iMEpzcNd7mVM6CcO0IUR/:503:503:Susan
 Jones:/home/users/susan:/bin/bash

Each line in the /etc/passwd file contains a description of one account, with
parameters separated by a colon (:). The parameters included in /etc/passwd for
each account are, from left to right:

This field contains the name of the account. A user logs into the machine using this
name at the login prompt.

This field contains a copy of the user's password, cryptographically altered using a
one-way function so that an attacker cannot read it to determine users' passwords.
Various cryptographic algorithms are used on various Linux and UNIX flavors,
including hash algorithms and encryption ciphers. When the user logs into the
machine, the system prompts the user for the password, applies the one-way
cryptographic function to the user-supplied password, and compares the result with
the value stored in /etc/passwd. If the encrypted or hashed password provided
by the user matches the encrypted or hashed password in /etc/passwd, the user
is allowed to log in. Otherwise, access is denied.

Each account is assigned an integer called the user ID number. All processes and
the kernel actually rely on this number and not the login name to determine the
permissions associated with the account.

For the purposes of assigning permissions to access files, users can be aggregated
together in groups. This field stores the default group number to which this account
belongs.

This field is filled with free-form information not directly referenced by the system.
It is often populated with general information about the user, such as full name and
sometimes telephone number.

This value indicates the directory the user is placed in after logging into a system,
the starting directory. It is often set to a directory in the file system where the
user's own files are stored, often in /home.

This field is set to the shell program that will be executed after the user logs into
the system. This field is often set to one of the command-line shells for the system,
such as the bourne shell (sh), the bourne-again shell (bash), C shell (csh), or Korn

shell (ksh). It could also be set to another program to be executed when the user
logs in.

The /etc/passwd file is world-readable, so any user or process on the system can
access it. Because some attackers read the password file and attempt to recover the
encrypted or hashed passwords through password cracking techniques, many modern
Linux and UNIX systems do not include the encrypted or hashed passwords in the
world-readable /etc/passwd file and instead store passwords in a socalled shadow
password file. Ironically, on systems with a shadow password file, the /etc/passwd
file doesn't contain any passwords. Instead, /etc/passwd uses the same format and
holds all of the other information defining accounts, except the password hash is
removed from the file. A * or an x is placed in the location where the password would
be located. The encrypted or hashed passwords themselves, on such Linux and UNIX
systems, are relocated to the shadow password file called /etc/shadow or
/etc/secure. Access to the shadow passwords is carefully guarded, as only users with
super-user privileges can access the encrypted or hashed passwords by reading the
shadow file.

To see how an attacker tries to
determine passwords through guessing
and cracking to gain unauthorized
access to a system, refer to the Chapter
7 section titled "Password Attacks."

The /etc/group File

When administering a system, handling the permissions of each individual user account
can be a lot of work. To help simplify the process, Linux and UNIX include capabilities
for grouping users and assigning permissions to the resulting groups. All groups are
defined in the /etc/group file, which has one line for each group defined on the
machine. A common /etc/group file might look like this:

daemon:x:2:root,bin
finance:x:25:alice,fred,susan
hr:x:37:bob,mary

The format of the /etc/group file includes the following fields, each separated by
colons:

This field stores the name of the group.

This field is never used, and is frequently just set to an x or a *.

This value is used by the system when making decisions about which group should
be able to access which files.

The login name of each user in the group is included in this comma-separated list.
In the example /etc/group file listed earlier, the root and bin accounts are all in
the daemon group, which has a GID of 2. Similarly, the owners of the alice, fred,
and susan accounts are all in the finance group, with a GID of 25.

Root: It's a Bird ... It's a Plane ... No, It's Super-User!

The single most important and powerful account on Linux and UNIX systems is the root
account, usually named root. Root has the maximum privileges on the machine; it can
read, write, or alter any file or setting on the system. With these great privileges, root
is sometimes referred to as the super-user or even "god" account. The UID number of a
root account is zero. When the system checks to see if a given action requires super-
user privileges to execute, it consults the UID of the user or process requesting the
action. Therefore, the super-user account could be named anything (although root is
most common) as long as the UID is zero. Multiple UID 0 accounts are possible on a
single system, with each having super-user access at the same time. System
administrators use the root account to manage the system. Attackers love to gain root
access on a machine, because it allows them complete control over the machine.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Linux and UNIX Permissions

Each file in the Linux or UNIX file system has a set of permissions describing
who can access the file and how they can access it. Every file has an owner
(a single account associated with the file) and an owner group (a single
group associated with the file). The owner of the file (along with root) can
set and alter the permissions of the file.

Linux and UNIX file permissions are broken down into three areas:
permissions associated with the owner of the file, permissions assigned to
the owner group, and permissions for everyone (i.e., all users and processes
with accounts on the machine). For each of these three areas, at least three
kinds of access are allowed: read, write, and execute. With three areas
(owner, group owner, and everyone) and three different levels of access
(read, write, and execute), there are nine different standard permission
settings. Using the ls command, with the –l flag to look at the form of the
output, we can see the permissions assigned to the files in a given directory,
as in the following example:

ls -l

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

total 1588
drwxr-xr-x 3 root root 4096 Sep 15 10:17 CORBA
-rw-r--r-- 1 root root 2434 Mar 7 2004 DIR_COLORS
-rw-r--r-- 1 root root 4 Mar 11 07:19 HOSTNAME
-rw-r--r-- 1 root root 5472 Mar 1 2004 Muttrc
drwxr-xr-x 11 root root 4096 Sep 15 10:37 X11
-rw-r--r-- 1 root root 12 Mar 8 2004 adjtime
-rw-r--r-- 1 root root 732 Feb 17 2004 aliases
-rw-r--r-- 1 root root 20480 Sep 15 12:58 aliases.db
-rw-r--r-- 1 root root 370 Mar 3 2004 anacrontab
-rw------- 1 root root 1 Mar 1 2004 at.deny
-rw-r--r-- 1 root root 582 Feb 27 2004 bashrc
drwxr-xr-x 2 root root 4096 Sep 15 10:28 charsets
-rw------- 1 root root 306 Jan 19 05:54 conf.linuxconf
-rw-r--r-- 1 root root 34 Sep 15 10:34 conf.modules
drwxr-xr-x 2 root root 4096 Sep 15 10:16 cron.d
drwxr-xr-x 2 root root 4096 Sep 15 10:32 cron.daily
drwxr-xr-x 2 root root 4096 Aug 27 2003 cron.hourly
drwxr-xr-x 2 root root 4096 Aug 27 2003 cron.monthly
drwxr-xr-x 2 root root 4096 Sep 15 10:27 cron.weekly
-rw-r--r-- 1 root root 255 Aug 27 2003 crontab
-rw-r--r-- 1 root root 220 Jan 12 2004 csh.cshrc
-rw-r--r-- 1 root root 674 Jan 13 2004 csh.login

Note that each item in the listing begins with a pattern of ten characters. If
the first character is a d, it indicates that the associated listing is a directory.
Otherwise, it is a file. The next nine characters indicate the permissions for
each directory, using the format shown in Figure 3.4.

Figure 3.4. Linux and UNIX file permissions.

When an r, w, or x permission is allowed, the appropriate letter is displayed

in the output of the ls –l command. When the given permission is not
allowed, a – is shown in the ls –l output.

These permissions for each file can be altered using the chmod command,
pronounced "ch-mod." This command's name is a reference to changing the
"modes" of a file, another way of referring to access permissions. To change
the permissions of a file, a user can convert the desired permissions to octal
format and enter the result into the chmod command. Figure 3.5 shows how
the desired permissions are converted to octal representations. First, the
desired permissions are listed as a sequence of nine bits. A zero bit means
that the capability is absent, and a one bit means the capability is present.
Then, each bundle of three bits is converted into octal format (see Table
3.2).

Figure 3.5. Permission assignments.

Table 3.2. Octal Equivalents for File
Permissions

r w x Octal
Equivalent

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

For example, suppose we want a file named foo to have full control (read,
write, and execute) capabilities for its owner account, we want it to be
readable by the owner group, and we want everyone to be able to read and
execute it. The desired permission set would be rwxr--r-x, or converted
to binary, 111 100 101. The resulting octal representation would be 745. We
set these permissions using this command:

chmod 745 foo

As perverse as it might sound to UNIX neophytes, with enough use of these
octal formats, your brain eventually maps the rwx permissions to their octal
representations and back automatically. For the octally challenged, the
chmod command on most UNIX flavors also allows users to type in the
individual r, w, and x permissions for the owner account, owner group, and
everyone by hand, a more painstaking process. Most people use the octal
representation.

SetUID Programs

Sometimes, users or processes have a legitimate reason for accessing a file
for which they don't have assigned permissions. Consider what must happen
for users to change their own passwords. The user has to edit his or her
account entry in the /etc/passwd or /etc/shadow file. However, the
/etc/passwd or /etc/shadow files can only be altered with super-user-
level permissions. How can a lowly user change a password without having
to pester the system administrators every time to use their rootly powers to
modify the password file on behalf of the user?

The answer lies with another Linux and UNIX capability called SetUID (for
Set User ID). With this capability, a particular program can be configured
always to execute with the permissions of its owner, and not the permissions
of the user that launched the program. Remember, usually, when a user
starts a process, the process runs with the user's permissions. SetUID
programs alter this, allowing a user to run a process that has the
permissions of the program's owner, and not the user executing the
program.

So, in our password-changing example, the user can run a special SetUID
program called passwd to change a password. The passwd program is
configured to run SetUID root. That is, regardless of who executes the
passwd program, it runs with root permissions. The passwd program asks the
user for the new password and overwrites the /etc/passwd or
/etc/shadow files with the new encrypted or hashed password. The
passwd program then finishes running, and the normal user has finished the
encounter with root privileges.

SetUID capabilities give common users temporary and controlled access to
increased permissions so they can accomplish specific tasks on the system.
Set-UID programs are identified with a special additional bit in their
permissions settings. This bit is actually located before the nine standard
permissions (rwxrwxrwx). In fact, there are three additional bits that can be
used in addition to the nine standard permissions. These bits are the SetUID
bit, the SetGID bit (so a program can run with the permissions of its owner
group rather than the group of the user that launches it), and the so-called
sticky bit, which forces programs to stay in memory and limits deletion of
directories. Just like the nine permission bits, the SetUID, SetGID, and sticky
bits are converted to an octal number to be used in a chmod command. In
the octal representation, SetUID comes first, followed by SetGID, followed by
the sticky bit.

Therefore, to change the file from our earlier example, foo, to run SetUID,
the owner of the file (or root) could type:

chmod 4745 foo

The leading "4" is the octal equivalent of the binary "100," meaning that the
SetUID bit is set, whereas the SetGID bit and sticky bit are not. The
remaining permissions (745) are identical to what we had set them to in our
earlier example.

When the ls command is used to display permissions, it does indicate which

files are SetUID by overwriting the x for the file's owner with an s
character, as shown in the following example:

ls -l /usr/bin/passwd
-r-s--x--x 1 root root 12244 Feb 7 2000 /usr/bin/passwd

If you think this idea of allowing lowly users to run programs with great
permissions is a little bit scary, you're absolutely right. Any program that is
SetUID, particularly those that are SetUID root, must be carefully
constructed to make sure that a user cannot exploit the program. If
attackers have an account on a system and can run SetUID programs, they
can attempt to break out of the SetUID program to gain increased privileges.
The attackers might try to provide bogus input to the SetUID program or
even crash it in an attempt to gain elevated privileges. Because of this
possibility, SetUID programs must be carefully written to minimize the
access given through the program to the user. Furthermore, system
administrators should maintain an inventory of all SetUID programs on a
machine. Newly added or modified SetUID root programs could be an
indication that an attacker is present on the machine, and has set up a
SetUID root program as a quick way to jump to root. To find all SetUID
programs on a UNIX machine, you can run the following command as a root-
level user:

To understand a common technique
used by attackers to exploit vulnerable
applications that is particularly effective
in breaking SetUID programs, please
refer to the Chapter 7 section titled
"Buffer Overflow Exploits."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Linux and UNIX Trust Relationships

Now that we've seen how accounts and permissions work on a single system,
let's analyze how access can be extended between Linux or UNIX machines.
Linux or UNIX systems can be configured to trust each other, an operation
that can make the systems simpler to administer, but potentially impacting
security. When one system trusts another, it allows the trusted system to
authenticate users on its behalf. As shown in Figure 3.6, machine Bob trusts
machine Alice. When a user logs into Alice, that user can send commands to
be executed on Bob, and Bob will not require the user to reauthenticate. The
user will not see a password prompt on Bob, because Bob trusts the fact that
Alice has already authenticated the user. System Bob thinks, "Well, if my
friend Alice, whom I trust, has already authenticated this user, that's good
enough for me!"

Figure 3.6. Bob trusts Alice.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

This trust can be implemented in Linux and UNIX systems using the
systemwide /etc/hosts.equiv file or individual users' .rhosts files,
along with a series of UNIX tools known collectively as r-commands. The
/etc/hosts.equiv file contains a list of machine names or IP addresses
that the system will trust (i.e., allow unauthenticated access of users from
the given machine). Similarly, users can create a file called .rhosts in
their home directories setting up trust between machines. The r-commands
include rlogin (a remote interactive command shell), rsh (a remote shell
to execute one command), and rcp (a remote copy command), among
others. Each of these commands allows for remote interaction with another
machine. If the remote machine trusts the system where these commands
are executed, no password is required for the remote access. The
r-commands are incredibly weak from a security perspective, as they base
their actions on the IP address of the trusted machine and carry all
information in clear text.

To see how an attacker undermines the
UNIX r-commands, please refer to the
Chapter 8 section titled "IP Address
Spoofing Flavor 2: Predicting TCP
Sequence Numbers to Attack UNIX R-
Commands."

Because of their weaknesses, the r-commands should be replaced with
more secure tools for extending system trust, like the SSH tool, which
provides for strong, cryptographic authentication and confidentiality, as
discussed in Chapter 2. Wherever possible, move away from the rlogin,
rsh, and rcp commands, and use the SSH tool. Otherwise, you're asking
for problems. Sometimes, we see an old legacy system that doesn't support

SSH, and is trapped in the older and weaker rsh, rlogin, or rcp world. If
you are faced with such a dilemma, you might consider putting a modern
system in front of the legacy box, and tunneling the weak r-commands over
a more secure tunnel, such as an IPSec encrypting VPN, or even an SSH
tunnel. That way, the security of the encrypted tunnel will help shore up the
weaknesses of rlogin, rsh, and rcp.

Logs and Auditing

To detect attacks on a Linux or UNIX system, it is important to understand
how various logging features work. In Linux and UNIX systems, event logs
are created by the syslog daemon (known as syslogd), a process that
sits in the background and receives log information from various system and
user processes, as well as the kernel. The syslogd configuration is typically
contained in the file /etc/syslog.conf, which specifies where the log
files are placed on the system. Although particular Linux and UNIX flavors
might store logs in different locations, the directory /var/log is a popular
location for the logs. Although the particular log files vary for different
variants of Linux and UNIX, some common log files of interest include the
following:

/var/log/secure This file contains information about successful and
failed logins, including the user name and originating system used for
login. Login records for applications such as telnet, rlogin, rsh, ftp, and
so on are stored in this file. Different flavors of Linux and UNIX might or
might not have this file, or might store the information under a different
name.

/var/log/messages This file contains general messages from a
variety of system components, including the kernel, specific modules,
and daemons. It acts as sort of a catch-all for system logs.

/var/log/httpd/, /var/log/cron Whereas some applications send
their logs to a general log file (such as /var/log/messages), others
have specific log files. A common example is Web servers, which can be
configured to log HTTP requests and other events to their own log files.

The vast majority of log files in Linux and UNIX are written in standard
ASCII, and require root privileges for modification.

In addition to the system log files, Linux and UNIX also store information
about user access in various accounting files, which are used by system
administrators and (sometimes) users to detect anomalous activity.
Furthermore, forensics investigators can use these accounting files during

investigations. To foil detection by system administrators and users, as well
as undermine forensics investigations, the following accounting files are of
particular interest to attackers desiring to cover their tracks:

This file stores information about who is currently logged into a system.
When a user or administrator types the who command, the operating
system retrieves the contents of the utmp file to display who is logged
in. A complete list of all users logged into the system is displayed, which
is bad news for an attacker wanting to hide. Depending on the flavor of
UNIX, this file can be stored in /var/run, /var/adm, or other
locations.

This file records all logins and logouts to and from the system.
Depending on the flavor of UNIX, this file can be stored in /var/log,
/var/adm, or other locations. The command last displays a list of all
users that have logged in to the system, using the contents of wtmp.

The lastlog file contains information about the time and location of
each user's last login to the system. On many Linux and UNIX systems,
when a user logs in (by telnetting, using SSH, or accessing the system
from the console), the system consults the lastlog file to display a
message saying something like, "Last login for user Joe was at 3:35 from
machine ftp.hacktheworld.com." The purpose of these messages is to aid
users in detecting misuse of their accounts: "What!!?!?! I never logged
in at 3:35 from a machine called ftp.hacktheworld.com!" Unfortunately,
the vast majority of users don't pay very close attention to messages
scrolling by on the screen while logging in, and would never notice or
report such a message. On many Linux systems, the lastlog file is
located in /var/log/lastlog. On some Linux variants,
administrators can analyze the lastlog file using the lastlog
command to see when each user last logged in and where they came
from.

To see how an attacker manipulates
these audit logs, refer to the Chapter
11 section titled "Attacking System
Logs and Accounting Files in Linux and
UNIX."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Common Linux and UNIX Network Services

Most Linux and UNIX systems include a standard complement of network
services. Because vendors are often more interested in ease of use rather
than security, the default installation of many Linux and UNIX systems
leaves many of these services active, waiting for user (and attacker)
connections. To properly secure a system, you should deactivate or remove
all services that are not explicitly required on the machine. To determine
which services you might or might not require on a Linux or UNIX machine,
let's analyze some common services in more detail.

Although there are thousands of possible services that can be run on a Linux
or UNIX machine, the purpose of this section is to describe a handful of the
most commonly used and exploited services. It is important to note that
many of the services listed in this section originally came into prominence
on UNIX systems, but are now widely supported on a variety of machines. In
particular, Linux and Windows now support most of these services that were
once associated mostly with UNIX.

Telnet: Command-Line Remote Access

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Telnet provides a command-line interface to a system remotely across the
network. Users type in their user ID and password into a telnet client, which
carries the information to the telnet server. On most Linux and UNIX
systems, the telnet server (known as telnetd) is invoked by inetd or xinetd.
With standard telnet, all information is carried without encryption (in clear
text), and can be easily captured off the network by an attacker.
Furthermore, telnet sessions can be easily taken over by an attacker in a
session-hijacking attack.

To see how an attacker uses a sniffer to
gather information from a network,
please refer to the Chapter 8 section
titled "Sniffing."

To see how an attacker hijacks
connections, please refer to the Chapter
8 section titled "Session Hijacking."

FTP: The File Transfer Protocol

FTP is used to move files between systems. Like telnet, FTP servers are
typically started by inetd or xinetd, and all data is transmitted in clear text.
Because FTP sessions are not encrypted, they can be easily captured by an
attacker and even hijacked.

To see how an attacker bounces a scan
off of an FTP server, please refer to the
Chapter 6 section titled "Obscuring the
Source: FTP Bounce Scans."

A Better Way: Secure Shell (SSH)

The very sniffable and hijackable telnet and FTP services can be bad news
from a security perspective. A better approach for remote command shell
access and file transfer involves using the SSH tool. This program consists of
a client (ssh) and a server (sshd) that allow for strongly authenticated and

encrypted communication. On Linux and UNIX, the sshd program is typically
started by init, and not inetd or xinetd. The SSH authentication can take
place with a password, transmitted across the network in an encrypted form.
Even stronger SSH authentication is available using public key encryption,
where the sshd and each user has a public–private key pair. These keys are
used to identify the users to the sshd and vice versa, as well as to exchange
crypto keys for encrypting all data sent across the session. In this
configuration, no password is ever transmitted across the network, even in
encrypted form.

SSH clients and servers can communicate using two flavors of the SSH
protocol: versions 1 and 2. The latter of these two is far more secure. As
we'll discuss in Chapter 8, Phase 3: Gaining Access Using Network Attacks,
you should consider configuring all of your sshd installations to accept only
SSH protocol version 2 on those systems that support it (most do today).

To see how attackers can trick users
into making unsecured SSH protocol
version 1 connections, refer to the
Chapter 8 section titled "Sniffing HTTPS
and SSH."

In addition to offering command shell access and transferring files (via the
scp program commonly bundled with SSH), SSH can also carry any TCP-
based service in an encrypted fashion across the network using a technique
called SSH port-forwarding. Using this technique, security can be added to
many applications, riding across a rock-solid encrypted SSH tunnel.

Web Servers: HTTP

Web servers are used to send information to Web browsers using HTTP. The
most popular Web server on Linux and UNIX today is the free Apache Web
server (available at). Web servers are typically started by init. Because they
are often publicly accessible across the Internet, Web servers are frequent
targets of attackers.

For a description of a full-featured CGI
scanner useful in locating vulnerable
Web servers, please refer to the

Chapter 6 section titled "Nikto: A CGI
Scanner That's Good at IDS Evasion."

To understand a variety of application-
level attacks against Web-based
services, please refer to the Chapter 7
section titled "Web Application Attacks."

Electronic Mail

A variety of mail servers are available for Linux and UNIX systems. One of
the most popular mail servers is sendmail, a program available on both a
commercial basis (from) and on a free basis (at). Years ago, sendmail had a
variety of security problems, many of which allow an attacker to gain root-
level privileges on a vulnerable machine. If you run sendmail (or any other
mail server, for that matter) on your systems, make sure to apply security
patches as your vendor releases them.

r-Commands

As described earlier in this chapter, r-commands such as rlogin, rsh, and
rcp are sometimes used to interact remotely with Linux and UNIX systems.
Each of these services is started by inetd or xinetd, and can offer an attacker
an avenue for undermining Linux and UNIX trust relationships.

To see how an attacker undermines the
r-commands, please refer to the
Chapter 8 section titled "IP Address
Spoofing Flavor 2: Predicting TCP
Sequence Numbers to Attack UNIX R-
Commands."

Domain Name Services

Clients use DNS servers to resolve domain names into IP addresses, among
other capabilities. By far, the most popular DNS server on Linux and UNIX
systems is the Berkeley Internet Name Domain (BIND) server, often called

named. On Linux and UNIX, DNS servers are usually started with init, and
run in the background listening for requests. DNS is an incredibly important
service. In their excellent book, , Paul Albitz and Cricket Liu (O'Reilly, 2004)
say, "Almost all business that gets done over the Internet wouldn't get done
without DNS."

I couldn't agree more. Think about it: If an attacker can take down your DNS
servers or, worse yet, remap your domain name to another IP address, he or
she could seriously undermine access of your systems on your internal
network or across the Internet.

To see how an attacker gathers
information from a DNS server to use in
mounting an attack, please refer to the
Chapter 5 section titled "The Domain
Name System."

To see how an attacker can send
spurious DNS responses to redirect
traffic on a network, please refer to the
Chapter 8 section, "Sniffing and
Spoofing DNS."

The Network File System (NFS)

Linux and UNIX machines can share components of their file systems using
the Network File System (NFS). Originally created by Sun Microsystems in
the mid-1980s, NFS allows users to access files transparently across the
network, making the remote directories and files appear to the user as
though they were local. By simply changing directories, a user can access
files transparently across the network using NFS. On the machine where the
files to be shared are located, the NFS server exports various components of
the file system (such as directories, partitions, or even single files). Other
machines can mount these exports at specific points in their file systems. For
example, one machine may export the directory /home/export so other
machines can access the files in that directory. Another system can mount
the exported /home/export directory onto its file system at the
/mnt/files directory. A user on the second machine simply has to change
directories to /mnt/files to access the remote files, without having to go

through the explicit transfer of files that FTP would require.

On most Linux and UNIX systems, mountd is responsible for handling mount
requests. Once an exported directory is mounted, the nfsd daemon is the
process that works with the kernel to ship the appropriate files across the
network to NFS clients.

Regardless of the flavor of UNIX or Linux, exporting files via NFS can be
dangerous. If you share files too liberally, an attacker might be able to
access data in an unauthorized fashion. Attackers frequently scan networks
looking for worldaccessible NFS exports to see if any sensitive data can be
read or altered. To prevent this type of attack, you should share only those
portions of your file system with an explicit business need for sharing,
export files only to hosts requiring access, and carefully assign permissions
to the shared files. NFS sharing across the Internet is especially dangerous,
and should be avoided. I much prefer to see someone use the secure copy
capabilities of SSH or an IPSec-based VPN, as described in Chapter 2.
Although not as transparent as NFS, such mechanisms are far more secure,
having strong authentication and encryption capabilities.

X Window System

The X Window System, known as X11 or even simply as X, provides the
underlying GUI on most Linux and UNIX systems. An X server controls the
screen, keyboard, and mouse, offering them up to various programs that
want to display images or gather input from users. One of the most
commonly used X programs is the X terminal, which implements a
command-line interface to run a command shell in a window on an X display.
Attackers can abuse X in a variety of ways. To prevent such attacks, you
should lock down your X displays using the xhost command or X magic
cookies, which limit who can connect to your display and see the data on
your screen. Going further, you can tunnel all X Window traffic across an
SSH session, giving you encryption and stronger authentication. Also, if your
machine does not require a GUI (such as a server with a dumb terminal as a
monitor or a box managed entirely via a Web-based administration tool),
delete the X Window software so an attacker cannot attack the system using
X.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

UNIX systems have been incredibly popular for more than three decades.
Linux is a UNIX-like operating system that has gained incredible popularity
in the last ten years. The power and integrated networking capabilities of
Linux and UNIX have certainly helped fuel the growth of the Internet. With
this great power and widespread use on the Internet, Linux and UNIX
systems are common targets of attackers. Furthermore, Linux and UNIX
have become an extremely popular platform from which to run attacks. An
attacker can build a powerful Linux or UNIX workstation on an inexpensive
PC and use it to attack all varieties of machines, including Windows, Linux,
UNIX, and various other platforms. With its power and capabilities, Linux
and UNIX are the platform of choice for many attackers.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

It is important to understand Linux and UNIX because they are so widely
used on servers and workstations today. Because of its flexibility, relatively
high performance, and power, many attackers also use it as a base from
which to launch attacks. Many flavors of Linux and UNIX are available today,
each with different features, programs, and controls.

Linux and UNIX are organized around their file system, with most of the
operating system designed around making as many entities on the system
look like directories and files as possible. The top of the UNIX file system is
the / directory, referred to as the "slash" directory. Under this directory, a
variety of other directories include all system information. Important
directories include /etc (which stores system configuration) as well as
/bin and /sbin, which store important system executables.

The kernel is the heart of Linux and UNIX operating systems, controlling all
interaction with hardware and between running programs. When a program
is executed, a process is created to contain its code, working memory, and
various threads of execution. Processes can be started in a variety of ways.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The init daemon starts processes during system boot-up. The inetd or xinetd
program listens for incoming network traffic and starts processes to handle
it. Cron starts processes at prespecified times. Manual user interaction also
can start processes. The ps command provides a list of running processes on
a system, and lsof provides a wealth of information with its list of all files
opened by all processes. Users and administrators can interact with
processes by sending them signals using the kill and killall commands.
The killall command must be used with care, because on Linux, it'll kill
processes with certain names, but on Solaris, killall shuts down the
system entirely.

Accounts are defined in the /etc/passwd file. On some Linux and UNIX
systems, the passwords are stored in /etc/shadow, a file that is readable
only by accounts with super-user privileges. Groups are defined in
/etc/groups. The root account has a UID of 0 and has full privileges on a
Linux or UNIX system. Other accounts can have a UID of 0, and they too will
have the same super-user privileges as the root account.

Read, write, and execute permissions are assigned to each file in rwxrwxrwx
format, where the first three characters refer to the file's owner, the second
set of three characters refers to the owner group, and the third set of three
characters applies to everyone on the machine with an account. The
permissions can be altered using the chmod command, with the desired
permissions provided in octal format.

The ls command shows the contents of a directory, with the –a option
showing all files (including those whose names start with a dot), whereas the
–l option shows the long form of the output, including the permissions
associated with each file or directory.

SetUID capabilities allow a user to run a program with the permissions of the
program's owner. Although essential for running a Linux or UNIX system,
Set-UID programs must be carefully guarded, as attackers frequently add or
alter them. Linux and UNIX trust relationships allow a user on one machine
to access a trusting system without providing a password. The UNIX
r-commands, including rsh, rlogin, and rcp are often used with trust
relationships and have major security weaknesses. These very weak services
should be avoided, with users and administrators relying on the far stronger
SSH tool for strongly authenticated, encrypted remote shell access.

Event logs are created by the syslog daemon, which stores most logs in
standard ASCII format. Accounting entries, such as who is currently logged
in and when each user last logged in, are stored in the utmp, wtmp, and

lastlog files.

Most Linux and UNIX systems are prepackaged with a large number of
network services active. Each of these services could have security risks.
Therefore, all network services should be deactivated, except those that
have an explicit business need on a machine.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 4. Windows NT/2000/XP/2003
Overview: Pretty Much Everything You Need to
Know about Windows to Follow the Rest of This
Book

Sure, the Almighty could create the world in six days. didn't have to deal
with any legacy infrastructure!

—A common lament from system developers trying to support backward
compatibility

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Introduction

It's about 3:30 Sunday morning, and you can't sleep. You wander out to the
living room and turn on the television, flipping through the channels looking
for something to watch in the hopes that it'll make you drowsy. As you skip
past the infomercials and the pundits discussing whatever pundits discuss
this early in the morning, you happen across an old black-and-white
Western. The movie has arrived at the critical scene: The legendary
gunslinger, who has sworn to give up his past for the woman he loves, has
been "called out" by some young upstart looking to make a name for
himself. Once again, over the fervent pleadings of his favorite gal, the
gunslinger is strapping on his shootin' irons and preparing to meet his
destiny on the dusty street at high noon.

Just like an Old West gunslinger, an operating system's "target-ability" is, in
essence, directly tied to its popularity and reputation. Like the hero of our
early-morning movie, if you're well known, there is always someone waiting
for you around the next corner who wants to prove something. If you
happen to be the most widely used operating system platform on the planet,
you've got a target painted on your back a mile wide.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

In the last chapter, we gave you a quick overview of Linux and UNIX and
told you that a working knowledge of their internals was necessary because
of their popularity as platforms on the Internet. Although Linux and UNIX
are indeed popular platforms, from the perspective of sheer numbers, the
operating systems from a little company in Redmond, Washington, truly
have no match. Love it or hate it, you cannot dispute that the number of
Microsoft Windows machines in use today is staggering. As of May 2005, it
was estimated that there are 390 million installations of Windows operating
systems worldwide, with over half of those being some form of Windows XP.
With such an overwhelming installed base, Windows operating systems are
an obvious target, and it is important that you have a working knowledge of
Windows to understand much of what we cover in the chapters to come.

In this chapter, we take a look at the different Windows operating systems
to see how security is structured and to analyze the specific security
mechanisms they offer. We start by discussing the history of the various
Windows NT core operating systems. Then, we turn our attention to
fundamental concepts, various architectural components, and security
options found in the different versions of these operating systems.
Additionally, we closely examine the latest versions of Windows (Windows
2000, XP, and Server 2003) to determine the changes that have occurred in
these newest releases of the Windows NT family and their impact on
security.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and
Effective Defenses

A Brief History of Time

Time, from a modern Windows security perspective, began in April 1993 with the first release of an operating
system based on the Windows NT ("New Technology") core. Although there were other Microsoft products
bearing the name "Windows" prior to that time, they simply cannot be discussed from security perspective
(setting aside the question of whether they could actually qualify as true operating systems) because they
lacked even the most fundamental aspects of security. Windows 3.0, 95, 98, and Me were seriously deficient
from a security perspective, lacking even the fundamental controls associated with isolating programs,
authenticating users, and logging events. Because of this, and their significant decrease in popularity today,
this book does not address these ancient Windows operating systems. We focus instead on so-called modern
Windows machines, starting with Windows NT and growing through Windows 2000, XP, and Server 2003.

Windows NT was based, in large part, on technical concepts pioneered by Digital Equipment Corporation (DEC)
in their VMS operating system. In August 1988, Microsoft hired David N. Cutler from DEC's recently canceled
next-generation operating system dubbed Mica, to head Redmond's development effort on an operating
system designed to challenge the UNIX domination of the server market. While at DEC, Cutler was the project
leader and one of the major architects of VMS, DEC's enterprise class operating system, and when he agreed
to come to work for Microsoft, he did so on the condition that he could bring approximately 20 former DEC
employees from the group developing Mica along with him. This group, made up almost exclusively of
programmers who developed VMS, was the core of the project team for what would become Windows NT.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Originally, the group was tasked with developing a successor operating system to OS/2 (Microsoft's joint
operating system venture with IBM), and indeed, their project was originally named OS/2 NT. With the
overwhelming success of the launch of Windows 3.0 in April 1990, Microsoft's vision for their UNIX-beating
operating system changed: OS/2 and IBM were out, and Windows NT was born. Along with this change,
however, came many of the "backward compatibility" issues that plague Windows operating systems even
today.

Backward compatibility is a term used to describe the ability of new and improved versions of a product to
continue to work with older, less capable versions. In the world of operating systems, this means being able to
run software designed for older operating systems, network with older operating systems, and read the
various storage methods used by older operating systems. As the quote at the beginning of this chapter
laments, time and again, the requirement for backward compatibility has caused design difficulties and
required that compromises be made that eventually weaken new products. As we delve into the security
aspects of Windows operating systems, we will find this theme is repeated time and again. However, as we
lament the security issues resulting from backward compatibility, we likewise complain when a vendor
(whether Microsoft or another) breaks backward compatibility for our favorite applications or features. So, the
vendors are damned if they do and damned if they don't from a backward compatibility perspective. It almost
makes you feel sorry for them ... almost.

Following the successful launch of Windows NT in 1993, Microsoft released Windows NT 3.1, then 3.5, 3.51,
and 4.0. After a major overhaul to the user interface and many delays, Microsoft released Windows 2000
(which is actually Windows NT 5.0) in February 2000, following up with Windows XP (could that be NT 5.1?)
in October 2001. Interestingly, in some of its internals, Windows XP actually refers to itself as Windows 2002.
Windows Server 2003 (which is, in essence, the server version of Windows XP) was released early in 2003
(thus, its name).

With the release of Windows XP ("eXPerience"), Microsoft finally managed to mend the self-imposed split in its
operating system lines. From 1993 until 2001, Microsoft marketed two distinct operating system families:
Operating systems that evolved from the original Windows 3.0 (Windows 3.1, Windows 95, 98, and Me) were
targeted toward the home desktop user, whereas Windows NT core operating systems (NT 3.1, 3.5, 3.51, 4.0,
and Windows 2000) were targeted toward the business, professional, and server market. Windows XP is an
offspring of Windows 2000, evolving from the earlier "professional grade" operating system with the addition
of many features aimed at the home user. Although this reintegration of Microsoft's products is a good thing
for the home user, giving them increased security and stability (in the form of reliable memory protection and
a security-aware file system), in many ways it introduced other backward compatibility issues that are only
now beginning to surface.

Whenever we speak generically of Windows, this chapter focuses on Windows XP, the most widely deployed
Windows version in history, except where other versions are explicitly mentioned.

The BAD (Before Active Directory) Old Days

With the advent of Windows 2000, Microsoft introduced a new method of organizing networks called Active
Directory services. With the birth of Active Directory, Microsoft dramatically shifted the security architecture
of its entire operating system line. Later in this chapter we examine Active Directory in detail,
need to touch on one aspect as an introduction to what follows. Active Directory is a kind of all-in-one service

that allows (or disallows) users and programs to find the "stuff" they need within the hodgepodge of
interconnected layers in the average modern organization. That "stuff" might be something as simple as
sending a document to the printer in the next cubicle, or something as complex as changing the password
policy for a group of 500 machines at a branch office in Singapore. What matters most, however, to the
discussion at hand is that Active Directory is designed to be used in two different ways. Active Directory can
be used in what is known as native mode, where all of the important machines on the network are running
Active Directory, as well as in mixed mode, where there is a mixture of both old (pre-Windows 2000) and new
machines running. Earlier, we described the average corporate environment as a "hodgepodge of
interconnected layers." Which way do you believe most Active Directory installations run? Because of the
realities of finances, software compatibility issues, and just plain inertia, most Active Directory installations
still run in mixed mode and carry with them many of the legacy issues of the older, pre-Windows 2000
systems. It is therefore important that you understand not only how Active Directory works, but also that you
understand what came before and how this backward compatibility affects even the most up-to-date
technologies. Additionally, many of the concepts central to Active Directory had their genesis in the
fundamental concepts first introduced by Microsoft when Windows NT was brand new.

Fundamental Concepts from BAD, or "This Stuff Still Matters, So Pay Attention"
Windows Domains: Grouping Machines Together

The concept of the Windows domain was central to Windows networking prior to the arrival of Active
Directory, and even though it is currently deprecated, it is still an important concept when discussing
Windows networking. A domain is simply a group of one or more networked Windows machines that share an
authentication database. An authentication database is a single collection of usernames and password
representations that allows a user with the correct credentials to access the resources within that domain. The
advantage for users is that they can log on to the domain to access resources and services on various
machines within the domain, rather than having to log on individually to each server.

The domain concept presupposes some sort of centralized controlling authority, and indeed, for a domain to
exist, you must have at least one special type of server called a domain controller. In a real-life setting,
however, domains usually have more than one domain controller. Although domain controllers serve
numerous purposes, their most important raison d'être is to authenticate users who are attempting to log on
to the domain.

The most important single server in a domain, the first one you install when you set up a domain, is called,
unsurprisingly, the Primary Domain Controller (PDC). The PDC keeps and updates the master copy of the
domain authentication database, which is sometimes called the SAM database, because it is stored in a file
that is named for the Security Accounts Manager, one of the subsystems in Windows. It contains all of the
information about user accounts, such as user IDs and password hashes. Prior to the advent of Active
Directory, PDCs were the sole guardians of the SAM database, and the other domain controllers on the
network behaved differently. These secondary domain controllers were called Backup Domain Controllers
(BDCs), and although they also contained a copy of this database, it was the PDC that updated and distributed
any changes over the network. If the PDC ever crashed or became dysfunctional, a system administrator
could temporarily promote a BDC to serve the function of a PDC until the PDC could be repaired and resume
its function.

Under Active Directory, all domain controllers are authoritative and so there is no longer a distinction
between primary and backup domain controllers—every one is a domain controller. Changes made to any
domain controller are propagated to all domain controllers. This is good news from a robustness perspective—
your domain is no longer reliant on a single point of failure. From a security perspective, however, it provides
an attacker with several high-value targets where before there was only one.

Domains can also provide a common mechanism to set many critical variables such as minimum password
length, password expiration, policies that restrict what users can do, and so forth, across an entire group of
systems. Often, small office or home networks will be configured as , an alternative to organizing servers into
domains. These configurations do not provide any common control mechanism. Worse yet, workgroups do not
support certain types of critical control mechanisms such as privilege control, which we discuss later in this
chapter. A workgroups is, in essence, a single, closed peer-to-peer file sharing system.

Shares: Accessing Resources Across the Network

From a user perspective, shares are the single most important functions of a Windows network, whether in a
workgroup, regular domain, or Active Directory environment. A is a connection (usually remote) to a
particular network device such as a hard drive. Shares are very similar in concept to Network File System
mounts in Linux and UNIX, although the underlying protocols and mechanisms differ significantly. Most often,
users connect to a share by using Windows Explorer's My Network Places category, then finding the icon with
the appropriate location and double-clicking it. Alternatively, users can use the command prompt to enter this
to mount a share:

C:\> net use \\[IP address or hostname]\[share name] [password] /user:[username]

Once they are connected to a share, users can access objects (e.g., files, directories, etc.), depending, of
course, on the particular permissions that apply to these objects. Shares are good from a user standpoint
because they provide a convenient and reasonably efficient way to reach objects across the network.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer
Attacks and Effective Defenses

The Underlying Windows Operating System Architecture

Figure 4.1 provides a high-level depiction of the current architecture of operating systems based
on the original Windows NT core (that is, Windows NT, 2000, XP, and 2003). Although there have
been some very significant changes to the functionality of Windows since NT was originally
released, with only a few exceptions, the overall architecture has remained the same. Like most
modern operating systems, Windows is designed as a series of layers, with each higher level layer
communicating only with the layers above and below it. This layered architecture is important
from a security perspective because it can be used to tightly control what is and is not allowed to
happen on a machine. Security issues are nearly always a result of some sort of compromise of
this layering.

Figure 4.1. A high-level depiction of the Windows NT core architecture.

[View full size image]

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Fundamentally, the Windows architecture is made up of two modes, user mode and kernel mode.
To understand what is happening behind the scenes in Windows, let's explore these two modes in
more detail.

User Mode

As its name implies, user mode includes those portions of the operating system that provide
support for user interaction. User mode's various parts, or subsystems, each play a different role
and provide different services to the end user. Because software running in user mode cannot
access the hardware of the system directly, user mode services act as a "go between" with kernel
mode (which can access hardware) through a strict set of communication guidelines known as
Application Program Interfaces (APIs). Within user mode itself, there is a split between two
different types of services: those offered natively within Windows itself, called Integral
subsystems and those offered in support of other operating systems, called Environment services.

Within the Environment services, there are several individual subsystems that each provide an
API that is specific to applications for a particular alternate operating system type. Natively,
Windows provides support for POSIX (a standardized, committee-driven UNIX-like environment),
OS/2 (that old IBM system we discussed earlier), and Win32 (named for the 32-bit address space
it includes for memory referencing) subsystems. One benefit of designing the Environment
services in this way is that it is possible to add support for applications for other operating
systems by simply writing a new subsystem and plugging it into the existing architecture.

The Integral subsystems are services that provide the APIs that Win32 applications call to
perform important operating system functions, such as creating windows on the screen and
opening files. Integral subsystem functions include process management (creating, tracking, and
terminating process threads), Virtual Memory Management (VMM) functions (allocating, sharing,
and protecting process memory), input and output (I/O) functions (to the network, printers,
drives, serial ports, parallel ports, etc.), and security functions including portions of Active

Directory. Applications running in user mode cannot place calls directly to the Win32 kernel
functions themselves, but rather, they interact through subsystem Dynamic Link Libraries (DLLs).
These subsystem DLL files translate the documented Win32 system API calls into undocumented
Windows system service calls into the kernel itself. In this way, these user mode subsystems are
tied into their kernel mode counterparts in the kernel Executive subsystem.

Security Functionality in User Mode: LSASS

Security-related functions are handled by the Security subsystem, also known as the Local
Security Authority Subsystem Service (LSASS), which plays a critical role in Windows security.
Simply put, this user mode subsystem determines whether logon attempts are valid. When a user
enters his or her username and password during the logon process, the Security subsystem sends
these entries to a facility called the SAM. The SAM has an authentication database, which we
discussed earlier, colloquially called (not surprisingly) the SAM database. Normally,
install of Windows, there are two password entries in the SAM database for every user account.

"Two password entries?" you might be thinking. "Why two?"

Remember our earlier admonition about the evils of backward compatibility? Get ready for a
prime example.

One entry in the SAM database is called the NT hash, which holds a cryptographic hash of the
password used for compatibility with Windows systems based on the NT core. The other entry
(called the LM password representation) contains a representation of the user's password for
purposes of backward compatibility with older or less sophisticated Microsoft products, such as
LanMan (that's where the LM comes from), Windows 95, 98, and Windows for Workgroups.

Therefore, by default, the SAM database contains two representations of each password (the LM
representation and the NT hash). Additional, optional entries can also be made after the NT hash.
Figure 4.2 provides an example of entries for four accounts in the SAM database.

Figure 4.2. Entries in the SAM database.

fredc:1011:3466C2B0487FE39A417EAF50CFAC29C3:80030E356D15FB1942772DCFD7DD3234:::
alfredof:1000:89D42A44E77140AAAAD3B435B51404EE:C5663434F963BE79C8FD99F535E7AAD8:::
willw:1012:DBC5E5CBA8028091B79AE2610DD89D4C:6B6E0FB2ED246885B98586C73B5BFB77:::
susan:1001:1C3A2B6D939A1021AAD3B435B51404EE:E24106942BF38BCF57A6A4B29016EFF6:::

Note that each line in Figure 4.2 consists of a set of entries: the account name, a unique number
identifying each user account known as the Relative ID, the LM password representation, the NT
hash, and several optional fields. Each of these fields is separated by a colon. Also, whereas UNIX
systems store their passwords in plain-text ASCII files, you won't be able to find a file on your
Windows system that contains lines like those in the entries just listed. On Windows, the SAM
database is actually stored in binary form. So where did those password lines come from? You can

use a specialized tool to extract the SAM database information into a readable form. By dumping
the password hashes in a format that can be read by certain password cracking programs,
network administrators can audit the strength of passwords chosen by their users. A program
that can be used to dump Windows passwords into a human-readable form is pwdump3.
Alternatively, the Cain password cracking tool we'll discuss in Chapter 7, Phase 3: Gaining Access
Using Application and Operating System Attacks, is capable of extracting this information from
the SAM database.

For more information about extracting
Windows password representations and
cracking them, please refer to the
Chapter 7 section titled "Retrieving the
Password Representations from
Windows."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

How Windows Password Representations Are
Derived

The LM and NT password representations for each account in Windows are
derived in two fundamentally different ways.

The LM representation is derived by adjusting passwords shorter than 15
characters in length to exactly 14 characters, by padding the password with
blank characters. In Windows 2000 and later, if a password is 15 or more
characters in length, no LM representation is stored for that password.
Instead, only the NT hash is created and stored in the SAM. But, for the vast
majority of passwords, which are less than 15 characters, an LM
representation is created. After padding, the resulting padded password
string is then divided into two equal parts, each seven characters in length.
One character of parity (needed for Data Encryption Standard [DES]
encryption) is added to each part, and each part is used as a key for DES
encryption of a hexadecimal number. The LM representation is incredibly
weak. Splitting the string into two seven-character parts to form the LM
representation allows an attacker to guess pieces of the password
independently of one another, speeding up the process of password cracking.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

It's a lot easier to guess two seven-character passwords than it is to guess
one 14-character password. To get a feel for why, suppose I told you I was
thinking of two numbers between one and 10 million (that's 107), which
might be the case if I used only numeric digits in my password (kind of a
dumb password restriction, but it helps make this point). Alternatively, what
if I told you I was thinking of a number between one and 100 trillion (i.e.,
1014)? Start guessing now. Clearly, you'll likely guess the two numbers less
than 10 million first, unless you were extremely lucky or cheating. That's
why the LM representation's splitting of the password into two pieces is so
weak from a security perspective. It's like they went out of their way to
design it to be weak.

Additionally, if a mixed-case password is used, as is often suggested as a
means of making passwords more difficult to guess, the LM representation is
calculated only all characters have been converted to uppercase,
dramatically decreasing the number of possible character combinations.
Thus, an attacker could guess any mixture of case for a target password and
still get access to the system even if the case is wrong (provided that the
letters, numbers, and special characters themselves are correct).

The NT password hashes are far stronger, but not unassailable. For the NT
representation of the password, the MD-4 (Message Digest, version 4)
hashing algorithm is used three times to produce a hash of the password.
Note that the LM representation is neither a hash nor an encrypted
password. It is really nothing more than an encrypted, fixed hexadecimal
number in which the password was used as a key. The NT representation, in
contrast, is a hashed password because a hashing algorithm was used to
derive it.

There is a flaw in the algorithms used to produce Windows password
representations, both of the LM and NT variety. The password
representations are not salted. Salting means that one of a large number of
permutations of the encryption algorithm is randomly chosen, then used to
craft the password representation. Salting makes password cracking via
dictionary-based tools much harder because these tools have to determine
the salt, and then apply it in the password generation algorithm. Because
Windows passwords are not salted, dictionary-based password crackers need
to try only one encryption or hashing for each candidate password, speeding
up the process of cracking considerably. UNIX systems use salts to make
password cracking far more difficult.

For details about cracking passwords
very quickly by taking advantage of
saltless Windows machines, refer to the

Chapter 7 section titled "Configuring
Cain."

As we said earlier, by default, Windows stores both the LM and NT password
representations for each user. Because the LM passwords are more easily
cracked, in situations where they are not necessary (on a network where
there are no Windows 95 or 98 machines, for instance), it is suggested that
they be disabled. This is possible only for Windows 2000, Windows XP, and
Windows 2003, and information on how it can be accomplished can be found
at

Just how much easier are LM passwords to crack than their NT counterparts?
All things being equal, an eight-character LM password representation is
about 890 times easier to crack than its NT hash counterparts should be,
and a 14-character LM representation is about 450 trillion times easier to
crack than its NT hash counterpart.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Kernel Mode

Although both user and kernel modes have built-in security, kernel mode,
which is reserved for fundamental operating system functionality (including
access to both memory and hardware), is the more secure of the two.
Several of the important subsystems within kernel mode are collectively
called the Executive subsystems. These include the Input/Output Manager,
Security Reference Monitor, Process Manager, Memory Manager, and
Graphics Driver Interface subsystems.

Of all the Executive subsystems, the Security Reference Monitor is the most
important from a security perspective, as you'd no doubt expect given its
none-too-subtle name. By checking and then approving or rejecting each
attempt to access kernel mode, the Security Reference Monitor serves as a
kind of "master guardian" of kernel mode. The Security Reference Monitor
also serves a parallel function for initial user- or program-based attempts to
access objects such as files and directories. It checks to make sure users and
programs have appropriate permissions before access is allowed. Finally, it
defines how audit settings translate into the actual capture of events by the
Event Log.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Much Windows functionality (including security-related functionality) is
predicated on the operation of the Object Manager, a critical subsystem that
manages information about objects within the system. Objects include files,

directories, named pipes,[1] devices such as printers, plotters, CD-ROMs,
and others. The Object Manager assigns an Object Identifier (OID) to each
object when the object is first created. This OID persists for the life of the
object and is used by the system to refer to the object. Whenever an object
is deleted (e.g., when a user drags the icon for a file to the Recycle Bin, then
empties it), the Object Manager deletes the OID for that object.

[1] Named pipes are mechanisms that enable network processes to access objects independently of
the objects' paths. In UNIX FIFOs (first in, first outs) are examples of named pipes.

Windows is, in a very limited sense, a type of object-oriented operating
system in that it allows for hierarchical relationships between some types of
objects. Folders (which are actually representations of directories) can
contain other folders as well as files, for example. The Object Manager is
aware of these relationships and their impact on the inheritance of
ownership, file, and directory permissions. Creating a file within a folder, for
example, will result in the ownership and permissions of the directory being
assigned by default to that file.

In addition to managing objects and security, the kernel also performs all of
the "normal" underlying operating system functions such as controlling the
scheduling of processes and input/output operations.

Finally, kernel mode also includes something called the Hardware
Abstraction Layer (HAL). This is a layer of software that is designed
specifically to deal with the underlying hardware, but in a high-level
manner. The actual specifics of dealing with the hardware at a low level are
left to numerous device drivers. This "chain of command" makes it far easier
for Windows to support a wide variety of hardware by requiring hardware
manufacturers to provide drivers that allow their products to work with
Windows. As Windows has evolved from NT to XP and 2003, problems with
substandard drivers have become a major headache. Because drivers run
deep within the heart of kernel mode, a buggy driver can easily crash the
whole operating system. With the advent of Windows XP, Microsoft began a
certification program for device drivers in an attempt to increase the
stability of the operating system as a whole.

The other main advantage of abstracting hardware access through the HAL is
that the original Windows NT supported several different types of hardware
platforms, including x86, MIPS, and ALPHA processors. Much of the "higher
level" functionality of the operating system was able to remain static over
these different hardware layers, while all the mucking about with different
architectures was being taken care of by a combination of the HAL and

appropriate device drivers. Unfortunately, as Windows has evolved, Microsoft
has discontinued support for all non-x86 hardware.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

From Service Packs and Hotfixes to Windows
Update and Beyond

As vulnerabilities are continuously discovered, every operating system
vendor releases upgrades and fixes for their product; Microsoft is by no
means the exception to this rule. Fixes and upgrades to Windows used to
come in two flavors—Service Packs (SPs) and hotfixes. Hotfixes deal with
one specific problem, whereas SPs are, in effect, a tightly bundled set of
fixes. One cannot, for example, choose to install all but one feature for a
given SP.

Although the designation of "Service Packs" still exists, as Microsoft
remarketed the NT core toward consumers, the term hotfix has fallen by the
wayside. Understanding that its new consumer market wasn't going to test
each and every new fix or function carefully, Microsoft initiated its Windows
Update service, and, with the advent of Service Pack 2 (SP2) for Windows
XP, made the activation of this feature nearly mandatory. Windows Update
essentially takes care of applying "patches" (the current parlance for hotfix)
automatically by default. Users can opt out of automatic patches, but most
consumers utilize the service.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Unlike SPs, individual patches are designed to address a very specific
problem such as a programming flaw that allows an attacker to crash
systems remotely or execute code of the attacker's choosing. Vast groups of
patches are incorporated in SPs, but not immediately. Usually, after a
reasonable amount of time has gone by since the previous SP was released
(e.g., six months to a year), the most recent sets of patches are rolled into
an SP and released.

In companies with a large deployed base of Windows machines, patching, no
matter how automated the process, can cause considerable pain and
suffering. In response to customer requests to make the update process
more predictable, in 2004, Microsoft began issuing all but the most critical
updates on a scheduled basis on the second Tuesday of every month (now
known in many Windows shops as Black Tuesday). Some Black Tuesdays are
quiet events, with a few routine fixes applied at a leisurely pace. Others
(quite a few, in fact) are intense onslaughts of work, requiring huge effort,
careful concentration, and thorough gnashing of teeth to test and apply the
fixes before the release of a seriously nasty worm.

Additionally, in response to criticism, Microsoft has upgraded the Windows
Update service to patch not only the operating system itself, but other
Microsoft products as well, such as Microsoft Office, as patches become
available. Also, if you are supporting a large number of Windows machines,
Microsoft has software available called Windows Server Update Services
(WSUS), which allows you to create, in essence, your own local Windows
Update server. With WSUS, enterprise administrators can download patches
from Microsoft to a centralized repository, test them carefully in a quality
assurance environment, and then push the fixes to all of their internal
Windows machines in a highly controlled fashion.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Accounts and Groups

Accounts and groups are central to the security of every operating system,
and Windows is no exception. Improperly set up accounts, inappropriate
group access, and related problems can provide easy avenues of access and
privilege escalation for attackers. This section explores security
considerations related to accounts and groups.

Accounts

In Windows there are two types of accounts: default accounts and accounts
that are created by administrators. Let's explore each type of account in
more detail.

Default Accounts

In a Windows domain (and on individual machines), two accounts,
Administrator and Guest, are automatically created when the first domain
controller is installed. The default Administrator account has the highest
level of privileges of any logon account, rather like the root account in UNIX.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

One interesting property of the default Administrator account is that it, by
default, cannot be locked out no matter how many bad passwords an

attacker guesses for this account.[2] Additionally, this account can never be
deleted, although it can be renamed. Also, it can be disabled only if another,
nondisabled account with administrator privileges exists. Although there are
undeniably logical reasons behind these restrictions on the Administrator
account, it is important that you know the restrictions exist. Creating more
than one Administrator account is therefore an essential step in hardening
any Windows system; if only the default account exists, unlimited password
guessing ("brute force") attacks against this account can occur. Creating one
user (unprivileged) account and one Administrator account for each
administrator is an even better security practice in that it allows for
individual accountability concerning administrator actions. Each
administrator should use his or her own unprivileged account for standard
system access and his or her own Administrator account only when super-
user privileges are required. Many sites attempt to use an alternative
method, a shared Administrator account, to limit the number of accounts
with Administrator privileges. This is a bad idea, because in such an
environment, although logs might record Administrator actions, one can
never be sure which person, using the single Administrator account, did
what. Of course, make sure all administrator-level accounts have difficult-to-
guess passwords, or else you'll be providing additional infiltration
possibilities for the bad guys.

[2] A utility in the Windows 2000 Resource Kit, Passprop.exe, enables the default Administrator
account to be locked when the criterion number of bad logon attempts is reached, provided that at
least one other, nondisabled account with Administrator privileges exists. Passprop.exe works only
when logon attempts are remote, not local. The Windows 2000 version of Passprop.exe works both
under Windows 2000 and Windows XP. Also note that this difficult-to-locate file is found in the
netmgmt.cab file in the Windows 2000 Resource Kit.

The second default account is the Guest account. If enabled, this account can
provide an easy target for attackers. Anyone can log on to an active Guest
account, and although the Guest account itself is very limited in the types of
actions that it can perform, its existence reduces the challenge for an
attacker from breaking in to privilege escalation. Fortunately, in all modern
versions of Windows, the Guest account is disabled by default. Also, like the
default Administrator account, the Guest account cannot be deleted, but
again it can be renamed. For security reasons, you should definitely leave
the Guest account disabled.

Other Accounts

Additional accounts, such as user accounts or accounts for specific services
or applications, can be created by administrators as needed. Many
applications also create their own, single-purpose accounts during

installation. Although the default Administrator and Guest accounts
described in the previous section have many restrictions, any additional
accounts can be disabled or deleted without these restrictions.

Securing Accounts: Some Strategies

A few relatively simple measures can go a long way in securing accounts.
First, and most important, rename the default Administrator account to a
neutral name such as "extra." You could even use a fictitious username. The
idea here is to help make this account less visible to potential attackers (of
course, an attacker can quickly determine the name of an administrator
account by scanning the system with a vulnerability scanner). Remember, if
you change the name of the Administrator account, it is a good idea to
change the account description. Otherwise, someone who is able to read the
description for this account will probably notice the phrase, "Built-in account
for administering the computer or domain," and be wise to your name
change. (Don't laugh, we've seen it happen.) Any additional accounts with
Administrator privileges should also be given names that do not advertise
their super-user capabilities.

To see how an attacker can use a
vulnerability scanner to grab
information about a target system,
refer to the Chapter 6 section titled
"Vulnerability-Scanning Tools."

Another sound measure is to create an additional nonprivileged account with
the name Administrator to act as a decoy account. Attackers might go after
this account, which should have a difficult-to-guess password and extremely
limited access privileges. With such a bogus Administrator account, it is
possible to examine event logs to determine whether someone is trying to
attack the Administrator account, possibly triggering a more detailed
investigation.

As described earlier, leaving the default Guest account disabled is a very
important step in securing Windows. Following the "belt suspenders"
principle, applying a difficult-to-guess password to the Guest account just in
case someone re-enables it (either purposely or by accident) is also a good
idea.

Groups

In most Windows deployments, groups are used to control access and
privileges, not individual user accounts. Why? If there are a relatively small
number of users within a domain, a user-by-user access control scheme
could certainly be employed. However, a user-by-user scheme becomes
incredibly unwieldy when the number of users becomes bigger than, say, 50
or 60. Most Windows domains have considerably more than 50 or 60 users,
often ranging into the hundreds or many thousands. Assigning privileges to
such large numbers of users individually is difficult if not impossible. By
aggregating users into groups, administrators can more easily manage
privileges and permissions. This exact rationale applies to Linux and UNIX
groups.

Prior to Windows 2000 and Active Directory, there were only two types of
groups available: global groups and local groups (with the advent of
Windows 2000, we now have new rules and new groups, which we discuss in
more detail when we talk about Active Directory). Membership in a global
group doesn't directly provide any access to any resources because only local
groups can grant resource access, and only on the server or workstation on
which they have been created. In Windows, the way that users normally
obtain access to resources is through being included in global groups that
are then included in local groups. When a global group is included in a local
group, the list of accounts that have access to the local resources is now
made up of both the list of accounts in the local group the list of accounts in
the global group. Note that global groups cannot be included in global
groups, nor can local groups be included in local groups.

Why do things this way? Because by including the global group in several
local groups, an administrator can change access to the resources on
numerous local machines by making changes to the global group (say, when
a new hire is added) without having to make configuration changes to the
individual local machines. (Read through it again; it really make sense.)

Default Groups

A number of default groups are created when the first domain controller is
installed. Some of these are local groups, whereas others are global. These
groups are listed in Table 4.1. Most of the groups have self-explanatory
names, with the exception of the Replicator group, which controls the
Windows replicator function used in fault-tolerant installations, and the
Power Users group, which can perform any task except those reserved for
Administrators (i.e., functions that could directly affect the operating system
or risk security).

Table 4.1. Default Windows Groups

Local Groups Global Groups

Administrators
(Local)

Domain
Administrators

Account Operators Domain Users

Power Users[a]

Server Operators

Backup Operators

Print Operators

Replicator

Users

Guests

[a] Available only in Windows 2000 and later.

Beyond these default groups, there are also special groups intended for
controlling certain types of system functionality. You cannot add or delete
users from special groups; that's why they're special. You can, however,
change the rights and privileges for these groups (often with disastrous
consequences—be careful!). These groups are always internal to any
particular host and are thus local groups. The EVERYONE group is one of
these special local groups. It is really intended for providing access to certain

objects by unprivileged system processes, although it can be used to assign
access to just about anything.

SYSTEM is the "holy grail" special group—nothing in Windows has a higher
level of privileges than SYSTEM. However, SYSTEM is a logon ID; no one can
log on to a machine as a part of the SYSTEM group. Only various local
processes run with SYSTEM privileges, and it is by compromising one of
these processes that an attacker can gain SYSTEM privileges and completely
"own" a machine. Using a buffer overflow or related exploit, as we discuss in
Chapter 7, an attacker can target a SYSTEM-level process and get a remote
command shell with SYSTEM privileges.

Other special groups include INTERACTIVE (a volatile group consisting of
current users who are logged on locally) and NETWORK (another volatile
group consisting of users who have network logon sessions). There is a final
special group with the confusing name CREATOR OWNER, which contains the
owner of a given object, even if the owner has not created the object.

Other Groups

Additional global and local groups can be created and deleted as necessary.
As described previously, access to resources is normally granted by including
users in global groups, then including these global groups in local groups on
various servers throughout a domain. Each group can be assigned needed
levels of privileges and access by adding the appropriate rights and access
permissions to the group definition.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Privilege Control

In Windows, the capacity to access and manipulate things, collectively
known as privileges, is broken down into two areas: and . Rights are things
users can do. Rights can be added to or revoked from user accounts and
groups (with a few exceptions). Abilities, on the other hand, cannot be added
or revoked at all; they are built-in capabilities of the various groups that
cannot be altered. The previously discussed default groups all come with
their own particular set of rights and abilities.

As far as privileges of logged-on users go, Administrator privileges are the
highest level for any logon ID in Windows, acting somewhat like the root
account in Linux and UNIX. Users in the various Operators groups get bits
and pieces of Administrator privileges, although if you add up all the
privileges of all Operator groups, they do not add up to the full set of
Administrator privileges. Account Operators can administer nonprivileged
accounts. Server Operators can tune servers, set up shares, and so forth. As
you might expect, Backup Operators can make backups. Print Operators can
perform tasks such as setting up print shares and installing and maintaining
print drivers.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

After Administrator privileges, Power User privileges are the next highest
privilege level, followed by User-level privileges and then Guest privileges.
Of course, any "made up," nondefault group can be assigned rights (but not
abilities) as desired.

Special or advanced rights control internal functions within Windows
systems. An example is "Act as Part of the Operating System." This enables
whoever has this right to reach subsystems and components within kernel
mode directly, potentially altering the system in fundamental ways and
accessing all kinds of information that should always be protected.

As with everything in Windows, there are a few quirks when it comes to
rights assignment. To view these rights, as shown in Figure 4.3, you can run
the security policy management console, by going to Start Run ... and
typing secpol.msc. Browse to Security Settings Local Policies User
Rights Assignment. When you access a domain controller and give a right to
a user, that right applies to all domain controllers in the domain. However,
this is not true on servers or workstations in the domain. Therefore, it is
important to carefully plan how rights will be assigned to avoid the dreaded
runaway escalation of rights. Additionally, because abilities cannot be
assigned or revoked, sometimes it is not possible to create exactly the
"custom" group that has the types of privileges that you want.

Figure 4.3. User rights assignment.

[View full size image]

As always, the venerable principle of least privilege dictates that only the
rights needed to do one's job are assigned to each group or user. Putting this

privilege into practice is one of the most fundamental steps in making
Windows (or any other operating system, for that matter) more secure. You
should avoid assigning special or advanced rights except when absolutely
necessary, given the incredible power and significance associated with these
rights.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Policies

In Windows, a system administrator can implement a variety of policies that
affect security. Each policy is a collection of configuration settings that can
be applied either to the local machine or to the domain as a whole. Using
these settings, system administrators can create restrictive policies that can
elevate security. If they are installed on a domain controller, policy settings
can, among other things, restrict the particular programs that users or
groups can access. Let's explore some of the policy options offered by
Windows in more detail.

Account Policy

The most basic type of policy in Windows is the Account Policy, which applies
to all accounts within a given domain. Establishing appropriate Account
Policy settings can thus tighten Windows security considerably, although
some of these settings are more useful than others.

The particular Account Policy settings used should depend on each
organization's security policy and requirements. As shown in Figure 4.4,

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Account Policy parameters include keeping a history of used passwords to
prevent reuse, requiring a maximum password age and a minimum password
age, setting a minimum password length, and enforcing complexity of
passwords. Account Lockout Policy parameters as shown in Figure 4.5
include lockout duration, lockout threshold (i.e., lockout after X bad logon
attempts), and control over how accounts are reset after lockout.

Figure 4.4. Account policies: Passwords.

[View full size image]

The Reset Account Lockout value goes hand-in-hand with the Lockout
Duration. Five bad logons in eight hours means that someone could have
four bad logons in seven hours and 59 minutes, but the account won't be
locked. And one successful logon after anything less than five bad logons will
clear the count (i.e., as if no bad logon had ever occurred). In general, it is
prudent to set the lockout duration to be fairly high (perhaps in domains
with sensitive information even to "Forever") to prevent an attacker from
trying a few password guesses, then waiting, then trying a few more, then
waiting, without the account ever being permanently locked. Such a
configuration will force users with locked out accounts to call a help desk or
system administrator to request manual unlocking, a reasonable
requirement for highly sensitive environments, but a costly alternative in
terms of human resources in less-sensitive organizations.

Figure 4.5. Account policies: Account lockout.

[View full size image]

User Properties Settings

Although User Properties are not properly called "policies" in Windows, they
serve virtually the same function for security. They are similar in principle to
Account Policy settings, except that they can be set differently for every user
account. You can look at local user properties by invoking the local user
manager Microsoft control, going to Start Run... and typing
lusrmgr.msc. The name lusrmgr stands for Local User Manager, but, given
the lusr spelling, it is often pronounced "loser manager." Within this GUI,
click Users, and then right-click on any account to view its properties. As
shown in Figure 4.6, User Property settings include User Must Change
Password at Next Logon, User Cannot Change Password, Password Never
Expires, and Account Disabled. Some of these settings (e.g., User Must
Change Password at Next Logon, which keeps system administrators from
being aware of user passwords, and Account Disabled, which helps protect
dormant accounts) can be very useful for security in many operational
settings. Others, such as User Cannot Change Password, are likely to create
more work on the part of system administrators than they are worth.
Password Never Expires is hardly good for security, yet it might be a
necessary setting for accounts created by applications and through which
they log on or through which updated software is installed. Changing
passwords in these cases could cause an application or installation failure.

Figure 4.6. User Properties settings are configured for each user.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Trust

Trust in Windows extends the single-domain logon model to other domains,
which can be a real convenience for users who need access to resources
within those domains. Users within the trusted domain can simply double-
click the name of a drive to connect to these resources on the trusting
domain. No additional entry of a username and password is required once
users have been authenticated to their own domain if a trust relationship
between the domains exists.

If set up properly, Windows domain-based trust relationships can be
relatively secure because system administrators have control over the exact
level of access that trust affords. After configuring trust on both the trusted
and trusting machines, trusted access cannot actually occur until at least
one global group in a trusted domain is included in at least one local group
in a trusting domain. Members of the global group obtain only the level of
privileges and access that the local group does. Someone who is worried
about possible runaway access or privileges due to trust relationships can
always reduce the level of privileges and access in the local group to the
point where trust does not really make very much difference at all.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

There are four possible trust models that can be implemented in Windows,
as follows:

This is not really a trust model per se; it is simply a "no trust" model. No
trust is the most secure, but it is also the most inconvenient for users,
because they cannot easily access other domains.

This model means that every domain trusts every other domain. It is the
worst for security because it involves helter-skelter trust that goes
everywhere, implementing a kind of "peer-to-peer" trust. This model
should be avoided altogether if possible. It allows an attacker who
breaks into one trusted domain to gain access quickly to the trusting
domains.

This model is well suited to security because user accounts are set up in
a central accounts domain where they can be carefully managed, while
resources (such as files, shares, printers, and such) are placed in
resource domains. Users obtain access to resources in resource domains
via trust relationships. This gives a kind of central control capability for
mapping users (through groups) to resources.

This model is similar to the master domain model, except that user
accounts are distributed among two or more account domains. Although
the multiple master domain model involves less central control over user
accounts than the master domain model, it still is far superior to the
complete trust model.

Windows trust, because it is based on a challenge-response mechanism (and
on Kerberos authentication under Active Directory—more on this later) is by
default fundamentally more secure than trust in many other operating
systems. In particular, Windows trust is not based on the incredibly weak IP
address scheme that Linux and UNIX r-commands utilize, a problem for
UNIX we discuss in detail in Chapter 8, Phase 3: Gaining Access Using
Network Attacks.

Despite these strengths of the Windows trust relationships, it is still
important to observe some basic principles if trust is to be as secure as
possible. First, there are some operational contexts that require such high
levels of security that trust should be avoided altogether. Also, you should
periodically check trust relationships to determine which ones exist, because
attackers might create unauthorized trust relationships as backdoor
mechanisms. Also, this periodic audit of trust relationships will give you a
chance to decide if a specific trust relationship is still necessary from a
business perspective and disable those that have outlived their usefulness.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Auditing

Windows offers three types of logging: System logging, Security logging
(also sometimes simply called auditing), and Application logging. Security
logging is configurable and yields at least a moderate amount of data about
events such as logons and logoffs, file and object access, user and group
management, use of user rights, and so forth.

By default, detailed auditing is disabled under all Windows operating systems
(and is completely unavailable with Windows XP Home Edition). Although it
can easily be enabled through the Audit Policy in the Security Settings
Manager (the secpol.msc tool) choosing exactly what to audit is a more
challenging task. In Windows NT there are seven audit event categories:
Logons/Logoffs; File and Object Access; Use of User Rights; User and Group
Management; Security Policy Changes; Restart, Shutdown, and System; and
Process Tracking. As shown in Figure 4.7, under the newer Windows
versions (2000 and XP Professional) there are nine audit event categories:
Account Logon Events, Account Management Events, Directory Service
Access, Logon Events, Object Access, Policy Changes, Privilege Use, Process
Tracking, and System Events. Deciding not only which event categories to

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

audit, but also whether to capture successes, failures, or both for each event
category constitute a further level of complication.

Figure 4.7. Audit policy settings within the Security Settings
Manager.

[View full size image]

Unfortunately for system administrators and security personnel, standard
Windows Security logging misses some very basic types of data (e.g., source
IP addresses of packets on the network, whether a system reinstallation has
occurred, and other kinds of data). Because of these limitations, many
organizations employ third-party commercial logging tools on sensitive
Windows systems.

Turning on Logon/Logoff Success and Failure on all servers (but not
workstations) provides a reasonable baseline of logging capability. This level
of logging enables system and security administrators to answer some basic
questions and do some kinds of simple tracing if an incident occurs. If more
auditing is necessary, balancing costs versus benefits is imperative. Too
much auditing can cripple system performance and fill up hard drives or
overwrite older data too quickly. Of all event categories, Object Access takes
the worst toll on system performance, but gives the most detailed view of
what an attacker or aberrant user does.

To see how an attacker can alter the
event logs on a Windows system,

please refer to the Chapter 11 section
titled "Attacking Event Logs in
Windows."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Object Access Control and Permissions

A number of built-in mechanisms control access to objects such as files and
printers in Windows. Let's look at these control mechanisms in more detail.

Ownership

In Windows, every object has an owner (called the CREATOR OWNER). Even
if permissions deny the owner access to an object, the owner can always
change these permissions, and then do anything with it (e.g., read, write,
delete, etc.). In Windows, ownership of an object means everything.

NTFS and Its Permissions

Windows supports a variety of file systems, most notably the old File
Allocation Table (FAT) file systems for backward compatibility with older
versions of Windows, and the newer NTFS file system for increased
robustness and security. It is very important to remember this: FAT
partitions offer access control and should always be avoided in situations
that require any degree of security. This is the single most important reason
why all of the operating systems that evolved from the original Windows line

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

(Windows 95, 98, and Me) cannot be considered secure: They were all based
on a file system that offered no access control.

NTFS, originally included in Windows NT and then carried forward into
Windows 2000, XP, and 2003, is a more sophisticated file system that was
designed to provide good performance while delivering recoverability in case
something goes wrong during a write to media. It offers a 64-bit addressing
scheme, a 255-character naming convention, a Master File Table that keeps
a record of stored files, and, most important from a security perspective, it
has a reasonably granular set of access permissions.

If you come from a background other than Windows, the sheer number and
types of permissions within NTFS is bewildering. Compared to other file
systems, NTFS offers a more sophisticated range of choices with respect to
access control. NTFS, although not perfect, is in fact one of the most
effective parts of security for modern Windows systems.

Standard NTFS permissions that can be applied to file or directories include
the following:

which is pretty intuitive; the user cannot read, write, alter, execute, or
interact with the object in any way.

which really gives read and execute capabilities to a user for an object.
Remember, the standard Read permission includes the ability to execute.

which gives a user read, execute, write, and delete capabilities for an
object.

which includes everything in Change plus the ability to change
permissions and Take Ownership of an object. Taking ownership allows a
person with this permission to become the CREATOR OWNER of an
object such as a file, directory, or printer.

These standard permissions are really just combinations of more granular
permission capabilities offered by Windows, or predefined permission sets, if
you will. Beyond these four standard sets, more fine-grained special
permissions include No Access, Read (i.e., true Read—Read only, but not
Execute), Execute, Write, Delete, Change Permissions, and Take Ownership.
In most cases, users base access control on the standard permission sets,
and not on the special permissions. However, for very specific access control
needs, the more granular special permissions are helpful.

Boosting File and Directory Security

Following several simple, practical steps can help in achieving better object

access security in Windows. If you need to give someone a great deal of
access to a particular object or set of objects, it is not necessary to give
them Full Control. Remember, Full Control allows someone to take
ownership of an object, and if you own an object in Windows you can change
all permissions or even destroy the object. It is a wise strategy to be very
stingy with Full Control permissions.

Speaking of taking ownership, it is especially important to be careful when
granting the Take Ownership right. It is always best to use the principle of
least privileges when assigning access permissions—allow only the level of
access that each user needs to do his or her job-related responsibilities and
nothing more. Being as stingy as possible in assigning not only Full Control,
but also Change (which also allows someone to Delete) and Change
Permissions (which allows someone to change other users' and groups'
permissions) is in accordance with this principle.

Finally, it is important to limit the kinds of access the EVERYONE group gets.
Using the EVERYONE group for the purpose of granting access to every user
is absolutely not a good idea. You need to remember that by default, the
EVERYONE group even includes unknown users and guests. If you need to
grant additional rights to all users, then use Authenticated Users (who have
valid, authenticated logons) or Domain Users as a universal group instead of
EVERYONE.

Share Permissions

Beyond individual object permissions, Windows also allows users to configure
the permissions on the various components of the file system that they
intend to share with others. On a shared folder, a user can right-click and
select Properties to view these details on the Sharing tab. As shown in
Figure 4.8, share permissions include Read, Change, and Full Control.
Whether or not remote access is possible to a share depends on both the
NTFS the share permissions, which work together in accordance with a least
access rule. For any particular user's access to an object, whatever is the
least access between the cumulative NTFS permissions and the share
permissions for a particular object is the type of access that the user gets.
So if, for example, object X has NTFS permissions for a user set to Read and
the share permissions for that same user are set to Full Control, the user
will only have Read access when connecting to the share.

Figure 4.8. Windows XP share permissions: Local access.

[View full size image]

Users with the Logon Locally right can log on while at the physical console of
a server or workstation where they have that right. Keep in mind that local
logons are a potential security problem; to a local user, resources within a
local server are protected only by NTFS permissions, not share permissions
as stated earlier. The user is sitting at the console (or logged in using a
remote GUI control tool, like VNC), and not logging in across the network to
access shares, so the share permissions do not apply. Worse still, if the
partition where the share is located is not an NTFS partition (i.e., a FAT
partition), all bets are off and the user has full access.

Weak Default Permissions and Hardening Guides

Even if a partition uses NTFS, many of the Windows default permissions for
system directories and files can charitably be described as "faulty." For
example, the default permissions for the \Windows (or \winnt on older
systems) directory allow Modify, Read & Execute, List Folder Contents, Read,
and Write to Power Users. Leaving this default would allow such users to
read or completely replace the repair directory, which is created to hold
backup information needed to repair the system in the event of a
catastrophic problem. The repair directory (\Windows\repair on Windows
XP) holds several security-related files and other important information. A
spare copy of the SAM database is included in the repair directory, which can
be stolen somewhat easily if these default permissions are left in place. The
SAM database file can then be fed into a password-cracking tool, as
described in Chapter 7, at the attacker's leisure. Additionally, the default
permission for the \Windows\system32 directory in Windows XP also
grants widespread access to Power Users. With this default, an attacker
could cause havoc with any number of critical system files by compromising
an account in the Power Users group.

The topic of system hardening is so broad that entire books have been
written on the subject, so it is certainly beyond the scope of this book to
attempt to deliver an in-depth "how-to" guide for hardening a system.
Locking down a system is something that can only be done by someone who
has both a good understanding of what the system itself needs to do as well
as an understanding of the consequences that the various changes made to
the system will have. System hardening is a difficult task, and if anyone tells
you differently, they're trying to sell something. Some good starting points
for finding system hardening "how-to" guides are the Center for Internet
Security (), the SANS Institute () or the Information Security Forum ().

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Network Security

So far, this chapter has concentrated on system-related considerations for
security. Because nearly all useful Windows systems are connected to a
network, we must explore in more detail the security implications of
Windows networking. A number of basic network security mechanisms are
built into Windows. For example, in Windows NT, the basic authentication
package supports a challenge-response mechanism that not only helps guard
against bogus clients being able to authenticate to a domain controller, but
also helps keep clear-text passwords from going across networks. In
Windows 2000 and beyond, Kerberos, a protocol that provides strong
network authentication, is used to identify users.

To see how an attacker can capture a
Windows challenge and response from
the network and conduct a password
cracking attack against them, please
refer to the Chapter 7 section titled

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

"Using Cain's Integrated Sniffer."

To see how an attacker undermines a
VPN that uses static Windows
passwords for authentication, please
refer to the Chapter 12 section titled
"Scenario 2: Death of a Telecommuter."

Limitations in Basic Network Protocols and APIs

Unfortunately, despite the presence of numerous features and capabilities
designed to boost network security, the Windows network environment is
based on a large number of protocols and APIs, each with its own particular
security-related limitations.

SMB/CIFS

Share access is based on an implementation of the Server Message Block
(SMB) protocol that Microsoft calls the Common Internet File System (CIFS;
note the interesting use of the words Common and Internet in a Microsoft
product!). All current versions of the Windows operating system are capable
of encapsulating SMB/CIFS in TCP.

Unfortunately, this protocol sets up a session between the client and server
that has weak authentication mechanisms by default, as well as loopholes in
backward compatibility mechanisms. These weaknesses can allow a bogus
client to connect to a share, an attacker to conduct a person-in-the-middle
attack between a legitimate client and the server, a malicious user to
"tailgate" into a share session that appears to have ended, and so on.
Additionally, by default, Windows systems also allow null sessions, remote
SMB sessions set up independently of any username or password entry. Null
sessions can be used to extract an enormous amount of information from a
Windows system using tools such as Jordan Ritter's "enum" and
WinFingerprint, written by Vacuum.

NetBEUI and NetBIOS

The SMB/CIFS implementation isn't the only security-related network
problem in Windows, however. The older (and now deprecated) Windows
network environment is based on many protocols such as Network Basic
Extended User Interface (NetBEUI) and APIs such as Network Basic
Input/Output System (NetBIOS) that have long outlived their usefulness in

today's world of networking. The potential for exploitation, both in terms of
creating denial-of-service attacks and gaining unauthorized access to
resources, is high. Luckily, with the advent of current Windows versions, the
NetBEUI protocol isn't installed by default.

For a discussion of a vulnerability-
scanning tool that checks for
weaknesses in the configuration of
Windows networking, including SMB,
NetBEUI, NetBIOS, null sessions, and
others, please refer to the Chapter 6
section titled "Nessus."

Microsoft's Internet Information Service (IIS)

Windows supports a large number of network services. Most notable from a
security perspective is Microsoft's Internet Information Service (IIS), the
built-in Web server that comes with Windows servers. IIS uses a virtual
directory system in which each virtual directory accessible through the Web
interface refers to an actual directory on the Web server's file system. In
IIS, features such as IP address-based filtering of connections and logging
can be enabled for additional security. Over the years, a large number of
security problems have been discovered with the IIS Web server, making it a
popular target for attacks. One might go so far as to say that attackers love
to target IIS, given its historic security vulnerabilities and the slowness with
which security patches are applied by system administrators. Therefore,
actively applying every IIS patch is essential to maintaining a secure IIS
environment. Of course, you needn't even deploy the IIS Web server; other
Web servers, such as the free open source Apache and the commercial Zeus
Web servers, are popular alternatives in the Windows arena. However, each
Web server has its own particular set of security-related weaknesses.

For a description of a scanning tool that
can help find vulnerable materials on an
IIS server and other Web servers,
please refer to the Chapter 6 section
titled "Nikto: A CGI Scanner That's
Good at IDS Evasion."

Just as with scanning for weak network
configurations, an attacker can use the
vulnerability-scanning tool Nessus to
detect numerous security weaknesses
in IIS, as described in the Chapter 6
section titled "Nessus."

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Windows 2000 and Beyond: Welcome to the New
Millennium

The first portion of this chapter served as a grounding in the basic
functionality of Windows networking. As we went along, we attempted to
differentiate, at several points, where older Windows-NT-based security and
networking differed from Microsoft's more current offerings. Despite what
the pundits might say, Windows NT, with all of its quirks and issues, isn't
dead yet, and like any evolving technology, understanding where we are
now depends a great deal on understanding where we've been. This axiom is
especially true in Windows, with its careful adherence to backward
compatibility.

So now that we have a basic grounding in the security and networking basics
of Windows in general, let's turn our attention to the specifics of the more
recent editions of Windows, namely Windows 2000, XP, and Server 2003. As
we said at the beginning of this chapter, Windows 2000 is really just
Windows NT 5.0.

Despite its new name, many of the underlying functionality, protocols, and

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

mechanisms are the same as in Windows NT 4.0. Windows XP is the
evolutionary offspring of Windows 2000, with the addition of many features
aimed at home users. At the same time, however, these new versions of
Windows, in many ways, represent a big leap forward in terms of
functionality, including many new, security-related options. This portion of
this chapter explores some of the major security-related considerations of
the current versions of Windows. To avoid awkwardness in nomenclature in
referring to these multiple post-NT operating systems, we refer to these
newer versions of Windows as Windows 2000+.

What Windows 2000+ Has to Offer

Windows 2000+ offers a multitude of features and represents a huge
increase in the growth of operating system size, resource consumption, and
complexity we've witnessed in this decade. Some of the spiffier features of
Windows 2000+ include the following:

Power management

Built-in terminal services

The Microsoft Management Console

The Microsoft Recovery Console

Plug-and-Play (sometimes derisively called Plug-and-Pray)

Although these general features are potentially very interesting, Microsoft
has added gobs of new security-specific features to Windows 2000+ that are
of more interest to us, including the following:

A Microsoft implementation of Kerberos, a protocol that provides strong
network authentication to identify users.

The SSPI, a package that supports a variety of different authentication
mechanisms.

Microsoft's implementation of Internet Protocol Security (IPSec), which
extends IP to provide system authentication, packet integrity checks,
and confidentiality services at the network level, as described in Chapter
2.

The Layer Two Tunneling Protocol (L2TP), which provides encrypted
network transmissions, helping protect the privacy of the contents of
traffic.

Active Directory, the Windows 2000+ directory services that act as the

central nervous system of all Windows 2000+ functionality, including all
security-related capabilities.

An architecture that provides strong support for smart cards, allowing
them to be used in authentication, certificate issuance, and other
contexts.

The Encrypting File System (EFS), which provides for encryption of
stored files, helping protect the contents from unauthorized access.

Native versus Mixed Mode

Modern Windows servers can run in two modes: native mode and mixed
mode. In native mode, all domain controllers run Windows 2000 or newer
operating systems. In mixed mode, the environment includes both current
and older Windows NT domain controllers. To support this backward
compatibility, mixed mode results in the same security features and
weaknesses as in the Windows NT 4.0 domains that we described in the first
part of this chapter. Native mode is better for security, not only because it
precludes having to deal with the many weaknesses inherent in legacy
Windows NT networks, but also because it allows users to take better
advantage of the more current Windows security features. Because all of the
security issues discussed so far in this chapter apply to mixed mode, the
remainder of this chapter discusses considerations relevant only to native
mode.

Deemphasizing Domains

Although domains remain important in Windows 2000+, they are less
important than in Windows NT. As Windows networks began to evolve,
administrators found that domains, in many respects, got in the way of users
and functionality by serving as a boundary between network resources and
services (and also the ability to locate them). Worse yet, Windows NT
browsing services were at best flimsy mechanisms that expended enormous
amounts of bandwidth and processing power simply to maintain the
information that allowed users to locate network hosts, resources, and
services. In Windows 2000+, domains play a secondary role to a set of
services that far supersede those of the old Windows NT browser services,
namely the Windows 2000+ directory services, known as Active Directory.
At the beginning of this chapter, we hinted at some of the improved
functionality that Active Directory had to offer. By fundamentally changing
the way that networks are organized and deemphasizing domains, Active
Directory actually simplified the mechanisms for finding network resources
and administering them.

A domain in Windows 2000+ isn't so much about network organization as it

is about a common set of policy settings. The actual structure of a network
has a more naturalistic flavor. For the nature lovers out there, domains can
be deployed in either a tree or forest structure. A tree is a linking of
domains via trust in a manner that results in a continuous namespace to
support locating resources more easily using Active Directory. This means
that as one starts at the topmost domain (or root domain) in the tree
structure and goes down, the domain name of the domain immediately
below starts with the name of the parent domain immediately above, as
shown in Figure 4.9. Alternatively, a forest produces a noncontiguous
namespace by cross-linking domains via trust. In a forest, there is no
structured namespace, and consequently, resource location again becomes a
difficult proposition.

Figure 4.9. Depiction of a Windows Active Directory tree.

As we stated earlier in this chapter, in what is perhaps its greatest deviation
from its predecessors, Windows 2000+ does not have any PDCs or BDCs.
Windows 2000+ domain controllers are authoritative; they can enter and
then propagate changes (e.g., user password changes) to all other domain
controllers. As we said earlier, this is a good-news, bad-news situation: The
good news is that Windows 2000 is not as reliant on one server as was
Windows NT with its PDC. The bad news is that if an attacker breaks into any
one domain controller, the results are potentially catastrophic to the domain
and possibly to an entire tree or forest, as the attacker can alter user
account information or gain access across the entire network. Because each
of the domain controllers is an equally high-value target, it is imperative
that they all be hardened and monitored for potential problems.

Active Directory: Putting All Your Eggs in One Huge Basket

Based on the Lightweight Directory Access Protocol (LDAP), Active Directory
services take a lot of the sting out of finding where resources and services
reside on the network, a major advantage to both users and programs in
today's far-flung network environments. Active Directory is, in fact, the most
important single addition to Windows 2000+. And, as far as security goes,

nothing in Windows 2000+ is as important as Active Directory.

Active Directory is a kind of all-in-one service. Using DNS, Active Directory
disseminates appropriate information to other hosts. Active Directory's
health depends on whether DNS is running properly. Dynamic DNS (DDNS)
provides Active Directory with dynamic updates, such as when a new site (a
host or set of hosts running Active Directory) connects to the network.
Active Directory not only helps users and programs find resources and
services, but it also serves as a massive data repository, storing information
about accounts, organizational units (OUs), security policies, files,
directories, printers, services, domains, inheritance rules, and Active
Directory itself (whew!). It stores user password hashes in a file named
ntds.nit. Attackers can use tools to extract these password
representations and recover user passwords using standard Windows
password cracking tools.

For more information about how an
attacker uses Cain, Pwdump3, and
other techniques for grabbing password
representations on Windows 2000+
systems, please refer to the Chapter 7
section titled "Cain and Abel: Cracking
Windows (and Other) Passwords with a
Beautiful GUI."

Security Considerations in Windows 2000+

With the great increase in complexity represented in Windows 2000+,
careful configuration is more important now than ever. Thus, we now
explore the security issues associated with several of the features offered by
Windows 2000+.

Protecting Active Directory

Think of all the ways a perpetrator might try to attack Active Directory.
Privilege escalation provides the best opportunity. Because administrators
can do virtually anything to Active Directory, if too many people have full
Administrator privileges, the likelihood of an attacker breaking into an
account with Administrator-level privileges increases considerably. Setting
appropriate permissions on Active Directory objects is also extremely critical.
In mixed mode, attackers can also obtain access to Active Directory

information via trusted access from an older, more vulnerable Windows NT
domain. Attackers might be able to use a compromised user account from a
legacy Windows NT server to gain access to Active Directory and exploit the
entire network.

Installing Active Directory in the main \Windows or \winnt directory of
your server is a good idea as far as security is concerned. It puts Active
Directory on the same partition as the boot sector, system files, and the
ever-dangerous IIS (which is automatically installed in Windows 2000 and is
installed by default on Server 2003). Active Directory, furthermore, has very
large disk space requirements and can create significant I/O overhead at
times; it thus deserves its own partition. A good way (at least for security)
to divide partitions on servers, therefore, is as follows:

C: Boot and system files

D: Active Directory

E: User files and applications

Physical Security Considerations

Physical security is always important, whether you're running the latest
Server 2003 machine, or an ancient Windows 98 desktop (Heaven help you
... it's time to upgrade, my friend!). An attacker who can physically access a
system can simply steal the hard drive or otherwise manipulate the raw bits
on it. In Windows 2000+, the Kerberos authentication service in particular
requires strong physical security. One of the easiest ways to compromise
Kerberos is to physically access a Kerberos server (called a Key Distribution
Center [KDC]) to gain access to Kerberos credentials (tickets) that reside
therein. Physical security in clients is also an important security
consideration. Kerberos credentials are, for example, stored in workstation
caches. Ensuring that workstations have at least a baseline level of security
is thus a sound move for security. Microsoft offers several applications to
assess the security posture of both servers and workstations. One such tool,
the Microsoft Baseline Security Analyzer (MBSA), available at , can assist
administrators in assessing their servers and workstations for security
issues.

Finally, it is important to remember that anyone with physical access to a
Windows server or workstation can potentially use a Linux boot disk to gain
unauthorized access to any file.

A description of how an attacker with

physical access could use a Linux boot
disk to retrieve or alter passwords is
described in the Chapter 7 section titled
"Retrieving the Password
Representations from Windows."

Templates

The Windows 2000+ Security Configuration Tools include templates and
wizards that can be used in securing just about everything that is important
to security in Windows 2000+. In addition to manipulating security settings
via the GUI, the command-line tool secedit can be used to analyze or
configure the security of the machine. A successful Windows 2000+ security
strategy will almost inevitably call for the use of templates because they
take a lot of the work out of setting the myriad security-related parameters
appropriately. By default, nine templates (stored in
\%systemroot%\security\templates) are available to set the
security of various system types (workstation or domain controller) to Highly
Secure, Secure, or Compatibility. These templates contain prepackaged,
Microsoft-recommended settings for various environments. Beyond these
common Microsoft templates, custom templates can also easily be developed
and deployed. The Center for Internet Security has formulated several
security templates for Windows NT, 2000, XP, and 2003 systems, based on a
consensus of security needs for dozens of organizations. These free
templates are available at

Architecture: Some Refinements over Windows NT

The Windows 2000+ architecture, like Windows NT, is divided into user
mode and kernel mode. Kernel mode in Windows 2000+ includes some
additional components, including the Plug and Play Manager, Power
Manager, and Window Manager, among other components.

Accounts and Groups

As in Windows NT, securing accounts and groups is fundamental in the effort
to secure Windows 2000+ systems. Default accounts in Windows 2000+
include Administrator and Guest, the latter of which is disabled by default.
The same steps used in securing accounts in Windows NT also apply to
Windows 2000+.

The default groups in Windows 2000+ are almost identical to the default
groups in Windows NT. One of the most significant changes is the addition of

the Power Users group, a privileged group (although not as powerful as
Administrators) built into Windows NT workstations, that is now a default
group in Windows 2000+ client and server platforms. Although it is possible
to edit the access available to this group, taking away access from Power
Users is likely to result in application breakage and other problems. This
constitutes a potential problem in securing Windows 2000+ systems.

Windows 2000+ includes three kinds of security groups: domain local (for
access to resources only within the same local domain), global (which can
only be assigned access to resources in the domain where they are defined),
and universal (which can contain users and groups from every domain within
any forest, thus cutting across domain and tree boundaries). Global groups
can be included in domain local groups. In a native mode domain, global
groups can even be made members of other global groups, unlike in
standard Windows NT.

Organizational Units (OUs)

OUs in Windows 2000+ allow hierarchical arrangement of groups of users
who can inherit properties and rights within a domain. They are very
flexible, and can be used to control a number of security-related properties
such as privileges.

OUs constitute a potentially big advantage in Windows 2000+ because they
support delegation of privileges. Each OU can be assigned a particular level
of privileges. Children OUs below the parent can never be given more rights
than the parent has. This provides an excellent scheme for rights
management, particularly in helping ensure that "runaway privileges" are
not a problem within any domain. Note that in Figure 4.10, the root OU has
two children OUs below it. The root domain's rights will always be greater
than or equal to the rights assigned to these second-tier OUs.

Figure 4.10. Depiction of OUs within a domain.

There are, however, several downsides to OUs. In particular, OUs are not
recognized outside the particular domain in which they have been created.
Additionally, for all practical purposes, three levels of OUs should be the

maximum; too many levels interfere with system performance.

Privilege Control

Windows 2000+ includes many significant alterations to the way privileges
are handled. We next analyze some of the changes to privilege control in
Windows 2000+.

The Nature of Rights in Windows 2000+

As shown in Figure 4.11, rights in Windows 2000+ include Change System
Time, Debug Programs, Log On Locally, Replace a Process Level Token, and
many others. They are considerably more granular than in Windows NT.
Furthermore, Windows 2000+ (in contrast to Windows NT) has built-in
"abilities," something that further interfered with privilege granularity in
Windows NT. Another big change is inheritance of rights, as mentioned
earlier. There is also no distinction between standard and special rights in
Windows 2000+, but rather more or less just a big set of rights, some of
which are extremely powerful, others of which are not.

Figure 4.11. Rights in Windows 2000+.

[View full size image]

There are usually multiple ways to set up a rights assignment scheme in
Windows 2000+. Suppose someone needs only to create and delete
accounts. One way to achieve that would be to include that person's account
in the Account Operator group. Alternatively, the appropriate rights can be
assigned directly to the individual user. OUs, however, potentially provide
the most suitable way to assign rights because delegation of rights is
possible. The administrator could create a special OU that is assigned
sufficient rights to do this function. Remember, each lower-tier OU receives
the same set as or a lesser set of rights than the parent OU, thereby helping
guard against runaway rights.

RunAs

RunAs provides the ability to launch processes with a different user context.
As shown in Figure 4.12, someone who has already logged on to one account
can use a command line to bring up the RunAs command. The major
advantage is to allow privileged users to execute programs in a
nonprivileged context, thereby helping to control against the dangers of
privilege escalation. This capability is therefore roughly analogous to the
UNIX sudo application.

Figure 4.12. The RunAs command in Windows 2000+.

[View full size image]

In addition to the command-line RunAs tool, Windows 2000+ also sports a
GUI-based RunAs. Simply holding down the Shift key and right-clicking an
executable program displays a little menu showing the RunAs option. The
user can then select the appropriate account from a list of users, or type in a
username to run the program as.

Policies
Group Policy Objects

The major change in Windows 2000+ policies is the introduction of Group
Policy Objects (GPOs). GPOs allow different policies (e.g., password policies,
IPSec policies, Kerberos policies, etc.) to be applied to different users, OUs,
computers, or even entire domains. The point here is that GPOs offer
incredible granularity and flexibility. To look at Group Policy settings for a
local system, go to Start Run... and type mmc to bring up the Microsoft
Management Console screen. Then, go to Console Add/Remove Snap-in
and click Add. Choose Group Policy, click Add, and then click Finish when
you see the Local Computer GPO. You can now expand the GPO for the local
machine to see all of the possible settings for the computer and for users, as
shown in Figure 4.13. Enormous numbers of options can be configured at a
tiny granularity or across huge user bases, ranging from the desktop
appearance to configuration options in Microsoft Internet Explorer. Also,
because they are built into Windows 2000+ itself instead of being some kind
of add-on, these policies are more difficult to defeat or bypass.

Figure 4.13. Browsing the local GPO.

[View full size image]

Other Policies

GPOs are only one way to set policies; many other types of policies can also
be individually set (as opposed to making them part of a GPO) in Windows
2000+. For example, there are Local Security Policies (such as the Password
and Lockout Policies, similar to the Account Policies in Windows NT),
Registry-based policies, and others. They can also be set and changed via a

variety of methods, including the Microsoft Management Console, templates,
and others.

Windows 2000+ Trust

Windows 2000+ trust is based on Kerberos. Windows NT trust, in contrast, is
based on a Microsoft-specific challenge-response mechanism. Another big
difference between the Windows 2000+ trust model and Windows NT trust is
that once you plug a domain into a tree or forest, that domain automatically
trusts all other domains and is trusted by all other domains within that tree
or forest.

Additionally, trust can occur outside of the context of trees and forests. Any
domain can potentially trust any other domain. Obviously, if such a trust
model is not structured properly (through carefully designed trees or forests
as well as use of the principle of least privileges), trust can present many
serious problems in Windows 2000+ operating systems. An attacker gaining
privileged access in one domain could easily attack other domains in the
same tree or forest. Runaway trust relationships should be avoided at all
cost. In an environment with runaway trust, so many domains trust each
other that system administrators often do not really know why trust exists
or what the consequences of that trust might be. Another potential hazard is
"orphan domains," domains that were used at one time, but fell into disuse
because of a business mode change. These unused domains (and the trust
relationships that go with them) are often forgotten or ignored by system
administrators, but, because they are part of the known network, they are
trusted by other domains within a tree or forest. Attackers like to go after
orphan domains, because their neglected state makes them more
vulnerable, while offering access through trust to other domains.

Auditing

The Windows 2000+ Event Logger produces the same basic kinds of log
output as in Windows NT. The main differences are that the Security Log
now has nine (Account Logon Events, Account Management, Directory
Service Access, Logon Events, Object Access, Policy Change, Privilege Use,
Process Tracking, and System Events) instead of seven event categories.
Additionally, the Windows 2000+ Event Logger captures a wider range of
events within each category.

Object Access Control

Now we look into the Windows 2000+ object access control scheme, which
applies to files, directories, and shares. This scheme is very similar to the
one found in Windows NT, although it has been extended with additional
capabilities.

NTFS-5

The most important change in Windows 2000 and later as far as object
access control goes is the switch from the older NTFS-4 to the more
sophisticated NTFS-5. Running at least SP 5 on older Windows NT machines
ensures at least some level of compatibility between these two different
versions of the file system. The standard permissions that can be assigned to
files in NTFS-5 include the following:

Full Control

Modify

Read and Execute

Read

Write

Just as in Windows NT, these standard permissions sets are actually
combinations of more finely grained, special permissions. Individual
permissions in NTFS-5 include (brace yourself!) the following:

Traverse Folder/Execute File

List Folder/Read Data

Read Attributes

Read Extended Attributes (which include compression and encryption)

Create Files/Write Data

Create Folders/Append Data

Write Attributes

Write Extended Attributes

Read Permissions

Change Permissions

Delete Subfolders and Files

Delete

Take Ownership

Synchronize (i.e., make the contents of one file identical with the
contents of another)

The combined permissions sets are far easier to manage than the individual
permissions, but they are less granular.

The Encrypting File System (EFS)

Windows 2000+ offers users the ability to store files transparently that have
been encrypted for information security purposes. EFS automatically and
transparently encrypts any stored files using DES encryption in Windows
2000. Windows 2003 and XP SP1 and later support DES, 3DES, and the
even stronger AES algorithm. Although EFS potentially provides a
reasonably strong mechanism for protecting the secrecy of stored files,
several inherent limitations diminish its value. EFS does not encrypt files
that are transmitted over the network. The fact that EFS only works if there
is one, and only one, user per file is also a significant limitation.
Furthermore, EFS does slow system performance somewhat. Still, if your
laptop ever gets stolen, you'll rest a little more easily if your files are
encrypted. However, if you use EFS, it's really important to get a backup of
your encryption key on a USB token or CD-ROM. Otherwise, if your key gets
corrupted, you'll lose your protected data entirely, likely the most valuable
data you have (otherwise, you wouldn't have encrypted it!). For directions
on how to back up this crucial crypto key, check out Microsoft's Web site at

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

This chapter has provided a look at Windows NT, 2000, XP, and Server 2003
security. It should now be apparent that securing these environments is
anything but a simple matter. Windows provides a target-rich environment
for attackers. Security in legacy Windows NT installations is particularly
difficult because so many default settings are weak from a security
perspective, and also because of the many older protocols and backward
compatibility mechanisms that have little if any built-in security. Windows
2000+ operating systems represent a definite improvement as far as
security goes; the major challenge in securing these new operating systems
is their sheer complexity. Both Windows NT and Windows 2000+ can be
made considerably more secure, but quite a bit of effort is required to do so.

Now that we have a basic understanding of TCP/IP networking, Linux/UNIX,
and Windows, we turn our attention to the heart of this book: a step-by-step
description of how attackers undermine the security of our computer
systems.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

Microsoft's Windows operating system is very popular as a target for
attackers. As of this writing, the most widely deployed version is Windows
XP, but within the server arena, Windows 2003, Windows 2000, and even
Windows NT still have a strong representation.

Domains are used to group Windows machines together with a shared
authentication database. Within a domain, users can authenticate to a
domain controller and access objects (directories, files, etc.) in the domain.
The PDC holds and maintains the main authentication database for the
domain, called the SAM database. BDCs contain copies of this database, but
cannot update it. In native mode Windows 2000+ networks, the concept of
PDCs and BDCs has been eliminated and all domain controllers are
authoritative.

Microsoft releases fixes for Windows in the form of SPs and monthly patches.
Patches apply to a specific problem, whereas SPs are more general updates
of the system.

The Windows NT core architecture is divided into user mode and kernel

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

mode. User mode supports user interaction, including subsystems to verify
whether logon attempts are valid.

The SAM database contains representations of each user's password. In
many installations, two types of password representations are stored: the LM
password representation and the NT hash. The LM representation is very
weak and is included for backward compatibility with Windows for
Workgroups and Windows 95 and 98 systems. The NT hash is far more
secure, and is used to authenticate users with Windows NT and 2000+
systems. Neither the LM representation nor the NT hashes are salted,
making them easier to crack.

Kernel mode includes the Security Reference Monitor, which enforces access
control on objects when users or programs try to access them. The Security
Reference Monitor compares the permissions assigned to an object with the
characteristics of the user or program trying to access it to determine
whether access should be allowed or denied.

Windows supports accounts for users, services, and applications. Several
default accounts are included, such as the Administrator account and the
Guest account. The Administrator account is analogous to the root account
in UNIX, and is often given another name. The Guest account is disabled by
default across all versions of Windows.

Groups are used to aggregate users to simplify the assignment of privileges
and permissions. Global groups can allow access to any resource in a
domain, whereas local groups allow access on a particular server or
workstation. Global groups can be included in local groups to allow users
across a domain to access local resources on a single machine. In Windows
NT, local groups cannot be included in global groups, nor can global groups
be included in other global groups.

Windows also includes certain special groups. In particular, the EVERYONE
group includes all users and processes, even unknown users and guests.

To manipulate the configuration of the system or access various settings,
users and groups can be given various rights. Whereas rights can be
assigned and revoked, abilities are inherent to various predefined groups
and therefore cannot be changed.

Administrators can configure Windows domains to trust other domains,
giving users transparent access to resources across domain boundaries.
Windows trust is not transitive. Also, Windows trust does not rely solely on
IP addresses for authentication, unlike UNIX trust relationships implemented
with the r-commands.

Windows supports logging system, security, and application events.

Every object has an owner, called the CREATER OWNER. The NTFS file
system offers access control capabilities on individual objects. Standard
NTFS permissions include No Access, Read, Change, and Full Control. These
standard permissions are combinations of more granular permissions. The
older FAT file system, although still supported, does not offer any type of
access control.

In addition to the individual directory and file permissions, Windows shares
can have their own sets of permissions. These permissions settings include
Read, Change, and Full Control. When both share permissions and NTFS
permissions are present for a given file or directory, a user accessing the
share will be given the more restrictive access of the two. However, when a
user accesses the file or directory by logging in locally at the system console,
only NTFS permissions apply (not share permissions).

Windows network security is based on a variety of options and protocols.
Among these, the basic authentication protocol supports a challenge-
response mechanism that does not require clear-text transmission of
passwords. Windows networking also supports packet filtering and network-
level encryption using Microsoft's implementation of the Point-to-Point
Tunneling Protocol (PPTP).

Older Windows NT networking utilizes the SMB, NetBEUI, and NetBIOS
protocols, each of which has a variety of common configuration errors and
vulnerabilities.

Microsoft's IIS offers Web and FTP servers within the Windows environment.
Numerous security vulnerabilities have been discovered in the IIS Web
server, making it a popular target for attackers.

Windows 2000/XP and Windows 2003 Server offer numerous new features.
From a security perspective, the biggest changes are Kerberos, the SSPI,
IPSec, Active Directory, smart card support, and EFS.

Windows 2000+ can be deployed in two modes. In native mode
environments, only Windows 2000+ servers are deployed. In mixed mode,
both Windows NT and Windows 2000 servers are included in the
environment. Mixed mode environments include all Windows NT security
features and their associated vulnerabilities.

Domains are less important in Windows 2000+, because Active Directory is
the primary mechanism for interaction between systems. Domains can be
deployed in tree or forest structures. Trees have a continuous namespace,
and are ordered as a top-down hierarchy. Forests involve cross-linking

domains and do not have continuous namespace.

Active Directory helps users and programs find resources and services. It
also acts as a massive database storing information about accounts, OUs,
security policies, password representations, and so on.

The Windows 2000+ Security Configuration Tools provide a graphical
interface for viewing and configuring security options throughout Windows
2000+. The command-line tool secedit provides similar functions.
Windows 2000+ also offers prepackaged and customizable templates for
security configuration.

Windows 2000+ adds the Power Users group by default.

Windows 2000+ supports three types of security groups: domain local,
global, and universal. Additionally, OUs allow for the hierarchical
arrangements of groups, and the delegation of privileges. OUs are only
recognized in the domain in which they were created.

Rights in Windows 2000+ are more granular than in Windows NT. Unlike
Windows NT, there are no immutable "abilities" assigned to groups. Instead,
a big set of individual rights can be assigned to users, groups, or OUs. The
Windows 2000+ RunAs command allows a user to execute a command in the
context of another user. GPOs in Windows 2000+ allow different policies to
be applied to different users, OUs, computers, or domains.

Windows 2000+ trust is based on Kerberos. By adding a domain into a tree
or forest, that domain automatically trusts and is trusted by all other
domains in the tree or forest. Therefore, it is important to guard against
runaway trust and orphaned domains.

Auditing in Windows 2000+ is very similar to auditing in Windows NT, but
with more event categories available to log.

NTFS-5 is the file system used by default in Windows 2000+. The successor
to the Windows NT NTFS-4 file system, NTFS-5 offers a dizzying array of
more granular individual permissions. These granular permissions are
lumped together in a smaller series of combined permissions for files (Full
Control, Modify, Read and Execute, Read, and Write).

EFS encrypts local files for access by one user. Based on the DES encryption
algorithm (although 3DES and AES are available for Windows 2003 and XP
SP1 and later), EFS does not encrypt files that are transmitted across the
network. Back up your EFS keys to a USB token or CD-ROM, or you'll be
courting trouble, losing your protected files if your key gets corrupted.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 5. Phase 1: Reconnaissance

When launching an attack, the most effective attackers do their homework
to discover as much about their target as possible. Whereas an
inexperienced script kiddie might jump in unprepared, indiscriminately
trolling the Internet for weak systems without regard to who owns them,
more experienced attackers take their time and conduct detailed
reconnaissance missions before launching a single attack packet against a
target network.

To understand why reconnaissance (also known as "recon" for short) is so
important to the attacker's trade, think about attacks in the plain old real
world for a minute. Before bandits rob a bank, they typically visit the
particular branch they are targeting, record the times that security guards
enter and leave, and observe the location of security cameras. They might
also try to determine the alarm system vendor, and perhaps investigate the
vault manufacturer. Even a novice bandit might use the phone book to find
the address of the bank and a map of the city to plan a getaway route.

Just like bank robbers, many computer attackers first investigate their target
using publicly available information. By conducting determined, methodical
reconnaissance, attackers can determine how best to mount their assaults
successfully. Unlike some of the other attacks described in the rest of this
book, a lot of this recon activity is not terribly deep technically. However,
don't dismiss it! If you think, "That recon stuff isn't very useful because it's
not technically elegant," you are a fool. A solid attacker recognizes the
immense value of all kinds of recon before attacking a target. Whenever our
penetration testing team embarks on a new project, we always schedule at
least a day, and sometimes several days, of comprehensive recon work
before firing up our scanning tools.

In this chapter, we explore a variety of reconnaissance techniques, including
low-technology reconnaissance, Web searches, whois database analysis,
Domain Name System (DNS) interrogation, and a variety of other
techniques.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Low-Technology Reconnaissance: Social
Engineering, Caller ID Spoofing, Physical Break-
In, and Dumpster Diving

Without even touching a computer, an attacker might be able to gain very
sensitive information about an organization. With low-tech recon, a
determined attacker can potentially learn passwords, gain access to detailed
network architecture maps and system documentation, and even snag highly
confidential information from under the nose of system administrators and
security personnel. Neither high-tech nor sexy, these techniques can be very
effective when used by an experienced attacker.

Social Engineering

What if I told you about a brand-new computer attack methodology that
slices through all of our greatest defensive policies, procedures, and
technologies? It bypasses perfectly configured firewalls, defeats superstrong
crypto, and evades even the most finely tuned Intrusion Prevention System
(IPS) tools. It allows a bad guy to compromise a target completely, owning
the machine in every way possible. It costs an attacker almost nothing, yet,

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

in the proper hands, this ultrapowerful attack tool is almost always
successful. It's not a zero-day buffer overflow, a superfunctional bot, or a
tricked-out kernel-mode rootkit. It's not really brand new either. No, it's just
old-fashioned social engineering. By exploiting the weaknesses of the human
element of our information systems, skilled attackers can achieve their goals
without even touching a keyboard.

In its most widely practiced form, social engineering involves an attacker
calling employees at the target organization on the phone and duping them
into revealing sensitive information. The most frustrating aspect of social
engineering attacks for security professionals is that they are nearly always
successful. By pretending to be another employee, a customer, or a supplier,
the attacker attempts to manipulate the target person to divulge some of the
organization's secrets. Social engineering is deception, pure and simple. The
techniques used by social engineers are often associated with computer
attacks, most likely because of the fancy term "social engineering" applied to
the techniques when used in computer intrusions. However, scam artists,
private investigators, law enforcement, and—heaven help us—even
determined sales people employ virtually the same techniques every single
day.

When conducting a social engineering assault, the attacker first develops a
pretext for the phone call, a detailed scenario to dupe the victim. This
pretext usually includes the role the attacker will assume (such as a new
employee, administrative assistant, manager, or system administrator), and
the purported reason for the call (such as getting an appropriate contact
name and number, a sensitive document, or possibly an existing password or
new account). Using this basic pretext, the best social engineers improvise,
acting their way through the telephone call using techniques that might earn
them an Academy Award if they were in the movie business.

Although there are an infinite number of pretexts, several of social
engineering's "greatest hits" are

A new employee calls the help desk trying to figure out how to perform a
particular task on the computer.

An angry manager calls a lower level employee because a password has
suddenly stopped working.

A system administrator calls an employee to fix an account on the
system, which requires using a password.

An employee in the field has lost some important information and calls
another employee to get the remote access phone number.

Using a pretext, the attacker contacts an organization's employees and
attempts to build their trust with friendly banter. The most effective social
engineering attackers establish an emotional link with the target individual
by being very friendly, yet realistic. Generally speaking, most people want to
be helpful to others (and some people get paid to provide helpful service), so
if a friendly voice calls asking for information, most employees will be more
than happy to help out.

Although some social engineers look for the quick hit and try to retrieve the
sensitive information briskly, others spend weeks or even months building
the trust of one or more people in the target organization. In investigations
that I've been involved with, I've observed that a female voice on the phone
is more likely than a male voice to gain trust in a social engineering attack,
although attackers of either gender can be remarkably effective. Attackers
try to learn and mimic the informal lingo used by an organization to help
establish trust. After gaining the trust of the target individual, the attacker
casually asks for the sensitive information, just by working the request into
the normal conversational pattern used while building trust.

Although some attackers are both technical experts and exceptional social
engineers, most do not have both skill sets. Therefore, the more elite
attackers often pool their expertise to maximize their effectiveness. The
expert social engineer gathers information, which is then used by the expert
technical attacker to gain access.

For several dozen additional social engineering pretexts, as well as some
very entertaining reading, I recommend that you check out Kevin Mitnick's
book (Wiley, 2002).

In-House Voice Mailboxes and Spoofing Caller ID to Foster
Social Engineering

A good way to establish almost instant credibility in some organizations is to
have a phone number within the organization. When we conduct social
engineering attacks professionally as part of a penetration test, we often try
to trick someone into giving us control of a voice mailbox at the target
organization. After thoroughly researching the target organization, we pose
as a new employee and call individuals there to ask them for the phone
number of the computer help desk. We then call the help desk and ask them
for the number of the voice mail administrator. Finally, we call the voice
mail administrator, often posing as a new employee or an administrator, and
request voice mail service. Sometimes, we are successful, establishing a
number and voice mailbox on the target network. We can then contact other
employees, leaving them voice mail asking for sensitive information or
password resets. In the message we leave for these employees, we tell them

to respond to our in-house voice mailbox, leaving a message with the
requested data. Users often blindly trust anyone who has an account on the
internal voice mail system.

Alternatively, an attacker could place a phone call with a faked caller ID
number. Again, most people blindly trust the calling phone number that
flashes on their telephone set. They must think, "If the phone company sent
it to me, it must be true." Hardly. Caller ID numbers can be spoofed (that is,
altered to a value of the attacker's choosing) in several ways.

The simplest way to spoof caller ID involves using a caller ID spoofing
service. Several Internet-based companies allow their customers to place
phone calls to a given number, sending a caller ID number of the attacker's
choosing. As of this writing, Star38 () and Telespoof () are two such
organizations that sell their services to law enforcement agencies and
investigators, and Camophone () is targeted to the general public. For each
service, the user who wants to spoof caller ID accesses the Web page for the
service. The user types three phone numbers into a Web form: a number to
call (the intended recipient's phone number), a phone number where the
user can receive a call, and a number of the user's choosing that will be sent
as caller ID information to the recipient's phone. The caller ID number can
be anything the attacker wants, such as a real phone number associated
with the target organization, a phone number of a government agency, or a
bogus number like 2345678901 or 0031337000. The user could even send a

caller ID number that is the same as the destination number![1] To
recipients, such calls would look like they are calling themselves.

[1] In fact, several researchers discovered an interesting anomaly with cell phone voice mail. Using a
caller ID spoofing service, these researchers called cell phones from certain providers and passed the
same caller ID number as the destination cell phone number. They'd then be dropped into the voice
mailbox of that cell phone, without having to provide the voice mail passcode. The cell phone voice
mail system just figures that the cell phone customer is calling to check voice mail from his or her
own phone, and therefore does not authenticate the user! That's chilling. As of this writing, this cell
phone voice mail authentication bypass can only be "fixed" by the customer changing the voice mail
configuration to always require a passcode, regardless of where the call originates.

The service then performs the following actions. First, it calls the destination
number and sends it the caller ID specified by the user. Next, it calls the
service user's phone number. Finally, it bridges together those two calls, so
that the user can hear the ringing of the destination number, wait for
someone to answer, and begin a dialogue.

All of this can be yours for 25 cents per minute (with a $175 set-up fee) for
the Star38 service, 10 cents per minute (with a $25 application fee) for
Telespoof, or a measly 5 cents per minute (with no set-up fee) for
Camophone. Camophone, the user interface of which is shown in Figure 5.1,
even lets you pay with credit card, a Paypal account, or money order.

Figure 5.1. The Camophone user interface: It's not pretty, but it sure
is simple and very functional.

[View full size image]

What's to deter an attacker from using such services? For Star38 and
Telespoof, somewhat detailed subscription information is required to create
an account. For Camophone, however, no such detailed registration is
needed, other than a simple Paypal account. Thus, the only things limiting
such attacks are the following:

Your own users' mistrust of caller ID instilled through solid security
awareness programs, which we discuss in more detail at the end of this
section

The potential attacker's conscience, if it exists

Laws dealing with prosecuting fraudsters, who dupe users by making
illegitimate claims about their identity or services

Beyond these particular services, there are even more ways to spoof caller
ID. Many users have discovered that they can use Voice over IP (VoIP)
services to make calls and alter their caller ID information. By reconfiguring
their VoIP equipment—especially using highly configurable, free VoIP Private
Branch eXchanges (PBXs) like Marc Spencer's Asterisk for Linux, OpenBSD,
and Mac OS X—users can send any caller ID numbers they choose. The
specific procedure for altering the caller ID number depends on both the

VoIP equipment and the VoIP service provider, as you'd no doubt suspect.

Finally, the phone companies themselves sell special telecommunications
services for businesses that feature interfaces allowing a business to send
arbitrary caller ID information. Although expensive (ranging upwards of
several hundred dollars or more per month), a Primary Rate Interface (PRI)
ISDN line supports setting caller ID numbers for outbound calls. Phone
companies designed PRI interfaces so that a company's internal voice
switches, that is, their PBXs, could interface with the phone network.
Because the phone network accepts caller ID information from PBXs,
attackers sometime use their own PRI lines or those hijacked from a
legitimate company to spoof caller ID. To accomplish this attack, the bad
guys must configure the PBX to send a specific phone number, a process that
depends heavily on the type of PBX used.

Defenses Against Social Engineering and Caller ID Spoofing
Attacks

The most effective method of defending against social engineering and caller
ID spoofing attacks is user awareness. Computer users of all kinds, ranging
from technical superstars to upper management to the lowliest serf, must be
trained not to give sensitive information away to friendly callers. Your
security awareness program should inform employees about social
engineering attacks and give several explicit directions about information
that should never be divulged over the phone. For example, in most
organizations, there is no reason for a system administrator, secretary, or
manager to ask a rank-and-file employee for a password over the phone, so
one should not be given. Instead, if an employee forgets a password and
requires emergency access, establish a support line (such as a help desk)
where the employee can be directed for password resets, 24 hours per day.
The help desk should have specific processes defined for verifying the
identity of the user requesting the password reset, such as checking the
telephone number, zip code, date of hire, mother's birth name, and so on.
The particular process and items to check depend on the depth of security
required by the organization and its culture.

Furthermore, if someone unknown to the user calls on the phone looking to
verify computer configurations, passwords, or other sensitive items, the user
should not give out the sensitive data, no matter how friendly or urgent the
request, without verifying the requestor's identity. These situations can get
very tricky, but you must educate your user community to prevent your
secrets from leaking out to smooth-talking attackers.

Finally, in your awareness program, make sure you tell your users that
caller ID information cannot be trusted as a sole method for verifying

someone's identity. Let them know that fraudsters sometimes fake caller ID
messages, and they should use alternative forms of verifying the identity of
an employee.

Physical Break-In

Although reaching out to an organization over the phone using social
engineering techniques can give attackers very useful information, nothing
beats a good, old-fashioned break-in for accessing an organization's most
critical assets. Bad guys with physical access to your computer systems
might find that a user walked away from a machine while logged in, giving
them instant access to accounts and data. Alternatively, attackers might
plant backdoors on your internal systems, giving them remote control
capabilities of your systems from the outside (for more information on these
backdoor techniques, please refer to Chapter 10, Phase 4: Maintaining
Access). Alternatively, instead of blatantly using your own machines on your
premises, with physical access to an ethernet plug in the wall, an attacker
can start scanning your network from the inside, effectively bypassing your
Internet firewalls simply by walking through a (physical) door. At a bare
minimum, an attacker might simply try grabbing a USB Thumb drive, CD,
DVD, backup tape, hard drive, or even a whole computer containing
sensitive data and walking out with it tucked under a coat.

There are countless methods of gaining physical access to an organization.
An external attacker might try to walk through a building entrance, sneaking
in with a group of employees on their way into work. If badge access is
required for a building, an attacker could try to piggyback into the premises,
walking in right after a legitimate user enters. As with social engineering,
most people want to be helpful to their fellow humans. During physical
security reviews in the course of my job, I have frequently been given
access to buildings or secure rooms within a building just by asking politely
and looking confident in my reasons for being there.

Because they could be arrested or even shot (depending on the target), only
a small proportion of external attackers actually attempt physical break-ins.
However, attackers already inside an organization, such as employees,
temps, contractors, customers, and suppliers, might deliberately wander into
sensitive physical areas to grab information. Indeed, some attackers hire on
as an employee or a temp with the sole purpose of gaining sensitive
information about a target organization or planting malicious software. After
committing their dastardly deeds in a single day or over the course of a
week, the malicious employee quits, having gained access to systems and
information.

Defenses Against Physical Break-Ins

Security badges issued to each and every employee are an obvious and
widely used defense against physical break-in. A guard at the front door or a
card reader should check all employees coming into a given facility. Yet,
although many organizations spend big money issuing badges and using card
readers, they do not educate employees about the dangers of letting people
in the building without checking their credentials. Again, those darn humans
just trying to be friendly will often let a person who claims to have forgotten
a badge that day in through a back door. Several times, my customers have
issued me badges to access their buildings using card readers at their doors.
Almost always, I've been encountered by people who ask me to do them just
one small favor and let them in even though they forgot their badge. When I
politely decline, they often get rather snippy. To avoid this problem, your
awareness campaigns should focus on making proper badge checks a deeply
ingrained part of your organizational culture. Someone who asks to see an
employee's badge before giving access to a building or instructs the person
without a badge to contact security is doing a great job and should be
commended.

For particularly high-risk buildings and rooms, such as sensitive computer
facilities, you might want to invest in a special revolving door and card
readers that allow only one authorized employee to enter at a time. That
way, the decision of whether to allow a smooth-talking person who claims to
have lost his or her badge into the building will require a call to the physical
security organization, and is out of the hands of rank-and-file employees.
Security cameras can augment such a system, helping your physical security
team keep an eye on the situation.

Of course, to prevent attackers from walking out of your buildings with
computer equipment, you should have a tracking system for all computers
(including laptops) brought into and out of your facilities. Make sure you
have sign-in procedures for technology that tell all employees that any
computer-related equipment and media entering the building is subject to
search and seizure while inside your organization. Just in case someone fails
to sign in some equipment, hang a poster stating this policy at all of your
building entranceways. That gives your security team the policy tool they
might need in a sensitive situation.

It is also critical to make sure that you have locks on computer room doors
and wiring closets. A temporary employee or consultant with physical access
to your systems must not be able to explore your electronic infrastructure
that easily. Furthermore, it is absolutely essential that you have locks on
cabinets with sensitive machines to prevent attackers from stealing a whole
computer or hard drive. These cabinet locks must actually be used, as well.
On far too many occasions, I have seen locking cabinets with the key
permanently left in the lock so that the cabinet could be easily opened. This

is bad news, foiling any security offered by the lock. Additionally, you should
lock down servers and even desktops to make sure they don't disappear at
night.

Also, you must have a policy regarding the use of automatic password-
protected screen savers. After five minutes or so of nonuse, each of your
machines should bring up a screen saver requiring the user to type in a
password before being given access to the system. There is an ironic fact of
life that senior management personnel, those whose systems could pose the
highest risk if compromised, often demand that their screen savers be
turned off because they consider them an annoyance. Thus, some careful
political maneuvering and persuasion might be required to establish and
enforce this policy.

Finally, for traveling workers with laptop machines and those with sensitive
desktop systems, consider installing a file system encryption tool, and
training users about its function and importance. If an attacker swipes a
laptop from one of your executives at an airport, your life will be slightly less
complicated if the executive has an encrypted file system on the machine.
Otherwise, major secrets extracted from the laptop could be for sale on the
open market. Modern Microsoft Windows machines include the built-in
Encrypting File System (EFS), or you could purchase more flexible file and
e-mail encrypting tools such as PGP (). Free solutions include the stellar Gnu
Privacy Guard (). But keep in mind this critical point: If you are using file or
drive encryption, make sure you deploy it with some sort of corporate
recovery key, just in case a user's encryption key gets corrupted or lost.
Without a corporate recovery key, all of the data would be lost, including
information stored on encrypted backups.

Dumpster Diving

Dumpster diving is a variation on physical break-in that involves rifling
through an organization's trash, looking for sensitive information. Attackers
use dumpster diving to find discarded paper, CDs, DVDs, floppy disks, tapes,
and hard drives containing sensitive data. In the computer underground,
dumpster diving is sometimes referred to as trashing, and it can be a smelly
affair. The attacker acts like a rubbish-oriented Jacques Cousteau, diving
into the hidden darkness of a giant trash bin to recover the mysteries of the
deep. In the massive trash receptacle behind your building, an attacker
might discover a complete diagram of your network architecture right next
to the remains of your salami sandwich from yesterday's lunch. Or, a user
might have carelessly tossed out a sticky note with a user ID and password,
which got covered with last week's coffee grinds, yet remains readable.
Although possibly disgusting, a good dumpster diver can often retrieve
informational gems from an organization's waste.

Dumpster diving is especially effective when used for corporate espionage.
In mid-2000, many major news sources broke a story about Oracle
Corporation hiring private investigators to go through the trash to retrieve
sensitive information about Oracle's archrival, Microsoft. The controversial
case came to be known by some as Trashgate. Oracle spending its hard-
earned money digging up secrets from the trash about Microsoft illustrates
the usefulness of dumpster-diving techniques. However, before you embark
on a dumpster-diving trek yourself, keep in mind that in many localities, it is
illegal to trespass on others' property, even if you plan on merely taking
their refuse.

Defenses Against Dumpster Diving

Paper and media shredders are the best defense against dumpster diving.
Employees should have widespread access to shredders, and should be
encouraged to use them for discarding all sensitive information on paper,
CDs, and DVDs. Alternatively, your organization could supply each user with
an additional trash can for sensitive information. Normal, nonsensitive
garbage goes into the regular trash can, and the more important data gets
deposited in the extra receptacle, which is promptly shredded in a central
facility. Your awareness program must clearly spell out how to discard
sensitive information. Some organizations with extreme security needs go
even further, burning or mulching documents after shredding.

When an employee transfers from one office to another, a significant,
information-rich trash event occurs. When moving between offices,
employees often throw away sensitive data indiscriminately, including
architecture diagrams, manuals, old CDs and DVDs, and all kinds of goodies
useful to an attacker. To minimize the damage a dumpster diver poses, you
should provide a large trash receptacle outside the office of the mover. All
trash associated with the move should be deposited in this special bin, which
is then completely shredded.

Finally, whenever you discard or recycle old, worn-out, or broken computers,
make sure you yank out the hard drives. These drives are likely loaded with
sensitive information, and should be physically destroyed. Yes, you could
scrub them using a data wiping tool that overwrites all sectors with zeros
and ones several times, or even employ a degausser that zaps them with a
magnetic pulse. However, there is still a chance that some data will survive
the wiping or degaussing process. The best way to be sure all data is
unrecoverable by your adversaries is to crunch up the drives, physically
destroying the media. Although some would claim that this approach is not
as environmentally friendly as recycling the hard drives, with the relentless
march of technology, in a few years these drives would be hopelessly small
anyway, and would find their way to a landfill somewhere.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Search the Fine Web (STFW)

Now that we understand the low-technology means for conducting
reconnaissance, let's analyze how attackers can use computers and various
Internet resources to learn more about their targets. A huge number of very
useful public information sources are available today, just waiting for an
attacker to look in the proper areas and ask the right questions. Because an
attacker is merely searching public resources for information about a target,
all of the following recon activities are legal and can be conducted by anyone
with an interest in the target organization. Using these sources, attackers
attempt to determine the domain names, network addresses, contact
information, and numerous other useful tidbits of information about their
target.

In the computer industry, if you ask someone a question with an obvious
answer, you might be told to "RTFM." Although this acronym includes a word
not appropriate for this family-oriented book, "Read The Fine Manual" is a
close-enough interpretation of RTFM for our purposes. When someone tells
you to RTFM, it means the answer to your question is obvious if you just
refer to the software's documentation. Harried system administrators and

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

power users often growl "RTFM" with derision to uninformed users getting on
their nerves.

This basic computer phrase has been updated to reflect the most commonly
used research tool today, the World Wide Web. If someone tells you to
"STFW," they are more or less suggesting that you "Search the Fine Web."
For an attacker looking for information about a target, STFW is a great
strategy.

The Fine Art of Using Search Engines and Recon's Big Gun:
Google

Attackers frequently turn to Internet search engines to grab all kinds of
fascinating data associated with a target. A good rule in life is that if you
want answers, you need to ask someone who knows a lot. Today's search
engines, including Google, Yahoo!, and Microsoft's MSN Search, are
information-rich gold mines with lots of answers. To extract the really good
nuggets, though, you've got to ask questions properly.

To focus our discussion on how to ask the right questions when performing
computer attack recon, let's take a look at the capabilities of the most
popular search engine of all: Google. In a magazine interview, Adrian Lamo,
noted attacker of major newspapers, petroleum companies, Internet Service
Providers (ISPs), and financial services firms, was asked what his favorite
hacking tool is. Without so much as blinking, he instantly responded that
Google is his favorite hacking tool, hands down, emphasizing the importance
of good, detailed search-engine recon.

Most everyone thinks they know how to use Google. You just surf to , type
in a search term, and get your answer. Admittedly, that simple-minded
technique will perform a rudimentary search, but it might not give you the
most valuable information you seek. To maximize the usefulness of search
engines in computer attacks, attackers must carefully formulate their
queries. To see how this is done, let's analyze what Google really is. Putting
aside all of Google's fancy add-on services, these are four of the most
important elements of Google's technology:

These programs, which run on Google's own servers, constantly surf the
Internet, acting as Google's sentinels. They crawl Web site after Web
site, following hyperlinks to retrieve information about what's out there.
My own Web site gets visited by a Google bot approximately every 24
hours, and sometimes even more frequently. As I watch my logs, on
occasion I shout with excitement, "The Google bot is here! The Google
bot is here!"

Based on what the Google bots retrieve, Google creates a massive index

of Web sites. As of this writing, Google claims its index holds references
to over 8 billion Web pages, with the number rocketing skyward every
day. When you submit a query to Google, this index is what you search.
In creating the index, Google associates similar Web pages together and
relates them to each other and various search terms using an algorithm
called PageRank. The original Google algorithm, which was created by
Google's near-mythic founders Sergey Brin and Lawrence Page while at
Stanford University, is described in a history-making white paper at .
Since its inception, however, Google has continuously refined this
algorithm without disclosing the current magical details of how the index
is created. They keep that information hush-hush for two reasons: to
prevent their competitors from knowing exactly how their technology
works, and to lower the chance of unscrupulous people gaming the
Google index to force Web pages to appear first in searches, an activity
known as Google-bombing.

As the Google bots scour the Internet, they bring back a copy of the text
of each document in the index, pulling in up to 101k of text for each
page, including HTML, DOC, PDF, PPT, and a variety of other file types.
These document elements are stored in the Google cache, an immense
amount of information that represents Google's very own copy of a large
portion of the Internet. Larger documents are indexed, but only their
first 101k of text, not images or code, are cached.

In addition to the normal Web-page interface for Google that was
designed for us humans, Google has also created a method for computer
programs to perform searches and retrieve results, known as the Google
API. A program can create an Extensible Markup Language (XML)
request and send it to Google using a protocol called Simple Object
Access Protocol (SOAP). Google responds with more XML containing the
search results. Hundreds of developers have written applications that
use the Google API to perform all kinds of nifty queries and data
massaging. Check out for a list of some of these applications. To use the
Google API for your own programs or with programs written by others,
you need a Google API key, available for free from Google at . This key
must be loaded into each query your programs submit. The Google API is
wonderful, but, as of this writing, it limits you to 1,000 searches per day
per key, and Google's terms of use limit each user to one key. If you get
more than one key, you are violating Google's rules and could face
severe penalties, ranging from Google banishment ("No more Google for
you!") to possibly a lawsuit.

Another important aspect of Google is a major constraint they place on the
number of results you can retrieve from the index for a single search:
1,000. Some people think, "That's not true ... I did a search for 'dog' and got

55.4 million hits!" Yes, that's the approximate number of pages in Google's
index, but you are only allowed to view the first 1,000 results. Other people
might think, "1,000 pages is a lot! How is that a major constraint?" When
performing recon, attackers sometimes suck down all 1,000 results and
perform data mining on them, likely using some custom code and Google's
own API to pull down all of the responses programmatically. If hit number
1,001 has the vital data the attackers are looking for, they are out of luck.

For this reason, attackers (and other Google users) try to maximize the
precision of their search, using a variety of search directives and other
search operators to retrieve items of maximum value. Table 5.1 contains a
brief summary of some of the more interesting and useful search directives.
Experienced Google users type these directives along with their search
terms right into Google's search bar or via the Google API to yield far more
refined searches, thereby maximizing the value of the 1,000 results.

Table 5.1. Useful Google Search Directives
and Other Search Operators

Google
Directive
or
Operator

Purpose Search
Example

Google responds
with results that
are associated
with the given
domain. This
domain could be
very specific,
referring to a
given Web site
such as , or less
specific, like to
search for all
educational
institutions with
that suffix. In
essence, this
most valuable of

To look for
all
occurrences
of the word
on Web
sites in my
domain, you
could
search for

all search
directives lets
you target your
recon.

This search
directive shows
all sites linked
to a given Web
page, possibly
identifying a
target site's
business
relationships,
including
suppliers,
customers, and
joint ventures.

To see
everyone
that links to
my site, you
could
search for

This search
looks for Web
pages with titles
that contain the
given search
text. It's quite
useful in finding
Web sites that
are configured
to show an
index of various
file system
directories,
which might
reveal sensitive
file or
configuration
data the Web
site

To see if my
Web site
has any
directories
that are
indexed and
available via
my Web
server, you
could
search for

administrator
accidentally
leaked.

This directive
displays Web
pages that are
similar to the
given search
page, based on
Google's
indexing
algorithm.
Sometimes, you
get a bunch of
useless junk
with this search.
Other times,
you find a
crucial gem of
information, like
a business
partnership that
you otherwise
might have
missed.

To look at
pages
similar to
my Web
site, you
could
search for

This item
displays the
contents of a
Web page from
Google's cache.
Note that only
the text of the
page is
retrieved from
Google. Any

images might
come from the
original site, and
any links you
click on in the
cached page
take you to
their actual
location, not
another cached
page. Because
of this, Google's
cache doesn't
really enable
anonymous
surfing, but is
immensely
useful in finding
recently
removed or
currently
unavailable
pages.

To find the
most recent
view of my
page
grabbed by
the Google
bots, you
could
search for

This item
searches only
for files of a
given type.
Besides just
Hypertext
Markup
Language
(HTML), Google
identifies files
based on their
suffix and
content,
indexing and

To find all
PowerPoint
files on my

caching dozens
of different file
types like
Microsoft Word
documents
(.doc), Excel
spreadsheets
(.xls),
PowerPoint
presentations
(.ppt), and
Adobe Portable
Document
Format files
(.pdf).

Web site,
you could
search for

This directive
searches
Google's
residential
phone book
based on a
person's name
and a city or
state entered.
As of this
writing, this
phone book
includes name,
postal address,
and phone
number for U.S.
residents only.

To look for
all people
named John
Smith living
in
California,
you could
search for

This directive
searches
Google's phone
book of U.S. To look for

businesses,
returning phone
numbers useful
in social
engineering and
possibly even
war dialing,
which we
discuss in
Chapter 6,
Phase 2:
Scanning.

all
businesses
named
Acme in
New York
State, you
could
search for

This type of
search looks in
both the
residential and
business phone
books.

To look for
all people or
businesses
named
Smith in the
city of
Chicago,
you could
search for

Quotation marks
indicate to
search for a
literal match of
the given search
terms in that
order.
Otherwise,
Google searches
for the given
terms in any

To find all
references
to malicious
code on my
site, while
avoiding
results that
might say
"this code is
not
malicious"
or refer to
other
malicious
things (like,

order. perhaps
malicious
people),
you could
search for

This directive
filters out Web
pages that
include a given
term. Along with
the "site:"
directive, the
Not operator is
one of the most
useful Google
capabilities of all
in performing
recon.

Suppose
you want to
research
cetaceans
(you know,
mammalian
sea life such
as Flipper)
off the
coast of
Miami,
Florida. If
you
Googled
"Miami
dolphins,"
you'd be
inundated
with Web
sites that
have very
little to do
with sea
life, and a
lot to do
with a
popular
football
team.
Therefore,
you'll get
much better
results

searching
for:

Normally,
Google filters
out certain
common words,
like "a," "and,"
"where," "the,"
and "how." If
you really want
a search to
include those
normally filtered
words, add a
plus symbol in
front of them.
Note that a plus
"+" is not the
opposite of a
minus "–". In
other words,
putting a plus in
front of a search
term does not
tell Google that
all pages must
have that word
in it. It just
means that
Google shouldn't
remove the
commonly
filtered words.

To search
for the
terms
"how" and
"the" on my
Web site,
you could
look for

When searching Google with or without these directives, keep in mind these
additional important tips:

Remember to avoid putting a space between the directive and at least
one of your search terms. The items should be smashed together (i.e.,
site:www.counterhack.net is good, but site:
wwwcounterhack.net with a space in it is usually bad).

Google searches are always case insensitive. Searching for
site:www.counterhack.net skoudis and
site:www.counterhack.net SkouDis produces the same results.

Google allows up to a maximum of ten search terms, including each
directive you provide. In other words, site:counterhack.net
skoudis contains two search terms, not one or three.

Things get really interesting when attackers combine various search
directives and operators to find useful information about given targets. For
example, suppose an attacker wants to go after a large financial institution
called The Freakishly Big Bank with a Web site located at .

The attacker could perform a search like this:

site:thefreakishlybigbank.com filetype:xls ssn

This search causes Google to look for all Microsoft Excel spreadsheets on the
bank's site that contain "ssn," a common abbreviation for Social Security
Number, a crucial piece of personally identifiable information. Alternatively,
the attacker could replace that acronym with "credit card," "account,"
"password," or any one of a myriad of interesting terms. Quite often, such
searches return very interesting information. Sometimes, an organization
generates a spreadsheet with very detailed sensitive customer data in it.
Then, this data is massaged to create a graph or pie chart of aggregate data
that is pasted within the spreadsheet right on top of the sensitive data. The
aggregates in the pie chart, however, are not personally identifiable
information, and are therefore not sensitive by themselves. This
spreadsheet, when opened, merely displays the pie chart, obscuring the
more sensitive data underneath. Then, some marketing genius decides to
put the spreadsheet on the Web site, because, after all, it doesn't appear to
show any sensitive data. Next, a Google bot indexes and caches the page.
Then, this search can generate paydirt, letting an attacker pull up the whole
spreadsheet, sensitive data and all.

Now, suppose the marketing genius realizes the mistake and removes the
spreadsheet from the Web site. The attacker is still in great shape, because
the Google index still refers to the file and the Google cache contains its

http://www.counterhack.net
http://wwwcounterhack.net
http://www.counterhack.net
http://www.counterhack.net

data! Merely removing something from your Web site doesn't eradicate it.
That information lives on in Google's cache until you make Google remove
it, a process we discuss later. Also, even if the data has been removed from
Google, it still might live in another Internet cache.

One of my favorite long-term caches is the Wayback Machine located at .
Having nothing whatsoever to do with Google, this site features cached
pages from billions of Web pages for the last several years. What's more, if
you click on a link on a Wayback Machine page, it loads the old, archived
page associated with that link from the archive itself, not the original Web
page. That way, it feels like you have really traveled back in time to look at
crusty old Web pages that might harbor interesting information.

In addition to searching for Excel files, it's always a good idea for the
attackers to look for Microsoft PowerPoint files, because they, too, might
have sensitive data lying under pictures that have been pasted over certain
parts of a slide. That's why searches like
site:thefreakishlybigbank.com filetype:ppt are so useful.

Now, instead of looking inside of spreadsheets or presentations, suppose the
attacker wants to scour an entire site for references to Social Security
Number information. In my experience, this type of search is best done as
follows:

site:thefreakishlybigbank.com ssn –filetype:pdf

The –filetype:pdf on the end filters out all PDF documents. Without this
addition, the search usually pulls up a bunch of forms for customers to fill
out, which seldom have useful information. Slicing all PDF files out of the
search focuses us on more juicy terrain.

Another useful alternative involves looking for active scripts and programs
on the target site, including Active Server Pages (ASPs), Common Gateway
Interface (CGI) scripts, PHP Hypertext Preprocessor (PHP) scripts,
JavaServer Pages (JSPs), and so on. Given that there could be 1,000 or
more of these types of pages in a given domain, I typically search for each
one individually, looking for:

site:thefreakishlybigbank.com filetype:asp
site:thefreakishlybigbank.com filetype:cgi
site:thefreakishlybigbank.com filetype:php
site:thefreakishlybigbank.com filetype:jsp

With these results, I've harvested the target domain for various forms of
user-activated scripts and programs that run on the Web site itself, each of
which might have a security flaw. However, instead of scanning for these
programs, I've allowed Google to do all the scanning work, and have merely
plucked from the results the useful data I need. The attacker can even look
for specific scripts that are known to have security flaws that allow for direct
compromise of the system. In late 2004 and early 2005, the Santy worm
spread by finding vulnerable systems using a Google search for flawed PHP
software called phpBB that implements discussion forums for Web sites.

We can expand on this idea even further, by simply submitting queries to
Google that look for systems that are very likely vulnerable, based on
information retrieved by the Google bots. For example, an attacker can
perform searches for default content included with certain Web servers and
Web development environments. If I search Google for a specific site with
the text "Test Page for the Apache Web Server" or "Welcome to Windows
2000 Internet Services," I'll find servers that still have those default Web
pages loaded on them. Now, you might think that such servers aren't all that
useful, because if they still have the default page, they likely don't have
much sensitive information on them. But consider this: If those default
pages are still on the boxes, there is also likely other default and possibly
vulnerable content on the machines. Making matters worse for the target,
the administrator might not have patched these systems either, making
them ripe targets for attack. Even though these servers might not have
sensitive data on them, an attacker can compromise this low-hanging fruit,
and then use these weaker servers as staging points for further attacks from
inside the DeMilitarized Zone (DMZ) of the target environment. Yikes!

Attackers can also look for command shell history, and even hidden
hyperlinks and indexes that aren't easily accessible by humans. The
attackers just let the Google bots and the index work their magic. If an
attacker can find ipconfig, cmd.exe, ifconfig, or bash, the Web sites might
have allowed for indexing of critical system and binary directories, a
grievous mistake.

Johnny Long, a gentleman known as the "I hack stuff" guy, maintains a list
of more than 1,000 useful searches to find vulnerable servers in his
astonishingly cool Google Hacking DataBase (GHDB) located at . This list is
updated almost daily, and includes both the most recent and most popular
items, ranked by Johnny's users.

You could perform all of the searches for vulnerable systems we just
discussed by hand, of course, methodically typing each into the Google
search form and harvesting all responses. But you'll quickly become bored
with even a small sample of the GHDB. A more efficient way of performing
these large numbers of searches involves using a tool specifically designed

to automate Google recon for vulnerabilities. These tools essentially are
nifty graphical front ends that query Google using its API and your Google
API key to look for evidence of vulnerabilities in a site of your choosing.

Two of the most popular tools in this category are Foundstone's SiteDigger ()
and Wikto by Roelof Timmingh (). Both of these tools require you to provide
your own Google API key.

The user interface for SiteDigger is shown in Figure 5.2. Note that the user
simply types in a target domain name and a Google API key. Then
SiteDigger automatically formulates queries for Google, looking for known
vulnerabilities that can be found via Google. As of this writing, SiteDigger
performs approximately 1,000 queries based on automatically updateable
search signatures created by Foundstone or Johnny Long's GHDB, thereby
burning up your Google API key's daily usage of 1,000 searches. So, with a
single SiteDigger or Wikto search, you've burned your Google API key for
that day and have to come back the next day for more automated Google
adventures.

Figure 5.2. SiteDigger by Foundstone.

[View full size image]

Finally, although not directly related to finding vulnerable systems, some
cute and useful searches in Google can prove incredibly useful. Google
supports looking up an airline and flight number. As displayed in Figure 5.3,
Google responds with the current status of the flight and its location in the
air on a map! Also, you can search for a Vehicle Identification Number (VIN)
or Universal Product Code (UPC) number to get detailed motor vehicle or
product data. In essence, Google is acting as a front end for Travelocity,
Expedia, and fboweb.com for flight tracking; CarFax for VINs; and
UPCDatabase.com for product information.

Figure 5.3. Flight tracking via Google.

[View full size image]

Using Google for detailed recon is both an art and a science. If you'd like to
get more information about using Google for recon activities, there are two
great books on the topic: Johnny Long's (Syngress, 2004) and Tara Calishain
and Rael Dornfest's (O'Reilly, 2004). I've read both books cover to cover,
and keep them within arm's reach whenever I'm doing penetration testing.

Although Google is king of the search engines, it's important to note that
Google itself is increasingly filtering some searches for sensitive data,
including some Social Security Numbers and certain vulnerabilities, a
process known as search scraping. Google is doing this for wholesome
reasons—to help limit identity theft and thwart Google-based worm
propagation. Because of scraping, whenever I'm performing detailed recon, I
always check out Google along with other search engines including Yahoo! ()

and Microsoft's MSN Search (). In my experience, Yahoo! and Microsoft
perform far less scraping than Google, as of this writing, although their
search directives tend to be a small subset of the bounty that is Google.

Listening in at the Virtual Water Cooler: Newsgroups

Another realm with great promise for an attacker involves Internet
newsgroups so frequently used by employees to share information and ask
questions. Newsgroups often represent sensitive information leakage on a
grand scale. Employees submit detailed questions to technical newsgroups
about how to configure a particular type of system, get around certain
software coding difficulties, or troubleshoot a problem. Attackers love this
type of request, because it often reveals sensitive information about the
particular vendor products a target organization uses and even the
configuration of these systems.

Additionally, attackers sometimes even send a response to the requestor,
purposely giving wrong advice about how to configure a system. Hoping that
the victim will follow the evil advice, the attacker attempts to trick the user
into lowering the security stance of the organization. Recently, we were
performing a penetration test and discovered that a software developer
working at our target company posted a question on a newsgroup asking for
help developing his code. He was having trouble with an antivirus tool's
heuristic searches triggering every time his code ran, shutting down his
program. Someone responded to his query with a little snippet of new code
that would solve his problem. This new code, of course, simply shut off the
antivirus program before it could get in the way. The original "problem" was
solved, but the "solution" created even bigger concerns by bypassing all
antivirus protection.

To search newsgroups, the Google newsgroup Web search engine at provides
a massive archive of newsgroups, and has an easy-to-use query mechanism
for searching the archive. In early 2001, Google acquired the very popular
DejaNews Web site, and repackaged it in this very useful interface. All major
newsgroups are archived. When conducting a penetration test, I frequently
peruse the newsgroups at Google, doing searches for target names,
domains, and employee names.

Using the advanced search capabilities of Google's groups, you can focus
searches on particular newsgroups, certain message authors, or even given
date ranges. Since the acquisition of DejaNews, Google has done a great job
of keeping this immense archive up to date.

Searching an Organization's Own Web Site

In addition to search engine recon and newsgroup analysis, smart attackers

also look extra carefully at a target's own Web site. Web sites often include
very detailed information about the organization, including the following:

These numbers can be useful for social engineering, and can even be
used to search for modems in a war dialing exercise.

Most organizations' Web sites include significant information about
product offerings, work locations, corporate officers, and star employees.
An attacker can digest this information to be able to speak the proper
lingo when conducting a social engineering attack.

Companies often put information about business relationships on their
Web sites. Knowledge of these business relationships can be useful in
social engineering. Additionally, by attacking a weaker business partner
of the target organization, an attacker might find another way into the
target. Although it's trite, a chain really is only as strong as its weakest
link. Therefore, by targeting a weaker link (the business partner), the
attacker might find a way to break the chain.

In the flurry of activity during a merger, many organizations forget
about security issues, or put them on the back burner. A skillful attacker
might target an organization during a merger. Additionally, a company
being acquired could have a significantly lower security stance than the
acquiring company. When there is a difference in the security stance,
the attacker can benefit by going after the weaker organization.

Some sites even include a description of the computing platforms and
architectures they use. For example, many companies specifically spell
out that they have built their infrastructure using Microsoft IIS Web
servers and Oracle databases. Or, a site might advertise its use of an
Apache Web server running on a Linux box. Such morsels of information
are incredibly useful for attackers, who can refine their attack based on
such information.

This type of data is really useful for attackers. For example, if your Web
site claims that you are looking for NetScreen firewall administrators,
that tells the attacker two things: First, you are likely running
NetScreen firewalls. Second, and perhaps even more important, you
don't have enough experienced staff to run your existing firewalls. If you
did, you wouldn't be looking to hire that experience.

Defenses Against Search Engine and Web-Based
Reconnaissance

With so many useful sources of information for attackers on the Web, where
do you start in making sure you are not a victim of good search engine and

Web-based reconnaissance? Start at home, by establishing policies regarding
what type of information is allowed on your own Web servers. Don't allow
people to put sensitive customer or other data on your Web site, even if it is
a directory with an unguessable name. The all-seeing eyes of the Google
bots might still find it. Also, avoid including information about the products
used in your environment, and particularly their configuration. Some would
argue that this is merely security through obscurity. I agree that just
obscuring data is not really securing it, because a determined attacker will
spend a lot of time and effort battling through the obscurity. However,
although obscurity by itself is not a good security tactic, it certainly can help.
There's no sense putting an expensive lock on your door and leaving milk
and cookies outside so the lock picker can have a snack. Therefore, although
attackers can use other means to find out what vendor products you are
using and their configuration (as we discuss in Chapter 6), you do want to
make sure that you are not making things easier for them by publishing
sensitive information on your public Web site.

In addition to making sure your own Web site does not contain sensitive
data available to the public, your organization must have a policy regarding
the use of newsgroups and mailing lists by employees. Your workforce must
be explicitly instructed to avoid posting information about system
configurations, business plans, and other sensitive topics in public venues
like mailing lists and newsgroups. Furthermore, you should enforce this
policy by periodically and regularly conducting searches of open, public
sources such as the Web and newsgroups to review what the world
(including your own employees) are saying about your organization. In
addition to helping prevent information leakage, this open source monitoring
can help keep you informed about employees searching for jobs, disgruntled
customers, potential legal action, and a host of other information. Many
times, within a single organization, the public relations, legal, and human
resources organizations work in coordination with the security team to
conduct these open source searches. A handful of security companies also
offer services based on gathering open source intelligence.

Finally, if you find that Google has indexed a URL or cached a page that you
didn't want it to, you can have Google remove it. First, you have to update
your Web site, removing the sensitive data from it or indicating to Google
not to index or cache it. Google respects the following markers for data:

The robots.txt file is a world-readable file in a Web server's root
directory that tells well-behaved Web crawlers not to search certain
directories, files, or the entire Web site. This file is immensely useful,
but is a double-edged sword. Although it will keep well-behaved crawlers
from going through certain sensitive portions of your Web site, it also
tells the real bad guys and evil crawlers where to focus to find the really

good stuff.

The meta tag tells well-behaved crawlers not to include the given Web
page in an index.

The meta tag tells well-behaved crawlers not to follow links on a page in
an effort to find new pages.

The meta tag says that a given page should be indexed (so it can be
searched for), but should not be cached.

The meta tag specifies that Google shouldn't grab summary snippets of
your Web page for display with search results on Google's site.

An example of some of these tags that you could place at the top of a Web
page to keep it out of Google's index and archive would be as follows:

<meta name="robots" content="noindex,noarchive">

After updating your Web site by removing specific pages, updating
robots.txt, or adding the appropriate meta tags, you could simply wait for
the Google bots to recrawl you. That could take some time, possibly a few
weeks (although, as I said earlier, my own Web site gets crawled about
every 24 hours). If you have an urgent need to remove something from
Google, use the URL removal request submission form from Google,
available at . According to Google, this request recrawls the page within 24
hours, removing the requested content, although I've observed much faster
turnaround time, usually less than 1 hour!

For instructions on how to remove items from non-Google search engines, a
topic that goes beyond the scope of this book, please check out the
wonderful Web site . For instructions about how to remove items from the
Wayback Machine at , refer to . The folks behind the Wayback Machine claim
that they don't want to archive old pages created by people who don't want
those pages available anymore. Of course, you have to show that you are
the administrator of a given Web site or the person whose personal data has
been exposed to get these folks to remove the offending content. After all,
the Wayback Machine folks don't want some unscrupulous person deleting
huge parts of history. So, by using a simple robots.txt file or sending the
Wayback folks a kindly e-mail, you can delete your own past for those Web
sites you control.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Whois Databases: Treasure Chests of
Information

In addition to Web search engines, other extremely useful sources of
information are the various whois databases on the Internet, which act like
Internet white pages listings. These databases contain a variety of data
elements regarding the assignment of domain names, individual contacts,
and even Internet Protocol (IP) addresses. A domain name refers to one
machine or a group of machines on the Internet, such as , my particular
Web server, or , a group of machines associated with my organization. When
your organization establishes an Internet presence for a World Wide Web
server, e-mail servers, or any other services, you set up one or more
domain names for your organization with a registration company, known as
a registrar. Your domain name and other crucial details are automatically
loaded into several whois databases run by various registrars and certain
Internet infrastructure organizations.

In exchange for your registration fee, the registrar makes sure that your
domain name is unique, and assigns it to your organization by entering it
into various databases (including whois databases and DNS) so that your

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

machines will be accessible on the Internet using your domain name. When
an attacker conducts research using whois databases, the approach used
depends on the suffix of the organization's domain name, known as a top-
level domain. The most popular top-level domains in use are .com, .net,
.org, and .edu.

Researching .com, .net, .org, and .edu Domain Names

Registrars for domain names ending with .com, .net, .org, and .edu are
commercial entities, competing for customers to register their domain
names. Prior to 1999, a single registrar, Network Solutions, had a monopoly
on domain name registration for most of the Internet. Since then, the
Internet Corporation for Assigned Names and Numbers (ICANN) has
established an accreditation process for new and competing registrars.
Because of ICANN's efforts, the number of domain name registrars has
bloomed, with several hundred registrars offering services today. Registrars
range from small mom-and-pop establishments to giant Internet companies.
Some registrars charge a handsome price and offer a variety of value-added
services, whereas others are bare bones, offering free registration in
exchange for ad space on your Web site. A complete list of all accredited
registrars is available at , as shown in Figure 5.4.

Figure 5.4. A list of accredited registrars on the InterNIC site.

[View full size image]

A first step in using whois databases for recon of .com, .net, .org, and .edu
domains is to consult with the Internet Network Information Center
(InterNIC) whois database. InterNIC also holds information associated with
the .aero, .arpa, .biz, .coop, .info, .int, and .museum top-level domains. The
InterNIC is a comprehensive center developed by several companies, along
with the U.S. government, to allow people to look up information about
domain name registration services. The InterNIC's whois database, located
at , lets users enter an organization's domain name, registrar, or DNS
server. Attackers typically enter the domain names discovered during their
Web searches (with input like "counterhack.net"). Based on this input, as
shown in Figure 5.5, the InterNIC whois database displays a record that
contains the name of the registrar that the organization used to register its
domain name.

Figure 5.5. Using the InterNIC whois database to find the target's
registrar.

[View full size image]

Researching Domain Names Other Than .com, .net, .org,
.edu, .aero, .arpa, .biz, .coop, .info, .int, and .museum

Organizations around the world can use the familiar .com, .net, .org, and
.edu top-level domains, which are known as global top-level domains.
Additionally, a whole world of organizations utilizes domain names that do
not end in these four suffixes. Many organizations rely on country code top-
level domains, such as .uk (for the United Kingdom), .ru (for Russia), .cn
(for China), and .jp (for Japan). Furthermore, military and government
organizations in the United States use a variety of different registrars and
cannot be researched using InterNIC. How do you research such
organizations?

For organizations outside of the United States, one of the most useful
research tools is the Uwhois Web site (). This site includes a front end for
registrars in 246 countries, ranging from Ascension Island (.ac) to Zimbabwe
(.zw). Uwhois points you to the appropriate registrar for any particular
country you need to research.

Additionally, for U.S. military (.mil) organizations, a quick trip to the whois
database at reveals registration information. Finally, U.S. government
registration data can be retrieved from .

We've Got the Registrar, Now What?

At this stage of reconnaissance, the attacker knows the target's registrar,
based on data retrieved from InterNIC, Uwhois, or one of the other whois
databases. Next, the attacker contacts the target's particular registrar to
obtain the detailed whois entries for the target. Figure 5.6 shows an attacker
using the Network Solutions whois lookup capability to get information about
a potential victim. Note that Network Solutions, still one of the biggest
registrars in the world, supports several types of searches. Using their whois
database, you can conduct searches based on a variety of different
information, including the following:

Domain name, such as counterhack.net

NIC handle (or contact), by typing a convenient alphanumeric value
assigned to each record in the whois database, such as ES1234.

IP address, by typing the dotted-quad IP address notation, such as
10.1.1.48

Figure 5.6. Looking up a domain name at a particular registrar.

[View full size image]

So, if the attackers know only the domain name of the target, they can use
this whois database to search for more information about the given
organization, including registered domain names, name servers, contacts,
and so on.

A search of the target's registrar, as illustrated in Figure 5.7, returns several
very useful data elements, including these:

Complete registration information includes the administrative, technical,
and billing contact names. Although some entries don't have all three,
most have at least one contact. An attacker can use this information to
deceive people in the target organization during a social engineering
attack.

The telephone numbers associated with the contacts can be used by an
attacker in a war-dialing attack, as described in Chapter 6.

This information includes contact information for a handful of people at
the target, but, more important, it also indicates to an attacker the
format of e-mail addresses used in the target organization. For example,
if e-mail addresses are of the form
firstname.lastname@organization.com, the attacker knows how to
address e-mail for any user given a name.

An attacker can use this geographic information to conduct dumpster-
diving exercises or social engineering. Alternatively, if the attacker
determines that the postal address is nearby, he or she might mount a
war-driving attack to find unsecured wireless access points, as we
discuss in Chapter 6.

Older registration records tend to be inaccurate. Also, a record that
hasn't been recently updated might indicate an organization that is lax
in maintaining the security of its Internet connection. After all, if the
company doesn't keep its vital registration records up to date, it might
not keep its servers or firewalls up to date either.

This incredibly useful field includes the addresses for the DNS servers for
the target. We discuss how to use this DNS information later in this
chapter.

Figure 5.7. The results of a registrar whois search.

[View full size image]

An attacker can use each one of these items to further hone the attack,
grabbing even more information about the target environment.

IP Address Assignments Through ARIN and Related Sites

In addition to the information offered by the target's registrar, another
source of target information is the various geographically based IP address
block assignment whois databases. For example, an organization called the
American Registry for Internet Numbers (ARIN) maintains a Web-accessible
whois-style database that allows users to gather information about who
owns particular IP address ranges, based on company or domain names, for
organizations in North America, a portion of the Caribbean, and
subequatorial Africa. So, whereas the registrar whois database tells users

about particular contact information, the ARIN database contains all IP
addresses assigned to a particular organization in those geographies. You
can access the ARIN whois database at . If the target organization is located
in a different geography, the following IP address whois databases can be
consulted:

Europe, the Middle East, central Asia, and Africa north of the Equator
are served by the Réseaux IP Européens Network Coordination Centre
(RIPE NCC), at .

Asia Pacific is handled by the Asia Pacific Network Information Center
(APNIC), at .

Latin America and the Caribbean are found in the Latin American and
Caribbean Internet Address Registry (LACNIC), at .

Note that many organizations don't have their own IP address allocation,
opting instead to borrow IP addresses from their ISPs. In such cases, ARIN,
RIPE NCC, APNIC, and LACNIC reveal very little information about the
target.

Defenses Against Whois Searches

You might be thinking that all of this whois database information that is so
useful for attackers should not be available to the public. Further, you might
think that having erroneous or misleading registration information will make
you safer, because an attacker won't be able to rely on it. Although your
desires might be commendable from a security perspective, you'd be very
wrong on both counts. Accurate and up-to-date whois databases are an
absolute necessity in maintaining overall security on the Internet.

Keep in mind that the Internet is really a community, and the various whois
databases truly are the white-pages listings for our community. If you need
to contact the administrator of another network for whatever reason, you
can quickly and easily get the contact information using whois searches.
Several times in my career, I have been confronted with a determined
attacker during an incident investigation. We analyzed the attack packets to
determine their apparent source IP address. By researching this source
address using various whois databases, we were able to quickly contact the
administrators of the network where the attack appeared to originate. By
working closely with these administrators, we could determine whether their
systems were compromised, or whether the attacker was using their
addresses in a spoofing attack. On several occasions, the whois database
information let us inform administrators that their systems were being used
in an attack.

For this reason, there really is no comprehensive defense to prevent
attackers from gaining registration data while still making this information
available to other legitimate administrators in our Internet community. You
must make sure that your registration data is accurate so that the proper
person can be contacted without interruption if an incident occurs. As
contacts change jobs, you have to be diligent to ensure that phone numbers
and e-mail addresses are updated with your registrar. Furthermore, make
sure there is no extraneous information in your registration records that
could be used by an attacker, such as account names for an administrator.

Some registrars offer anonymous registration services. These companies
allow you to register through them, and enter their contact information into
whois databases, instead of your own contact data. Examples of such
services include Aplus.net () and Domains By Proxy (). Network Solutions
even offers such a service for an additional $9 per year plus the registration
fee itself. I'm not fond of these anonymous registration services because I
strongly believe they could really harm their customers and the rest of the
Internet more generally. Incident handlers depend on being able to use
whois information to contact each other quickly when computer attacks
occur. If you go through a registrar that doesn't reveal your information,
you slow down how quickly I can reach you. Even if the registrar passes
critical information about an attack from me to you, that gives bad guys
more time to attack us all, sadly. I recommend you avoid anonymous
registration, instead focusing on keeping your information up to date and
training your staff to avoid social engineering scams.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

The Domain Name System

DNS is an incredibly important component of the Internet and another
immensely useful source of recon information. DNS is a hierarchical
database distributed around the world that stores a variety of information,
including IP addresses, domain names, and mail server information. DNS
servers, also referred to as name servers, store this information and make
up the hierarchy. In a sense, DNS is to the Internet what telephone
directory assistance is for the phone system. DNS makes the Internet usable
by allowing people to access machines by typing a human-readable name
(such as) without having to know IP addresses (like 10.1.1.48). In their
wonderful book, , Paul Albitz and Cricket Liu (O'Reilly, 2001) say of DNS,
"Almost all business that gets done over the Internet wouldn't get done
without DNS."

As shown in Figure 5.8, at the top of the DNS hierarchy are the root DNS
servers, which contain information about the DNS servers in the next level
down the hierarchy. Various authorities around the world maintain and run
the 13 root DNS servers on the Internet, which act as a starting point for
DNS searches. The next level down the hierarchy includes DNS servers for

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

the .com, .net, and .org domains, as well as many others. Note that in the
DNS hierarchy, the preceding dot (".") is not included in front of the com,
net, and org DNS server names. Going down the hierarchy another level, we
find DNS servers for individual organizations and networks. These DNS
servers contain information about other lower level DNS servers, as well as
the IP addresses of individual machines. The hierarchy of DNS servers can
get very deep, depending on how individual organizations structure their
own part of the hierarchy.

Figure 5.8. The Domain Name System (DNS) hierarchy.

Using a process called resolving, users and programs search the DNS
hierarchy for information about given domain names. In particular, DNS is
most frequently used to resolve given domain names into IP addresses so
that an application can contact a particular machine across the network.

To begin a DNS search for a name like www.counterhack.net, client software
first checks a local configuration file (called the hosts file) as well as a local
cache on the client machine to see if it already knows the IP address
associated with the domain name. If not, the client sends a DNS request to
its local DNS server asking for the IP address associated with the domain
name, as shown in Figure 5.9. If the local DNS server has the information
cached from a previous DNS search, or has the required record in its own
DNS master files, it sends a response. If the local DNS server doesn't have
the information, it resolves the name by doing a search of DNS servers on
the Internet. The type of search most commonly done by local DNS servers
is a recursive search, where various servers in the DNS hierarchy are
systematically queried to find the desired information.

Figure 5.9. A recursive search to resolve a domain name.

[View full size image]

http://www.counterhack.net

In a recursive search, the local DNS server consults a root DNS server to see
if it knows the IP address for the desired domain name. If the root DNS
server does not have the information, it sends back a referral with the IP
address of the next DNS server down the hierarchy, the net DNS server in
our example. Using the IP address in this referral response as a destination,
the local DNS server then queries the net DNS server. If the net DNS server
has the requested IP address, it sends a reply to the local DNS server. If not,
the net DNS server sends a referral with the IP address of the
counterhack.net DNS server. We step closer and closer to the final system,
gathering information at each step. Finally, when a sufficiently low-level
DNS server is found with the requested information, the response is sent
back to the local DNS server, which in turn sends its response back to the
requesting client. At every step of the search, the local DNS server stores
the entries it receives to simplify future requests. In the next search for
something in the .net domain, for example, the local DNS server will not
have to query the root DNS server, because it already knows where to find
the net DNS server. Similarly, if someone wants to look up
mail.counterhack.net, the local DNS server already knows where to find the
counterhack.net DNS server to ask it for information about
mail.counterhack.net, bypassing both the root and net DNS servers.

Likewise, the client itself that made the original request caches the answer
for a given time, called the Time To Live, a field included in the DNS
response. On a modern Windows machine, you can dump your client's DNS
cache by typing the command ipconfig /displaydns at a command
prompt, as shown in Figure 5.10. Run the command multiple times, and
notice how those Time To Live values, listed in seconds, are decremented
each time you run it. Unfortunately, unlike Windows, this client resolver

information on UNIX and Linux is stored inside each running process that
uses DNS and cannot be easily dumped.

Figure 5.10. Dumping a client's DNS cache on a Windows machine.

[View full size image]

So we can use DNS servers to retrieve the IP addresses associated with
domain names. However, a good deal of other information is stored in DNS.
The most popular and interesting DNS record types are shown in Table 5.2.
In the example record formats, we see the domain name, followed by the
Time To Live, indicating how long the record should be retained (ranging
from mere seconds to several days, although we display one day in these
examples). The third field (IN) means that the record is for the Internet
class, which is the only record class in widespread use today. The fourth field
is the record type (A for Address, HINFO for Host Information, MX for Mail
eXchange, and so on). Finally, we have the information that maps to the
domain name, such as an IP address, some host information, mail server
information, and so on.

Table 5.2. Some DNS Record Types

Record
Type
Name

Purpose Example Record
Format

Address (A
record)

This type of
record maps a
domain name to
a specific IP
address or vice

www 1D IN A
10.1.1.48

versa.

Host
Information
(HINFO
record)

This type of
record
associates
arbitrary
information
about the
system with a
domain name,
and historically
was used to
identify the
operating
system type.

www 1D IN HINFO
Linux2.6

Mail
Exchange
(MX record)

This type of
record identifies
a mail system
accepting mail
for the given
domain.

@ 1D IN MX 10
mail.counterhack.net

Name
Server (NS
record)

This type of
record identifies
the DNS servers
associated with
a given domain.

@ 1D IN NS
ns1.counterhack.net

Text (TXT
record)

This type of
record
associates an
arbitrary text
string with the
domain name.

admin 1D IN TXT
"Admin Workstation"

Every organization with systems accessible via domain names on the
Internet must have publicly accessible DNS records for those systems. A
DNS server just houses a bunch of DNS records like those shown in Table
5.2. For example, the DNS server might have 20 address records for the
addresses of mail servers, File Transfer Protocol (FTP) servers, and Web
servers, one or two MX records specifying which server will accept mail, and
two DNS server records spelling out the DNS servers themselves. Most DNS
implementations are built around at least two DNS servers: a primary server
and a secondary server for fault tolerance. An organization can choose to
implement its own DNS servers to hold these records. Alternatively, some
organizations select an ISP or specialized DNS service provider to run their
DNS services. Other organizations have a mixed approach, running their
primary DNS servers themselves, but outsourcing the operation of their
secondary DNS servers to an ISP or other provider.

Regardless of whether DNS service is provided in house or outsourced, a
large amount of very interesting information can be retrieved from DNS. By
consulting an organization's DNS server, an attacker can harvest a list of
systems to attack. If HINFO records are included, the attacker even knows
the target operating system type and can search the Internet for
vulnerabilities affecting this type of system.

Interrogating DNS Servers

So how does an attacker get DNS information? First, the attacker needs to
determine one or more DNS servers for the target organization. This
information is readily available in the registration records obtained from the
registrar's whois database searches, as discussed in the previous section. In
the registrar records, these DNS servers for the target organization are
listed as name servers and domain servers, depending on the specific
registrar. In our example from Figure 5.7, the DNS servers have IP
addresses 10.1.1.34 and 10.2.42.1. The first is the primary DNS server and
the other is the secondary DNS server.

Using this DNS server information, an attacker has a variety of tools to
choose from for getting DNS information. One of the most common tools
used to query DNS servers is the nslookup command, which is included in
modern versions of Windows and most variations of UNIX and Linux. By
simply typing "nslookup," an attacker can invoke the program and begin
interrogating name servers. Attackers typically attempt to perform a zone
transfer, an operation that asks the name server to send all information it
has about a given domain, a group of information referred to collectively as
a zone file. Zone transfers were created so that secondary DNS servers can
get updates from primary DNS servers. However, attackers also attempt to

use this feature in recon. If the target's DNS infrastructure supports zone
transfers, the attacker's recon actions are put into full throttle, giving the
bad guy an immense amount of useful attack information very quickly.

To conduct a zone transfer, the nslookup command must be instructed to
use the target's primary or secondary DNS server, using the server
[target_DNS_server] command. Then, nslookup must be instructed to
look for any type of record (A records, MX records, and so on) by using the
set type=any directive at the command line. Then, the zone transfer is
initiated by entering ls –d [target_domain], which requests the
information and displays it in the nslookup output. The following commands
show a zone transfer for the counterhack.net domain:

Default Server: evil.attacker.com
Address: 10.200.100.45

Default Server: ns1.counterhack.net
Address: 10.1.1.34

 1D IN NS server = ns1.counterhack.net
system1 1D IN A 10.1.1.36
www 1D IN HINFO "Linux 2.6"
 1D IN MX 10 mail1
www 1D IN A 10.1.1.48
w2k3ftp 1D IN A 10.1.1.49
ws 1D IN A 10.1.1.22
ns1 1D IN A 10.1.1.34
admin 1D IN TXT "Admin Workstation"

This zone transfer output is abbreviated for readability. Note that using a
zone transfer, we have found some extremely interesting information. The
first column of our output tells us a bunch of system names. One of these
names (w2k3ftp) appears to indicate the operating system type and the
purpose of the machine (a Microsoft Windows 2003 machine running an FTP
server). In the last column, we have the payoff: IP addresses, mail server

names, and even operating system types. The text record points out an
administrator workstation, surely a worthwhile target. We now have a list of
machine names and IP addresses that we can scan, looking for
vulnerabilities.

Unfortunately, on most modern Linux machines, the nslookup command has
been partially incapacitated so it can no longer perform zone transfers.
Therefore, to run zone transfers from a modern Linux system, you need to
use another command, such as the dig command built into most Linux
distributions. To make dig do a zone transfer, run the dig command like this:

$ dig @10.1.1.34 counterhack.net –t AXFR

This command invokes dig, tells it to query the DNS server located at
10.1.1.34, sends a request for information about the counterhack.net
domain, and asks for the entire zone file (which is indicated by the –t AXFR
syntax).

Defenses From DNS-Based Reconnaissance

So how do we defend against attackers grabbing a bunch of information from
DNS servers? There are several techniques that should be employed
together. First, make sure you aren't leaking additional information through
DNS. For your Internet presence to function properly, DNS is needed to map
names to and from IP addresses, as well as indicate name servers and mail
servers. Additional information is not required and can only tip off an
attacker. In particular, your domain names should not indicate any
machine's operating system type. Although it might be tempting to name the
Windows 2003 server on your DMZ w2k3dmzserver, don't do it. Similarly,
don't include HINFO or TXT records at all, because there is no need to
advertise the machine types you are using or other textual information
about your machines.

Next, you should restrict zone transfers. Zone transfers are usually required
to keep a secondary DNS server in sync with a primary server. No one else
has any business copying the zone files of your DNS server. The primary
DNS server should allow zone transfers only from the secondary DNS server
(and tertiary if you have one). The secondary (and tertiary) DNS servers
should allow zone transfers from no one. To limit zone transfers, you need
to configure your DNS server appropriately. For the most commonly used
DNS server, BIND, you can use the allow-transfer directive or the xfernets
directive to specify exactly the IP addresses and networks you will allow to
initiate zone transfers. You should also configure your firewall or external
router with filtering rules to allow access to Transmission Control Protocol

(TCP) port 53 on your primary DNS server only from those machines that
act as secondary DNS servers. Remember, User Datagram Protocol (UDP)
port 53 is used for DNS queries and responses, and must be allowed for DNS
to resolve names. TCP port 53, on the other hand, is used for zone transfers
(and other large DNS queries and responses, which are a tip-off of
something strange), which should only be allowed from a short list of known
secondary DNS servers.

Now, you might be thinking, "Doesn't everyone limit zone transfers by now?"
I wish that were so. When we perform penetration tests, we usually find that
the primary DNS server has been configured to deny zone transfers from
arbitrary places on the Internet. However, we almost always also discover
that the secondary DNS server allows anyone anywhere to perform a zone
transfer. This common occurrence is often a result of the organization
hardening its own DNS server (the primary), but relying on an ISP to run its
secondary. Many ISPs aren't very careful about zone transfers, and thus we
are almost always able to lift a zone from their DNS servers. If you
outsource DNS services—either primary, secondary, or both—try doing a
zone transfer to each server. If you can do it successfully, contact the DNS
administrators and ask them to limit zone transfers to only secondary DNS
servers. If an ISP is running your DNS server, you might need to send them
a nice letter emphasizing the importance of limiting zone transfers to make
you, the customer, a happy camper.

Finally, you should employ a technique called split DNS to limit the amount
of DNS information about your infrastructure that is publicly available. The
general public on the Internet only needs to resolve names for a small
fraction of the systems in your enterprise, such as external Web, mail, and
FTP servers. There is no reason to publish on the Internet DNS records for
all of your sensitive internal systems. A split DNS infrastructure, also called
a split-brain or split-horizon DNS, allows you to separate the DNS records
that you want the public to access from your internal names.

Figure 5.11 shows a split DNS infrastructure. Two sets of DNS servers are
used, an external DNS server and an internal DNS server. (Note that the
internal and external servers here are primary DNS servers. Each might also
have an associated secondary DNS server, which I've omitted from the
figure for clarity reasons.) The external DNS server contains only DNS
information about those hosts that are publicly accessible. The internal DNS
server contains DNS information for all of your internal systems (so your
internal users can access machines on your internal network). When a user
on the Internet wants to connect to one of your public machines, the
external DNS server resolves the names. Similarly, the internal DNS server
resolves names for internal users. Pretty straightforward. But how does an
internal user resolve names on the Internet? After all, your internal users

might need to surf the Internet, and will need to map names to IP addresses
for external systems. A split DNS accomplishes this by having the internal
DNS configured to forward requests from internal users for external
machines to the external DNS server. The internal DNS acts rather like a
proxy server, getting a request from the inside and forwarding it out. The
external DNS server resolves the name by querying other servers on the
Internet, and returns the response to the internal DNS server, which
forwards the response back to the requesting user. Therefore, with a split
DNS infrastructure, your internal users can resolve both internal and
external names, but external users (and attackers) can access only external
names.

Figure 5.11. A split DNS (also known as a split-brain or split-horizon
DNS).

One common mistake in deploying split DNS infrastructures is to allow the
internal DNS server to perform recursive lookups directly on the Internet,
instead of having it forward requests through the external DNS server. This
is a bad idea, illustrated by the "No!" element in Figure 5.11. If there is a
vulnerability in your internal DNS server, and it is talking directly with
external machines on the Internet through recursive lookups, an attacker
might be able to take over the internal DNS server directly, causing you
immense heartache. Therefore, make sure that your internal DNS servers
cannot directly interact with the outside world, but instead forward requests
to external DNS servers for recursive resolution.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

General-Purpose Reconnaissance Tools

We have discussed a variety of methods for conducting reconnaissance
activities against a target. A significant amount of work has been done to roll
many of these techniques together in unified reconnaissance suites. These
suites of tools fall into two general categories. The first set consists of
completely integrated client executables, such as Sam Spade, which are run
on an end user's machine and perform recon queries on behalf of that user.
The second category includes a motley group of Web-based tools, accessed
across the Internet using a Web browser. Let's explore these two categories
in more detail.

Sam Spade: A General-Purpose Reconnaissance Client Tool

One of the easiest to use and most functional integrated reconnaissance
suites available today is the freeware Sam Spade, written by Steve Atkins
and available at . Sam Spade, which is shown in Figure 5.12, contains many
reconnaissance tools and a lot of bells and whistles, all rolled together in a
single executable with a pretty Graphical User Interface (GUI), which runs
on all modern Windows systems.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Figure 5.12. The incredibly useful Sam Spade user interface.

[View full size image]

Among its numerous reconnaissance features, Sam Spade includes the
following capabilities:

This tool sends an Internet Control Message Protocol (ICMP) Echo
Request message to a target to see if it is alive and how long it takes to
respond.

Sam Spade performs whois lookups using default whois servers, or by
allowing the user to specify which whois database to use.

This feature determines who owns a particular set of IP addresses by
querying ARIN, RIPE NCC, APNIC, and LACNIC.

This feature queries DNS servers to convert domain names to IP
addresses.

This feature transfers all information about a given domain from the
proper name server.

This feature returns a list of router hops between the source machine

and the chosen target. We discuss tracerouting in more detail in Chapter
6.

This feature supports querying a UNIX system to determine its user list,
provided that the target runs the ancient, rarely used finger daemon.

This function can be used to determine whether given e-mail addresses
are valid on a target e-mail server. It is based on the Simple Mail
Transfer Protocol (SMTP) Verify command, the option within the most
widely used e-mail protocol to check the validity of e-mail addresses.

Sam Spade's built-in mini Web browser lets its user view raw Hypertext
Transfer Protocol (HTTP) interactions, including all HTTP headers. This
information is useful in attacking Web applications, as we shall see in
Chapter 7, Phase 3: Gaining Access Using Application and Operating
System Attacks.

With this feature, a user can grab the entire contents of a Web site,
creating a local copy for easy perusal on the attacker's own system. Web
crawler functionality is sometimes called a Web spider.

As you can see, Sam Spade is a very powerful tool providing an attacker
with a significant amount of useful recon information for mounting an
attack. Other client-based reconnaissance tools similar to Sam Spade include
the following:

The Active Whois Browser, a shareware program that supports whois and
DNS recon, for a $19.95 registration fee, at .

NetScanTools Pro, a $199.00 tool for Windows available at .

iNetTools, a feature-limited demonstration tool for Windows and
Macintosh (yes, the Mac!), available at .

Web-Based Reconnaissance Tools: Research and Attack
Portals

Beyond integrated client tools like Sam Spade, an enormous number of
Web-based reconnaissance tools are freely available on the Internet. An
attacker accesses these tools using a browser, typing in the target name or
IP address into a Web form. The Web site then performs a variety of recon
activities against the target. Results, of course, are displayed in the
attacker's browser. Some of these sites even support the user in moving
beyond reconnaissance to performing denial-of-service attacks or even
vulnerability scans.

Keep in mind that some of these Web sites are run by rather shady
operators, others are run by consulting companies, and still others are run
by shady consulting companies. As with all of the computer underground
tools and Web sites listed in this book, don't surf to these sites from your
organization's network or using a machine storing sensitive information.
Because the sites could monitor your actions, or even attack you, you should
only access them from an ISP separate from your own organization's
Internet connection, using a sacrificial system without any sensitive
information as a client. Some of the most interesting Web-based
reconnaissance and attack tools include the following:

(In addition to offering the Sam Spade client, these folks offer a Web-
based tool as well.)

The illustrious David Rhoades has created a comprehensive Web site called
AttackPortal.net featuring a searchable database with more than 100
different Web-based reconnaissance and attack tools like those listed
previously. You can search his site, shown in Figure 5.13, at for tools that let
you research, probe, and attack systems simply by filling out forms on Web
sites.

Figure 5.13. Attackportal.net: A Web-based reconnaissance and
attack portal.

[View full size image]

With these tools, from the target's perspective, all recon and attack traffic
comes from the Web server running the recon tool, and not the attacker's
own machine. This is very different from the Sam Spade client, with which
all traffic originates at the attacker's machine. Therefore, these Web-based
tools can help an attacker remain more anonymous. It is important to note,
though, that the Web server the attack is launched through can still record
the IP address of the client running the browser and initiating the query and
attack.

Also, as a final note, please do check with your legal counsel to ensure that
you have proper permission before launching any tests through these Web
sites. Otherwise, you could get into significant trouble.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

From social engineering scams to automated reconnaissance on the Web,
the attacker has gained very useful insight into the target organization and
infrastructure. A very lucky and skilled attacker can gain numerous phone
numbers and system addresses from Internet queries, as well as detailed
system information through social engineering and dumpster diving. At the
end of the reconnaissance phase, the attacker has, at a minimum, a
telephone number or two and a list of IP addresses and domain names.
Possibly, the attacker has found critical hints about the technologies in use
at the target, and even a list of vulnerabilities to try to exploit. Not bad for a
day's work. These reconnaissance trophies are the building blocks for the
next phase of the attack, scanning.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

Many attacks start with a reconnaissance phase, whereby an attacker tries
to gain as much information about a target as possible before actually
attacking it. Many low-technology reconnaissance techniques are in
widespread use by attackers. Social engineering involves tricking a victim
into revealing sensitive information through smooth talking. A social
engineer is an attacker who usually works over the telephone, conning users
into giving up phone numbers, names, passwords, or other sensitive items.
Attackers can even spoof caller ID using a variety of mechanisms to trick
victims into giving up information. Through physical break-in, intruders can
walk through a computing facility, gaining access to an internal network or
just stealing equipment containing sensitive data. Implementing strong
computer security is impossible without good physical security. Dumpster
diving is the process of looking through an organization's trash for discarded
sensitive information. Dumpster divers often obtain system documentation,
user lists, phone numbers, passwords written on sticky notes, discarded CDs,
old hard drives, and so on. To avoid these attacks, user awareness is key.
You must instruct users to handle sensitive information carefully when
requested by an unknown person on the telephone, to implement physical

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

security mechanisms, and to shred sensitive information before discarding it.

The World Wide Web is a cornucopia of useful information for an attacker.
Many organizations put information on their Web sites that can be quite
valuable to an attacker, such as employees' contact information, business
partners, and technologies in use. Attackers use Web search engines,
especially Google, to research targets, gaining knowledge about aspects of
and events in the target organization. Some of the most useful Google
search directives and operators include site:, link:, and -. Automated Google
recon tools, such as SiteDigger and Wikto, help to find vulnerabilities on
target sites by querying Google using issues from the GHDB. Newsgroups
also provide incredibly useful information. To defend against attackers
gathering information from the Internet, you must have policies regarding
the use of sensitive information on the Internet, and periodically monitor the
Internet for sensitive information about your organization. You can also use
a robots.txt file and specific HTML meta tags to prevent indexing and caching
by well-behaved search engine bots.

Whois databases provide information about a target's Internet addresses,
domain names, and contacts. The InterNIC provides a whois database for
.com, .net, .org, and several other top-level domain names, identifying the
registrar an organization used to establish a domain name. The Uwhois Web
site is quite useful in researching domain names registered in 246 different
countries. After determining the target's registrar from InterNIC, an attacker
usually consults the whois database of the target's registrar. The target's
registrar provides the administrative, technical, and billing contact
information, as well as DNS server information. Finally, the ARIN, RIPE NCC,
APNIC, and LACNIC whois databases can be used to find the IP addresses for
specific geographical locations. You should make sure that your domain
name registration entries are up to date.

DNS servers hold a great deal of information valuable for an attacker,
including the mapping of domain names to IP addresses, a list of mail
servers for an organization, and other name servers for the organization.
DNS is a distributed hierarchical database, used by people and programs to
resolve domain names. DNS stores a variety of record types, including
Address records that map domain names to IP addresses and vice versa,
Host Information records that identify the system type associated with a
given domain name, and MX records that identify the mail server for a given
domain name.

The nslookup tool included with modern Windows systems and UNIX can be
used to interrogate DNS servers. Nslookup can be used to send single
queries and get responses for given domain names. Alternatively, nslookup
can be used for a zone transfer, which grabs all records from a DNS server.
On most modern Linux machines, nslookup cannot perform a zone transfer,

so the dig command can be used instead. To defend against DNS attacks,
you should configure your DNS servers to allow zone transfers only from
appropriate servers, and avoid including sensitive information in domain
names and records.

A variety of general-purpose reconnaissance tools can be downloaded from
the Internet. One of the most useful is Sam Spade, which supports many
techniques for getting recon information. Also, a large number of Web-based
tools are available for conducting reconnaissance or simply attacking a
target.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 6. Phase 2: Scanning

After the reconnaissance phase, the attacker is armed with some vital
information about the target infrastructure: a handful of telephone numbers,
domain names, IP addresses, and technical contact information—a very good
starting point. Most attackers then use this knowledge to scan target
systems looking for openings. This scanning phase is akin to a burglar
turning doorknobs and trying to open windows to find a way into a victim's
house.

Unfortunately, this phase very much favors the attackers. Our goal as
information security professionals is to secure every possible path into our
systems; the attackers just have to find one way in to achieve their goals.
Time also works in the attackers' favor during the scanning phase. While we
scramble to secure our systems in a dynamic environment supporting actual
users, attackers have the luxury of spending huge amounts of time
methodically scanning our infrastructures looking for holes in our armor.
Once attackers select their prey, many of them spend months looking for a
way in, slowly but surely scanning systems looking for the big kill. This
chapter describes these scanning techniques and presents defensive
strategies for dealing with this sadly unfair situation.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-
Step Guide to Computer Attacks and Effective Defenses

War Driving: Finding Wireless Access Points

An incredibly popular scanning technique involves searching a target
organization for accessible and unsecured Wireless Local Area Networks
(WLANs), a process known as war driving. Attackers utilize war driving to find
wireless access points they can use for free Internet connectivity or even as an
entryway into a tempting target organization. As we discussed in Chapter 2,
Networking Overview, WLAN deployment is in high gear, based on the 802.11a,
b, and g standards. Wireless networks using each of these technologies are a
growing security problem because clueless users sometimes deploy wireless
access points without understanding the major security implications they bring.
These users typically get addicted to the technology by installing a WLAN at
home so they can roam around their homes in their pajamas surfing the
Internet. After growing accustomed to the wireless lifestyle at home, they bring
a cheap access point into the office so they can meander the office cubicle
corridors while remaining connected (hopefully not still in their pajamas).
Sadly, because they often never consider the security implications, these
employees usually employ no security or only rudimentary protection of these
office WLANs, giving attackers a major avenue into the environment.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

War driving originally got its name based largely on the work of Peter Shipley,
who drove around Silicon Valley in 2001 to find hundreds of access points.
Although somewhat esoteric at the time, war driving is now a mainstream
activity among computer attackers. The original war driving terminology has
lead to spin-off phrases such as war walking (that is, walking around to find
WLANs), war biking (riding a bike while discovering WLANs), war flying
(employing small airplanes flying at low altitudes), and even war chalking
(writing on pavement with chalk to indicate WLANs discovered in an area).
Collectively, however, all of these methods for finding WLANs are still called
war driving, and aficionados of the practice have created a Web site devoted to
their obsession at . Go there for the latest news snippets, tools, and social
interactions of the war driving community.

Of course, because WLANs are based on radio transmissions, the further away
the attacker is located from the access point, the harder it is to detect as radio
signal strength diminishes. However, some people are quite surprised at the
great distance various 802.11 protocols will travel. Although a reliable WLAN
connection with a standard access point typically requires a user to be within
approximately 100 meters or less to send traffic across a LAN, war-driving
attackers don't have to reliably send traffic; they merely need to detect the
LAN. Using a high-gain antenna, various wireless researchers have conducted
war-driving exercises at distances of more than two kilometers! Using high-gain
antennas on both ends, 802.11 signals have been transmitted over 100
kilometers. Therefore, you cannot assume that your WLANs are safe from
attackers merely because the visitor parking spaces in your office lot are more
than 100 meters from your buildings. In a crowded city, 802.11 wireless signals
seep everywhere, into other floors of the same building, across the street, and
even to that curious man with a laptop laughing maniacally on a park bench a
block away.

Most war-driving attackers use omnidirectional antennas because they capture
signals from all over, letting the attacker harvest a large number of possible
wireless targets. However, some attackers are focused on specific targets in
specific buildings. These folks typically use a directional antenna, focusing their
wireless reception. Although omnidirectional antennas cast a wider net,
directional antennas get better reception over larger distances. The best
attackers choose suitable antenna types based on their mission.

A war driver's immediate goal is to locate WLANs and determine their Extended
Service Set Identifier (ESSID), an up-to-32-character name of a given WLAN.
Some people think that the ESSID is a security feature like a password, but it is
not. The ESSID is transmitted across the air in clear text by access points and
all wireless cards using the access points. Compounding the problem, the
802.11 protocol family supports a probe request message, whereby a client can
ask an access point for certain information. Probe requests are supposed to

include the ESSID, but many access points with a default configuration accept
probes that have an ESSID with the value of "Any." What's more, by default,
these access points send a probe response that includes the appropriate ESSID,
even if the probe request only said "Any." Therefore, an attacker can spew out
a bunch of probe requests with an ESSID of "Any" and wait for these access
points to send responses with their configured ESSIDs. Although some access
points can be configured to ignore probe requests with the "Any" ESSID, such a
configuration doesn't solve the war-driving problem because of another aspect
of the 802.11 protocols.

Access points automatically transmit beacon packets approximately every 100
milliseconds to synchronize timing and frequency information. These beacons,
which are sent in clear text, carry the ESSID in most default configurations.
Thus, a war-driving attacker can retrieve the ESSID quite easily by just
listening for the beacons. Some access points can be configured to omit the
ESSID from beacon packets, operating in a more clandestine mode. In such
configurations, the beacons themselves are still sent, but the ESSID is omitted
from them. However, as we shall see, disabling ESSID transmission in beacon
packets provides only a tiny increase in security, as the attacker can still locate
the access point and determine the ESSID. The bottom line here is that relying
on the ESSID for security is a fool's errand.

Now, ESSIDs are not the only way of referring to a WLAN or its constituent
elements. Service Set Identifiers (SSIDs) come in two flavors: ESSIDs and
BSSIDs. The ESSID refers to the name of a WLAN configured into the access
point. The Basic SSID (BSSID) is set to the hardware address (that is, the
Media Access Control [MAC] address) of a wireless access point or a client. The
collective term SSID is used to refer to either or both types of SSID.

Attackers can choose from a wide variety of tools to perform war driving, but
each tool tends to center around one of three specific techniques for finding
wireless access points and determining their ESSIDs. These techniques include
the following:

Active scanning

Passive scanning

Forcing deauthentication

War Driving Method 1: Active Scanning—Sending Probe
Packets with NetStumbler

One of the most straightforward methods for war driving involves broadcasting
802.11 probe packets with an ESSID of "Any" to see if any nearby access points
or clients send a probe response containing the ESSID of the WLAN. This

approach is akin to running down the street shouting "Who's there?" and
listening for people to respond with their names. NetStumbler, a free (but
closed-source) war-driving tool written by Marius Milner (), employs this active
scanning approach. NetStumbler is, by far, the most popular tool today for
discovering WLANs. Its popularity is largely due to its simple user interface, and
the fact that it runs on Microsoft Windows 2000 and later. For WLAN fans with
a PocketPC-based Personal Digital Assistant (PDA), Milner released
MiniStumbler with many of the same features.

NetStumbler detects 802.11a, b, and g networks and clients, optionally tying in
Global Positioning System (GPS) data from a GPS receiver attached to the
wardriving computer to determine the physical location of the NetStumbler
machine using geosynchronous satellites when it discovers each WLAN. With
the latitude and longitude of each discovered access point recorded by
NetStumbler, an attacker can plot the location of access points on a map and
return later to the discovered LANs. Figure 6.1 shows the results of one of my
war-driving exercises in New York City using a taxi cab, an IBM Thinkpad
laptop, an ORiNOCO antenna, a GPS receiver, and, of course, NetStumbler. In
one hour, we found 455 access points, a fairly typical result.

Figure 6.1. NetStumbler in action in Manhattan.

[View full size image]

As you can see, NetStumbler gathers the MAC address, ESSID, wireless
channel, and relative signal strength of each access point it discovers. Going
further, if the attacker configures the wireless interface of the Windows
machine running NetStumbler to obtain an IP address automatically,
NetStumbler also records the IP address associated with the target network

based on the underlying operating system sending out a Dynamic Host
Configuration Protocol (DHCP) request and receiving a response. Finally,
NetStumbler marks with a small lock icon those target networks that are using
some form of Wired Equivalent Privacy (WEP), the flawed encryption protocol
that tries to protect the WLAN. Numerous tools, such as AirSnort, attack WEP
traffic by sniffing encrypted packets from the LAN and applying various
cryptanalysis techniques to unravel them. Because of cryptographic flaws in
WEP, an attacker sniffing enough encrypted traffic (typically about 100 to 800
MB) can determine the WEP key and then access the network using a wireless
card configured with that key. Alternatively, an attacker who cracks a WEP key
can just decrypt all of the traffic sent using that key, thereby recovering
potentially sensitive data from the WLAN.

Unfortunately, NetStumbler can sometimes be very picky about wireless card
hardware and won't work with some of the more esoteric card types, although
this situation has been improving. For a rather up-to-date compatibility list,
check out the hardware list at .

Because NetStumbler works solely by sending out probe requests with "Any" as
an ESSID, access points configured to ignore such probes are invisible to
NetStumbler. Another major limitation of NetStumbler involves its sheer
noisiness. By sending probe requests every second with that obvious "Any"
ESSID, a wireless monitoring device or even an access point on the target
network can detect the attacker's presence and alert security personnel.
However, for attackers wanting a quick and dirty Windows-based war-driving
solution and willing to overlook these limitations, NetStumbler is a fine
solution.

War Driving Method 2: Listening for Beacons and Other Traffic
with Wellenreiter

A far stealthier and more reliable way of discovering WLANs involves putting
the wireless card into so-called rfmon mode, also known as monitor mode, so
that it sniffs all wireless traffic from the air, a more passive way of discovering
wireless systems. With wireline Ethernet networks, most sniffers place an
interface into promiscuous mode to gather all packets, grabbing them without
regard to their destination hardware address. Although wireless interfaces also
support promiscuous mode, that mode only grabs packets for a single WLAN the
machine is already associated with when running promiscuously. The rfmon
mode goes further, grabbing all wireless packets, including various
management frames, from all WLANs without associating with any of them.
Thus, war-driving tools are better off using rfmon mode so that they can
intercept beacons and extract SSIDs from them. Furthermore, if the access
point is configured to omit SSIDs from beacons, the tool in monitoring mode
could even just grab any wireless traffic and pilfer ESSID information from it.

Even if the wireless connection is encrypted, the ESSID information itself is still
sent in clear text, so the attacker can nab the ESSID from any user
transmitting data across the WLAN. Wellenreiter, an amazingly useful WLAN
detection tool, does just that.

Written by Max Moser and the crew at , Wellenreiter runs on Linux and
supports Prism2, Lucent, and Cisco wireless card types.

It sniffs wireless traffic, capturing all data sent, including the entire wireless
frames of all packets with their associated SSIDs. The user can also configure
Wellenreiter to dump all captured wireless packets into a tcpdump or Ethereal
packet capture file. That way, the output of Wellenreiter can be easily parsed
and displayed using tcpdump or Ethereal, a very powerful sniffer we discuss in
more detail in Chapter 8, Phase 3: Gaining Access Using Network Attacks. Like
NetStumbler, Wellenreiter also interfaces with GPS devices, storing the physical
location of the war-driving computer when each WLAN is detected.

Wellenreiter first harvests ESSIDs using rfmon mode. Once it discovers a
wireless access point or client, Wellenreiter then listens for Address Resolution
Protocol (ARP) or DHCP traffic to determine the MAC and IP addresses of each
discovered wireless device. Thus, unlike NetStumbler, Wellenreiter runs in an
entirely passive mode, not relying on the broadcast probes that make
NetStumbler so noisy or DHCP requests that could get the attacker noticed.
However, if an access point is configured to omit its ESSID from its beacons,
and no other users are sending traffic to the access point, Wellenreiter will not
be able to determine the ESSID. Sure, Wellenreiter will know that an access
point is present based on the ESSID-less beacons, but it won't know its name.
As shown in Figure 6.2, Wellenreiter's screen temporarily displays a red icon
and a name of "Non-broadcasting" for such systems. Later, when a user begins
sending traffic to or from the access point, Wellenreiter extracts the ESSID
from those frames and displays it on the screen.

Figure 6.2. Wellenreiter's screen shows both broadcasting and
nonbroadcasting access points, and indicates which items are sending

traffic.

[View full size image]

Another very useful wireless tool is the fantastic free Kismet, a wireless sniffer
by Mike Kershaw (). Like Wellenreiter, Kismet can identify the presence of
wireless networks and record their traffic on an entirely passive basis. However,
whereas Wellenreiter is optimized for war driving, Kismet is designed for
detailed packet capture and analysis. When conducting wireless assessments, I
include both tools in my arsenal.

War Driving Method 3: Forcing Deauthentication with ESSID-
Jack

So NetStumbler focuses on active scanning, whereas Wellenreiter (and other
wireless sniffers) opt for a passive approach. There is also a third way to get
the SSIDs from WLANs, implemented in a tool called ESSID-Jack, part of the
AirJack toolkit written by Mike Lynn. Suppose we have a WLAN that is
configured to ignore probes with an ESSID of "Any" and to omit ESSID
information from beacons. What's more, the access point is not currently
sending traffic with any ESSID information in it, although there are currently
quiet clients that have previously authenticated to the access point. This access
point's ESSID is invisible to NetStumbler (because it ignores probe requests
with an "Any" ESSID) and Wellenreiter (until the clients or access point start
sending traffic with the ESSID). So, is the attacker out of luck, having to wait
for a transmission? Hardly.

With ESSID-Jack, as illustrated in Figure 6.3, the attacker first sends a wireless
deauthenticate message to the broadcast address of the LAN in Step 1, spoofing
the MAC address of the access point. The attacker must obtain this MAC address
for the attack to work, typically grabbing it from various beacon, management,
or data frames using a wireless sniffer such as Wellenreiter or Kismet. These
are the access points labeled as Non-broadcasting by Wellenreiter. Because
wireless clients accept wireless control messages from access points without

any authentication, the attacker can force the clients off the WLAN by merely
spoofing the access point's MAC address in the deauthenticate message. After
being knocked off the WLAN, in Step 2, the clients then automatically try to
reassociate themselves to the access point, using the appropriate ESSID for the
access point. The clients send an association frame with the intention of joining
the wireless network. This association frame contains the ESSID, in clear text.
In Step 3, the attacker sniffs the air for the association frame and collects the
ESSID information. In essence, the attacker is injecting traffic into the LAN (the
deauthenticate message) to get useful information out of it (the ESSID). Voila!
The attacker now has harvested the ESSID.

Figure 6.3. ESSID-Jack in action.

[View full size image]

War-Driving Defenses

How can you defend your network against these nefarious war-driving attacks?
A multipronged approach to this significant problem is best. Let's look at the
various aspects of a solid wireless security program.

Setting the ESSID

First, set the ESSID to a value that doesn't bring unwanted attention to your
network. Establish a standard for naming WLANs in a way that doesn't include
your organization's title in the SSID. A WLAN name like 1234 is far better than
an attention-grabbing ESSID of Freakishly_big_bank. One way to accomplish
this goal is simply to set the ESSID of each access point in your environment to
some obscure string employees can still recognize, followed by the access
point's serial number. Of course, you'll have to train your employees to know
which access points to use. Keep in mind that even with obscure ESSIDs, your
WLANs aren't secure. Attackers can still find them, but the bad guys will have
less information about them initially.

Configuring Access Points and Using Wireless Security
Protocols

Next, configure your access points to ignore probe requests that don't include
the ESSID, and set them up to omit the ESSID from beacon packets. As we've
seen, an attacker can still obtain your SSIDs, but you'll at least foil the casual
war-driving riffraff. Note that some of the cheaper access points don't have the
option of omitting the SSID from beacons. Still, this useful option is being more
widely implemented in modern access points.

Next, require some form of stronger authentication to your access points. It's
crucial to note that wireless card MAC addresses are not a good form of
authentication at all. Although some access points, even cheaper ones, can be
configured to allow only certain registered MAC addresses through, wireless
MAC addresses can be spoofed, trivially bypassing MAC address filtering. On
most Linux and UNIX systems, administrative users can set the MAC address of
a wireline or wireless interface to any value they choose, using the ifconfig
command as follows:

ifconfig [interface_name] hw ether [desired_MAC_address]

Alternatively, the interestingly named SirMACsAlot tool written by Roamer ()
can automatically change a wireless MAC address on Linux, FreeBSD,
OpenBSD, and Mac OS X systems. Changing your wireless MAC address on a
Windows machine is trickier business, as many of the Windows drivers don't
allow such shenanigans. Still, it's crucial that you not rely solely on MAC
addresses for WLAN security! I am currently working a case in which a large
company used a MAC-filtering approach for wireless protection and suffered a
massive attack, costing them dearly. The bad guys simply sniffed wireless traffic
to grab SSIDs and MAC addresses, and then configured their Linux machine
with that information. They then explored the entire internal network, stealing
major amounts of sensitive information used to commit fraud.

Instead of MAC addresses, require a stronger form of authentication, based on
cryptographically sound protocols. The original 802.11 cryptographic solution,
WEP, was found to be significantly flawed, with a variety of cryptographic
mistakes in its implementation, including problems with the reuse of
cryptographic initialization vectors and crypto key management. WEP by itself
is not secure enough for transmitting sensitive information or keeping bad guys
off of WLANs in a hostile environment. Instead, you should rely on a stronger
solution than plain old WEP. In 2002, the original creators of the 802.11 family,
the Institute of Electrical and Electronics Engineers (IEEE), began working on a
new security protocol for WLANs called 802.11i. However, because of the
lengthy standards process, various vendors created the Wi-Fi Protected Access

(WPA) protocol as a stopgap measure to improve security over standard WEP
using existing hardware while the IEEE continued work on 802.11i. WPA avoids
many of WEP's flaws, utilizing a protocol called Temporal Key Integrity
Protection (TKIP) to lower the chance of attackers harvesting packets and
cracking keys. In mid-2004, the newer 802.11i protocol standard was
completed. It is far stronger than earlier fare, but requires new hardware. Both
WPA and 802.11i are vast improvements over standard WEP, and you should
carefully consider using them in your wireless deployments.

Going All the Way with a VPN

Better yet, you can add another far stronger layer of security on top of your
WPA and/or 802.11i infrastructure: a good Virtual Private Network (VPN)
devoted to securing your wireless network. In addition to improving
authentication, most VPNs provide a layer of encryption to prevent interlopers
from grabbing traffic and violating users' confidentiality. This VPN encryption
applies a layer of protection on top of the wireless protection inherent in WPA
and 802.11i. Most organizations have deployed a VPN for employee access
across the big, scary Internet. Well, with wireless attacks on the rise, the radio
frequencies around your buildings are nothing more than big, scary
internetworks. Thus, the solutions we used to secure traffic across the Internet
can be repurposed to help secure our wireless access. Deploy VPN clients to
each of your wireless users, and educate your personnel to set up a VPN
connection before sending any traffic to your organization wirelessly. Make sure
you deploy access points so that all wireless traffic is directed through a VPN
gateway before entering your organization's network. The VPN device should be
configured to drop all unauthenticated and unencrypted traffic. When a user
accesses your network through a wireless access point, all traffic will be
encrypted at the user's machine by the VPN client, transmitted across the
wireless hop in a strongly authenticated and encrypted fashion, received by the
access point, and then directed to the VPN gateway, where it can be
authenticated and decrypted before entering your network.

When setting up your VPN for wireless use, be very careful with its
configuration. Remember, with wireless, an attacker might be able to grab all
encrypted data from the WLAN and try to crack it, an option they often don't
have when going after an Internet-based VPN infrastructure. With wireless, the
bad guys are on the same LAN as your users! Thus, in configuring your wireless
VPN, it's crucial to disable Aggressive Mode Internet Key Exchange (IKE),
because tools such as IKE Crack and Cain can break preshared keys sent via
that mode, as we discuss in more detail in Chapter 7, Phase 3: Gaining Access
Using Application and Operating System Attacks. Although IKE Crack and Cain
are not wireless-specific, they can be used very well against WLANs, provided
they are implemented with preshared IKE keys and use Aggressive Mode IKE.
Aggressive Mode IKE is far weaker cryptographically and should be disabled in

your VPN gateways.

Detecting the Bad Guys

Additionally, there are several solutions to identify wireless attackers in your
midst. Wireless Intrusion Detection Systems (IDSs) and services, marketed by
AirDefense, AirMagnet, and IBM, look for unusual messages sent by intruding
wireless clients (including ESSID-less probe broadcasts and unexpected
deauthenticate messages) by deploying wireless sensors throughout your
environment. Kismet, the great free wireless sniffer, also includes detection
capabilities for telltale war-driving packets and wireless intrusion attempts.

Furthermore, Cisco and a handful of other access point vendors offer built-in
capabilities in their existing access point product lines to detect renegade
access points that suddenly show up in your environment. When one of your
Cisco access points detects an unregistered renegade in your environment, it
can alert you. In a sense, you use your existing access point infrastructure,
configured with a list of your own valid access points, to police your
environment looking for rogue access points. Additionally, Cisco provides
features that attempt to jam the renegade access point by automatically
launching a DoS flood against it. I strongly recommend that you avoid this DoS
feature, as its legal implications could be dire! Still, the renegade detection
capability is wonderful.

A Little Physical Protection Never Hurt Anyone

Finally, to help limit the possibility of attacks against your wireless
infrastructure, you might want to turn down the transmit power for access
points near your buildings' perimeters, such as near exterior walls or top floors.
Similarly, you should consider deploying directional antennas to control signal
bleed out of the building from these perimeter wireless devices, in effect
bathing only trusted areas in wireless signal. There will always be a small
amount of signal bleed, but you can help minimize it with these approaches.
Finally, we're starting to see a few products that thwart wireless attacks by
controlling signal propagation using metal shielding. A handful of companies
have begun selling wallpaper with a thin layer of embedded copper wires, and
others are marketing paint with tiny metal fibers. Both solutions are designed
to act as a Faraday cage, breaking up wireless signals at the walls of your
environment. Although such solutions might sound extreme to some people,
they certainly help dampen the propagation of wireless signals in sensitive
environments. Keep in mind, though, that you might have to paint or wallpaper
your windows, floors, and ceilings to block wireless signals thoroughly.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

War Dialing: Looking for Modems in All the Right
Places

Although hacking WLANs is a popular sport today, don't ignore the still
widely used attack vector of unsecured modems in your infrastructure,
discovered through a process called war dialing. You remember the movie ,
right? Released in 1983, this movie is a classic in the hacker/techno-thriller
genre. When I first saw it, it both terrified and fascinated me. In the movie,
Matthew Broderick's character attempts to break into a computer game
company, Protovision, to play their games. Unfortunately, he accidentally
triggers a thermonuclear war, but we all have our bad days. As you might
recall, Broderick's character broke into his target by dialing telephone
numbers looking for modems. This is a classic example of a war-dialing
attack, searching for a modem in a target's telephone exchange to get
access to a computer on their network. A war-dialing tool automates the
task of dialing large pools of telephone numbers in an effort to find
unprotected modems. An attacker can scan in excess of 1,000 telephone
numbers in a single night using a single computer with a single phone line.
More computers and phone lines make the scan even faster.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

You might be asking, "Why are we talking about war dialers now? A couple
decades ago, they were included in a major motion picture. Surely they are
not a problem these days!" Sadly, war dialers are still one of the easiest and
most often used methods for gaining access to a target network.

A Toxic Recipe: Modems, Remote Access Products, and
Clueless Users

Often, unaware users connect a modem to their desktop computer in the
office so they can access the machine from home without having to mess
with finicky VPNs or limiting firewalls. These users sometimes employ PC
remote control products, such as RealVNC's Virtual Network Computing
(VNC) software, Symantec's pcAnywhere, DameWare's Mini Remote Control,
or Laplink's Gold program so they can have complete control of the machine
from home. These products allow the user to access all resources on his or
her office machine, including files, network shares, and even the screen,
keyboard, and mouse. If not configured properly, these remote control
products offer an excellent opening for attackers to gain access to the
network. Users set up a modem and remote control product because they
simply want to get more work done. However, if they aren't careful, they
could jeopardize the most carefully designed security controls on your
network.

Many users configure these tools with very easy-to-guess passwords,
allowing an attacker to run an automated password-guessing tool (which we
discuss in Chapter 7) to gain access. We have frequently conducted war-
dialing exercises, and gained wide open access to a network. To gain
complete access to the target machine, all the attacker has to do is find the
modem on the given telephone line using a war dialer, recognize the
connect string from the remote control product, and connect using the
appropriate remote control client. After guessing the password, the attacker
has total control over that machine, and can then try to attack the network
to which the victim machine is connected.

SysAdmins and Insecure Modems

Clueless users are not the only offenders here. Frustratingly, system
administrators, vendors, and service providers sometimes leave systems
connected to modems with little or no security. Most organizations give
modem access to vendors and service providers so they can troubleshoot
devices remotely via telephone, even if the existing IP network goes down.
Again, when we conduct war-dialing exercises, we sometimes discover
modems connected to servers and routers that either request no password,
or have a trivial-to-guess password. A couple years ago, we conducted a
penetration test against a customer that had spent several hundred

thousand dollars on a secure Internet gateway, including a firewall, IDSs,
and secure servers. We spent several weeks bashing our heads against the
firewall and servers, but couldn't gain access. We fired up our handy war
dialer, though, and started to search for insecure modems on the telephone
exchanges of the company. Within two hours, we found an open modem on a
router. Boom! From that router, we were able to gain access to the entire
network, going around the expensive firewall and Internet gateway.

After discovering this renegade modem, we searched the building for the
associated router to which it was connected. We found it tucked into a closet
with about an inch of dust on top. Interestingly, the only connectivity the
router had was the modem and one network interface! The router wasn't
even routing on the network; administrators had scavenged it for parts,
leaving only one network interface and forgetting about this "unimportant"
machine that gave us complete access to the network. When we told the
company about our discovery, the network administrator said, "That darn
Charlie! He quit about three years ago and never told me about that router."
To this day, I don't know if Charlie really existed or was merely a useful
scapegoat.

Finding Telephone Numbers to Feed into a War Dialer

War dialers require a range or series of numbers to dial, usually a telephone
exchange associated with a particular target network. So where does an
attacker get the phone numbers for war dialing? There are many options for
determining the phone numbers of a target organization, including the
following:

The Internet is a treasure trove of phone numbers for an organization.
As we saw in Chapter 5, Phase 1: Reconnaissance, Google includes
phone book functionality with its phonebook directives. Furthemore,
your users' queries to mailing lists and newsgroups are very helpful,
because many users include their phone numbers in their signature line
at the end of their e-mails.

These highly useful databases have telephone numbers for network
contacts, as we saw in Chapter 5.

Most organizations have contact information or even phone books with
employee phone numbers on their Web sites.

An attacker can call users and dupe them into giving out information
about phone numbers. The attacker could say, "I'm from the phone
company, and I need to verify what phone numbers you folks are using."

Attackers scour these sources looking for individual telephone numbers.

They then war dial all telephone numbers in a range centered around the
discovered numbers, trying 1,000 numbers before and after to find modems.

THC-Scan 2.0

THC-Scan is one of the most full-featured, free war-dialing tools in
widespread use. Written by the very prolific van Hauser and released in late
1998, THC-Scan 2.0 runs on Microsoft Windows platforms. THC-Scan was
released through The Hacker's Choice group, from which it derives the
three-letter acronym in its name. You can find THC-Scan 2.0 at . Even
though it does not have a GUI, THC-Scan's clean interface is very well
organized and easy to use, as shown in Figure 6.4.

Figure 6.4. The THC-Scan 2.0 user interface.

[View full size image]

On the THC-Scan screen, the modem window on the left shows the
commands sent from THC-Scan to the system modem, in Hayes-compatible
modem lingo with its familiar ATDT syntax. The all-important log window
shows what types of lines are discovered, the time of discovery, and other
important messages from the system. In the statistics portion of the THC-
Scan screen, the tool displays a nice real-time summary of detected lines,
including the number of carriers (discovered modems) and other types of
lines. A convenient statistic is the number of lines dialed per hour. With a
single machine and a single modem, we typically dial approximately 100
lines per hour in our war-dialing penetration tests. This is a useful metric in
determining how long it will take to dial large numbers of lines. Additional
features of THC-Scan are shown in Table 6.1.

Table 6.1. THC-Scan 2.0 Features

Capability How the Capability Can Be
Used

Dialing
random,
sequential,
or a list of
numbers

A sequential dial might
trigger scan detection
capabilities of a Private
Branch Exchange (PBX) or
the telephone carrier.
Therefore, attackers often
use random scans. If the
attacker has a list of phone
numbers, and not a range,
each individual phone
number on the list can be
dialed.

Breaking up
work across
multiple
machines or
multiple
instances of
THCScan on
one system,
each with
its own
modem

THC-Scan supports breaking
up the list of numbers to dial
into separate files so multiple
copies of THC-Scan can each
tackle a separate piece of the
job. You can run as many
copies of THC-Scan on a
computer as you have
modems and phone lines.

Nudging

Nudging refers to sending a
predefined string of
characters to a discovered
modem. The war dialer
"nudges" the target to get it
to respond with possibly
useful information including

warning banners, login
prompts, and so on.

Waiting
random
time periods
between
calls (to
lower
chance of
detection)

THC-Scan can be configured
to wait a random amount of
time between calls. The
authors were concerned that
the target PBX or even the
telephone company would
notice a constant dialing of
numbers every 60 seconds,
so they introduced a random
time interval between dial
attempts.

Detecting
jamming by
counting
the number
of busy
signals

The jamming detection
capabilities of THC-Scan are
rather crude, but interesting
nonetheless. If the number
of busy signals reaches a
certain threshold, the system
stops dialing. The authors
were worried about a
telephone company detecting
scans and feeding back busy
signals to the system to
thwart the attack. I've been
war dialing for years and
have never been subject to
either detection (that I know
of) or jamming (which I
would have observed). I
think these are paranoid
features, but they are still
interesting.

When THC-Scan is running, it can rely on the local modem on the war-
dialing machine to determine whether the dialed line has a modem, is busy,
or times out because a pesky human answered the phone. Whoever answers
the phone dialed by the war dialer will hear nothing on the line. After a
time-out interval configured in the war dialer passes (typically several
seconds), the war dialer hangs up and moves on to the next line. The person
answering the phone hears the familiar and rude click of a hang-up. If the
war dialer discovers a busy signal, it passes up this number, and can be
configured to redial it again later. If a modem carrier is discovered, the
telephone number of that modem is recorded in the log file.

The War Dialer Provides a List of Lines with Modems: Now
What?

After the scan, the war dialer logs contain a list of the phone numbers with
modems and the results of nudging each modem. The nudging function of
the war dialer often reveals a warning banner or login prompt. The attacker
carefully looks through the logs searching for systems requiring no password
(now there's an easy way in!) and familiar connection strings. Many systems'
prompts explicitly state what platform they are running (e.g., "Hi, I'm
Linux!"). For others, the attacker can determine this information from the
nature of the prompt. UNIX boxes and Cisco router prompts are particularly
easy to identify. Additionally, some packages respond to a nudge with a
string of characters the attacker can recognize as a particular tool running
on the target machine. For example, pcAnywhere sends back a telltale
sequence of characters.

THC-Scan relies on the attacker to go through the logs and recognize the
types of system running at target numbers. It does not automatically
identify the system type, instead relying on the attacker's own knowledge or
a database of known system types. Attackers often compile and share long
lists of various types of systems' nudge behavior, ranging from variants of
UNIX to mainframes to remote access products. A commercial war-dialing
tool, Sandstorm Enterprises' PhoneSweep, includes automated system
identification, eliminating the need for a list of system nudge behaviors for
those users willing to pay for PhoneSweep.

Based on the war-dialer output, the attacker might find a system or two
without passwords. The attacker can connect to such systems, look through
local files, and start to scan the network (we discuss more about scanning
and exploring networks later in this chapter). If the discovered modem
requires a special client for a connection, such as a remote control program
like pcAnywhere, the attacker uses this special client to connect.

If all of the discovered systems with modems are password protected, the

attacker will then resort to password guessing, firing password after
password at the target in an attempt to log in. We cover various automated
password-guessing tools in detail in Chapter 7.

Defenses Against War Dialing

So, how do you defend your network against war-dialing attackers? As with
most solid defenses, a strong policy is the best place to start.

Modem Policy

A clear, documented modem and dial-up line policy is a crucial first line of
defense against war dialers. Tell your user population that they cannot use
modems on desktop machines in your office facilities. All dial-up remote
access must use a centralized modem pool, which is subject to audit to
ensure its security. Better yet, avoid modems altogether, relying on a secure
VPN instead. Train users regarding the modem policy and the use of secure
remote access services, such as your corporate modem bank or VPN.

Of course, some users might have a specific, demonstrable business need for
having a modem. For example, a business partner relationship could require
a modem, resulting in new revenues or improved profits for your
organization. As much as we security personnel might hate to admit it, our
companies exist to service customers, constituents, or other users, not to be
impregnable fortresses with which no one can do business. Your modem
policy should include the possibility of a deviation when there is an
important business need requiring a modem. Your policy should state that a
deviation request must include a business justification and be filed and
signed by a person responsible for the modem. All deviations should be
subject to approval by the security organization, which is responsible for
ensuring the modem line has difficult-to-guess passwords, or uses an
authentication token for access. These deviations are essentially a method
for forcing users to register modems.

These deviations should then be used to create an inventory of known
modem lines in your organization. You can use a war-dialing tool to audit
this list periodically to ensure the modems on it conform to your security
standards for authentication.

Dial-Out Only?

If a user has a business need for a modem to dial out of your network only,
you can configure the PBX so that a particular telephone line supports
outgoing calls only. No incoming calls will be allowed to that line, preventing
an attacker from discovering the modem and gaining access. Although this
technique works quite well, some users have a business need that requires

incoming dial-up modem access.

Find Your Modems Before the Attackers Do

In addition to a strong modem policy and modem registration, you should
periodically conduct a war-dialing exercise against your own telephone
numbers. If you find the renegade modems before an attacker does, you can
shut them down and prevent an attack. I recommend doing these exercises
fairly frequently, every three to six months, depending on the size of your
organization and the personnel you have available to do the scan. You can
conduct the exercise using your own personnel, because war-dialing tools
require little special expertise. You could use a free tool like THC-Scan to
conduct the war-dialing exercise. Alternatively, you can use a commercial
war dialer such as PhoneSweep from Sandstorm Enterprises (). You could
also outsource war-dialing scans, but you must be sure to use a reputable
company when searching for security vulnerabilities on your network.

When war dialing against your own network, how do you determine which
telephone numbers to dial? At a minimum, you should get a list of all analog
lines from your PBX. You might also want to consider scanning digital PBX
lines and even VoIP connections, because a user can buy a digital-to-analog
line converter from Radio Shack for under $100.00 or string an acoustic
coupler to a VoIP line.

A major concern in finding all of your incoming telephone lines involves
those lines not accessible through your PBX. A user might have called the
telephone company and requested a phone line to be installed directly to
one of your buildings. These direct lines from the telephone company that do
not go through your PBX can be a nightmare to find. The best, although not
ideal, approach for finding such lines is to follow the money: Get the bills
from the telephone company. Ask your telephone company to give you a
copy of all bills being mailed to a given address, or, if possible, all bills for
lines at a certain address. You should conduct war-dialing exercises of these
extra incoming lines, plus your analog and digital PBX lines, on a regular
basis.

If you are into writing scripts for managing your Windows-based
infrastructure, there's another option for finding modems on Windows
machines besides actually war dialing the phone number range. You could
turn to Windows Management Instrumentation (WMI). Microsoft provides
this Application Programming Interface (API) for script writers to access and
manage numerous aspects of Windows machines remotely, including
installed hardware, software, and operating system settings. In particular,
the Win32_POTSModem class in this API can be called from a VBScript or
Perl script to interrogate target machines in a domain, determining whether
a modem is installed and its configuration. Such access is far less intrusive

than launching a war-dialing exercise, but it only applies to Windows
machines in your domain. Microsoft has created a handy little primer on
WMI Scripting, available for free at .

Desk-to-Desk Checks

A final way to prevent attacks through renegade modems (as well as
unauthorized wireless access points) is to find deviations from your policy by
conducting desk-to-desk checks. Your system administrators or security
organization should plan periodic evening pizza parties. Order a few pies (a
legitimate business expense), and after a hearty meal, scour the building,
checking users' desktop machines to see if they have modems with dial-up
lines attached or unauthorized wireless access points. Because it's hard to
see internal modems, look for the telephone wires attached to the computer.
Even if you do your own war dialing, you might still find extra modems
connected to desktops by walking around from desk to desk. When you
conduct desk-to-desk checks, you should always employ the two-person rule
(also known as the buddy system). With a two-person team checking for
unwanted and unregistered modems, you will not be subject to claims of
unfairness or, worse yet, theft from people's desks. If a single person checks
for modems late at night, and something winds up missing from someone's
desk, you could have significant problems. The buddy system minimizes the
chance of such accusations.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Network Mapping

So far, we have focused on scanning targets, looking for WLANs or
unsecured modems. At this stage of the attack, the bad guys sit in one of
three places:

1.
On the other side of the Internet, staring at the target DMZ
discovered via thorough reconnaissance

2. Hanging off of a WLAN, identified through war driving

3.
Connected to a system with a modem, found during a war-
dialing attack

At this point, most attackers want to scope their prey, determining the
addresses of additional targets and gaining an understanding of the network
topology from where they sit. A clever attacker will carefully map your
network infrastructure, trying to get into the mind of the network architect

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

to discover critical hosts, routers, and firewalls.

Where will the attackers point their tools when mapping and scanning your
network? They will aim them at whichever systems they can reach. If the
attackers have no access to your internal network, they will begin by
mapping and scanning your Internet gateway, including your DMZ systems,
such as Internet-accessible Web, mail, File Transfer Protocol (FTP), and DNS
servers. They will methodically probe these systems to gain an
understanding of your Internet perimeter. After conquering your perimeter,
the attackers will attempt to move on to your internal network.

Alternatively, if the attackers have internal access to your network already,
including successful war-dialing or war-driving attackers as well as malicious
employees, they will start scanning and mapping your internal network right
away.

Regardless of where the attacker sits, the same tools and overall
methodology are used to map a target network. Let's analyze some of the
techniques used by attackers in mapping and scanning networks, particularly
for finding live hosts and tracing your network topology.

Sweeping: Finding Live Hosts

To build an inventory of accessible systems, attackers sometimes attempt to
ping all possible addresses in the target network to determine which ones
have active hosts. As described in Chapter 2, ping is implemented using an
ICMP Echo Request packet. The attacker could send an ICMP Echo Request
packet to every possible address in your network determined during the
reconnaissance phase, discovered through sniffing wireless traffic, or found
on the system with an insecure modem. After sending the ping packet, the
attacker looks for an ICMP Echo Response message in return. If a reply
comes back, that address has an active machine. Otherwise, the address
might not be in use (or, pings and ping responses have been filtered). Of
course, most attackers don't want to ping an entire network by hand, so
they use automated tools to sweep the entire target address space looking
for live hosts.

Because many networks block incoming ICMP messages, an attacker could
alternatively send a TCP packet to a port that is commonly open, such as
TCP port 80 where Web servers typically listen. If the port is open, the
system at the target address responds with a SYN-ACK packet, indicating
that there is a machine at that address. Or, an attacker could send a UDP
packet to an unusual port on the target system. With UDP, if the port is
closed, many machines respond with an ICMP Port Unreachable message,
another good indicator that a system is located at the given target address.
However, if nothing comes back, there might or might not be a machine

there. So, in essence we have three methods for identifying whether a host
is alive: ICMP pings, TCP packets to potentially open ports, and UDP packets
to likely closed ports.

Traceroute: What Are the Hops?

Once attackers determine which hosts are alive, they want to learn your
network topology. They use a technique known as tracerouting to determine
the various routers and gateways that make up your network infrastructure.
Tracerouting relies on the Time-to-Live (TTL) field in the IP header.
According to the Request for Comments (RFC) that defines IP, this field is
decremented by each router that receives the packet based on the number
of seconds the router takes to route the packet or one, whichever is more.
Because modern routers send packets in considerably less than one second,
this field is typically just decremented by one for each hop between the
source and destination.

So how does the TTL field work? When a router receives any incoming IP
packet, it first decrements the value in the TTL field by one. For example, if
the incoming packet has a TTL value of 29, the router will set it to 28. Then,
before sending the packet on toward its destination, the router inspects the
TTL field to determine if it is zero. If the TTL is zero, the router sends back
an ICMP Time Exceeded message to the originator of the incoming packet, in
essence saying "Sorry, but the TTL wasn't large enough for this packet to get
to its destination." The ICMP Time Exceeded message originates at the
router that dropped the packet, which transmits it to the original sender.
The TTL field was created so that packets would have a finite lifetime, and
we wouldn't have phantom packets caught in routing loops, circling the
Internet for eternity.

We can use this TTL feature to determine the paths that packets take across
a network. By sending a series of packets with various low TTL values and
waiting for the Time Exceeded responses, we can trace all routers from a
given source to any destination. That's what tracerouting is all about. As
shown in Figure 6.5, I'll start out by sending a packet from my source
machine with a TTL of one. The first router receives the packet, decrements
the TTL to zero, and sends back an ICMP Time Exceeded message. What is
the source address of the ICMP Time Exceeded message? It's the IP address
of the first router on the path to my destination. Bingo! I know the address
of the first router on the way to my destination. Next, I'll send out a packet
with a TTL of two. The first router decrements the TTL to one and forwards
the packet. The second router in the path decrements the TTL to zero and
sends an ICMP Time Exceeded message. I now have the address of the
second hop. This process continues as I send packets with incrementally
higher TTLs until I reach my destination. At that point, I'll know every hop

between me and my target.

Figure 6.5. Tracerouting to discover the path from source to
destination.

[View full size image]

To automate this process, most UNIX varieties include a version of the
traceroute command, which sends UDP packets with incremental TTL values,
while looking for the ICMP Time Exceeded message in return. Modern
Windows systems also include the same type of tool, but it is named tracert,
to conform to the ancient eight-character naming structure from MS-DOS,
back when dinosaurs roamed the earth. Just to be different, tracert sends
out ICMP packets (not UDP packets like UNIX) with incremental TTL values,
waiting for the ICMP Time Exceeded message to come back. Figure 6.6
shows the output from the Windows tracert command. Note that each of the
11 hops between my machine and the destination are shown on the right
side of the screen.

Figure 6.6. The Windows tracert command output.

Attackers use traceroute to determine the path to each host discovered
during the ping sweep. By overlaying the results from tracerouting to each
target and reconciling the various routers and gateways, an attacker can re-

create the target network topology. Using this information, the attacker will
create a network diagram, as shown in Figure 6.7, perhaps on the back of an
envelope. The attacker will not know the purpose of every system and
network element, but a basic picture of the network infrastructure will begin
to develop as the attacker methodically deconstructs the architecture.

Figure 6.7. A network diagram created by hand with an attacker
using ping and traceroute.

[View full size image]

An attacker can use the basic ping and traceroute functionality built into
most operating systems to determine the network topology by hand.
However, doing all of this pinging, tracerouting, and reconciling is a lot of
work. To simplify the process, clever system administrators and individuals
in the computer underground have developed several automated ping sweep
and traceroute tools.

Cheops-ng, a free tool available at , is one of the most capable and easiest
to use network-mapping tools. Written by Brent Priddy, Cheops-ng runs on
Linux and automates the process of developing a network inventory and
topology using pings and traceroute. As shown in Figure 6.8, Cheops-ng
draws pretty pictures based on information obtained from ping sweeps and
tracerouting throughout a target network. The tool also associates an icon
with each type of operating system, and includes the appropriate system
types in its screen. Note the little demon icon indicates a BSD machine, the
machine with a cross logo shows a Windows box, the globes are routers, and
the machines labeled QNX are running the QNX Realtime Operating System.

Figure 6.8. The Cheops-ng display.

[View full size image]

Cheops-ng couldn't identify the machine with the question mark, because
none of its system fingerprints matched this box.

In addition to its automated ping sweep and traceroute capabilities, Cheops-
ng includes a variety of other features. It allows a system administrator to
automatically make FTP or Secure Shell (SSH) connections to access
machines across the network conveniently by including an FTP and SSH
client in its GUI. Additionally, Cheops-ng supports remote operating system
identification using active operating system fingerprinting (a great technique
we discuss later in this chapter during our analysis of the Nmap port
scanner).

Defenses Against Network Mapping

How do you prevent an attacker from mapping your network using ping,
traceroute, Cheops-ng, and related network-mapping tools? You need to
filter out the underlying messages that these tools rely on by using firewalls
and the packet filtering capabilities of your routers. At your Internet

gateway, you should block incoming ICMP messages, except to hosts that
you want the public (including attackers) to be able to ping. Does the public
need to ping your Web server? Maybe. Do they really need to ping your DMZ
mail servers? Probably not. Do they need to ping your internal network
hosts? Definitely not. In some cases, your ISP will want to ping a machine on
your side of the Internet connection to make sure the connection is alive. To
support this need, you should configure your router filters to allow incoming
ICMP Echo Request packets only from the ISP's management systems, and
only let them reach one of your systems.

Additionally, you might want to filter ICMP Time Exceeded messages leaving
your network to stymie an attacker using traceroute. Although this filtering
inhibits users and network management personnel who want to use
traceroute, it also limits the information an attacker can discern about your
environment. Have you ever done a traceroute and noticed that some of
your hops are identified with just a bunch of stars (***) and not an IP
address? That's because that hop isn't responding with an ICMP Time
Exceeded message. What's more, if you see all stars starting at one hop and
going for all hops after that, in all likelihood, that first hop with the stars is
filtering the ICMP Time Exceeded messages trying to come back to you. Such
filtering certainly limits the attacker's ability to perform network mapping.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Determining Open Ports Using Port Scanners

At this point in the attack, the attacker knows the addresses of live systems
on the target network and has a basic understanding of the network
topology. Next, the attacker wants to discover the purpose of each system
and learn potential entryways into the machines by analyzing which ports
are open. As described in Chapter 2, the active TCP and UDP ports on the
machines are indicative of the services running on those systems.

Each machine with a TCP/IP stack has 65,536 TCP ports and 65,536 UDP
ports. Every port with a listening service is a potential doorway into the
machine for the attacker, who carefully takes an inventory of the open ports
using a port-scanning tool. For example, if you are running a Web server,
it's most likely listening on TCP port 80. If you are running a DNS server,
UDP port 53 will be open. If the machine is hosting an Internet mail server,
TCP port 25 is likely open. Of course, any service can be configured to listen
on any port, but the major services listen on a variety of "well-known" port
numbers, so the client software knows where to connect for the service.
With a list of open ports on a target system, the attacker can then get an
idea of which services are in use by consulting the official source of such

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

information, the Internet Assigned Numbers Authority (IANA) up-to-date
port list located at .

If the 65,536 TCP and 65,536 UDP ports are like doors on each of your
machines, port scanning is akin to knocking on each door to see if anyone is
listening behind it. If someone (that is, a service) is behind the door, the
knock on the door will get a response. If no one is behind the door (that is,
no service is listening on that port), no answer will come back. Using a port
scanner, the attacker sends packets to various ports to determine if any
service is listening there.

Most port-scanning tools can scan a list of specific ports, a range of ports, or
all possible TCP and UDP ports. In an attempt to avoid detection by sending
fewer packets, the attacker might choose to scan a limited set of ports,
focusing on the ones associated with common services like telnet, FTP, e-
mail, Web traffic, and various Windows file and print sharing services.
Alternatively, the attacker might develop a complete inventory of ports to
determine every possible way into a system.

Nmap: A Full-Featured Port-Scanning Tool

Nmap, the most popular port-scanning tool in the world, was created and is
maintained by a skilled software developer named Fyodor. Freely available
at , the tool offers lots of options and is widely used within the computer
underground and by computer security professionals. Nmap runs on most
varieties of UNIX, Linux, and Windows. Showing its great popularity, Nmap
was even briefly displayed in the movie in 2003, where the much-beloved
character Trinity used Nmap to help save Neo and, by extension, the entire
human race. That's a pretty good showing for a port-scanning tool!

Most users activate Nmap and control it directly from the command line.
However, a very capable GUI front end has been created, called,
appropriately enough, the Nmap front end (Nmapfe). Nmapfe, also available
at , is shown in Figure 6.9. Nmapfe offers a simple-to-use, point-and-click
interface that automatically generates the appropriate command-line option
to feed to the Nmap executable. The Command: line at the bottom of the
Nmapfe screen shows the options that will be fed into the Nmap command
line. Although not revolutionary, Nmapfe makes interacting with Nmap and
its myriad options even easier. For most users, Nmapfe works like training
wheels. When starting with Nmap, you get a feel of the tool using Nmapfe.
After a day or two of experimentation, most users then move to the
command line to run Nmap directly.

Figure 6.9. Nmapfe: A nice GUI for Nmap.

[View full size image]

When scanning for open ports, the scanning system sends packets to the
target to interact with each port. What type of packets does the scanning
system send and how does the interaction occur? The types of packets and
modes of interaction depend on the type of scan being conducted. The
numerous types of scanning supported by Nmap are summarized in Table
6.2 and explained in more detail later in this section. It is important to note
that some of these scan types could cause the target system to become
flooded or even crash under the load of strange and unusual packets. For
that reason, be careful running any scanning tool against a target, getting
appropriate permission from the target owners and warning them that there
is a chance the system could be impaired by the scan.

Table 6.2. Scan Types Supported by Nmap

Type of
Scan

Command-
Line
Option

Summary of Scan
Characteristics

TCP Connect –sT

Completes the three-way
handshake with each
scanned port and is not
at all stealthy.

TCP SYN –sS

Only sends the initial
SYN and awaits the SYN-
ACK response to
determine if a port is
open. If the port is
closed, the destination
will send a RESET or
nothing. Stealthier than
Connect scans.

TCP FIN –sF

Sends a TCP FIN to each
port. A RESET indicates
the port is closed, and
no response might mean
the port is open.
Stealthier than Connect
scans.

TCP Xmas
Tree

–sX

Sends a packet with all
control bits set. Again, a
RESET indicates the port
is closed, and no
response might mean
the port is open.

Null –sN

Sends packets with no
control bits set. RESET
indicates the port is
closed, and no response
might mean the port is
open.

Sends a packet with the
ACK control bit set to
each target port. Allows
for determining if hosts

TCP ACK –sA are present, and
measuring a packet
filter's rules regarding
established connections.

Window –sW

Similar to the ACK scan,
but focuses on the TCP
Window size to
determine if ports are
open or closed on a
variety of operating
systems.

FTP Bounce –b

Bounces a TCP scan off
of an FTP server,
obscuring the originator
of the scan.

Idle Scanning –sI

Determines whether the
target's ports are open
while spoofing the
source address of the
scan. To pull this off,
Nmap uses another
system to measure
whether the ports are
open or closed, based on
interesting behavior of
the IP Identification field
in the IP header.

UDP
Scanning

–sU

Sends a UDP packet to
target ports to determine
if a UDP service is
listening.

Version
Scanning –sV

Determines the
particular service and, if
possible, its version
number listening on any
arbitrary port.

Ping
Sweeping

–sP

Sends ICMP Echo
Request packets to
every machine on the
target network, allowing
for locating live hosts.
This isn't port scanning;
it's a prelude to network
mapping.

RPC Scanning –sR

Scans Remote Procedure
Call (RPC) services,
using all discovered open
TCP/UDP ports on the
target to send RPC NULL
commands. The tool
attempts to determine if
an RPC program is
listening at the port and,
if so, identifies what type
of RPC program it is.

OS
Fingerprinting

–O

Determines the remote
operating system type
by sending various
unusual packets and
measuring the behavior
of the target.

Types of Nmap Scans

Let's analyze the most useful scan types supported by Nmap in more detail.
To better understand how Nmap's scanning options operate, it is important
to recall how TCP and UDP work. As described in Chapter 2, all legitimate
TCP connections (for example, HTTP, ssh, ftp, and so on) are established
using a three-way handshake. The TCP three-way handshake, shown in
Figure 6.10, allows for establishing sequence numbers between the two
systems. These sequence numbers are used so that TCP can deliver the
packets in the proper order on a reliable basis. All TCP-based services utilize
this three-way handshake. For example, in Figure 6.10, System A might be
your Web browser and System B your favorite e-commerce Web site.

Figure 6.10. The TCP three-way handshake.

In the three-way handshake, the initiating system sends a packet with some
initial sequence number (ISNA) and the SYN TCP control bit set. If a service
is listening on the port, the destination machine responds with a packet that
has both the SYN and ACK control bits set, an acknowledgment of ISNA + 1,
and an initial sequence number for responses (ISNB). On receiving this SYN-
ACK packet, the initiator finishes the three-way handshake by sending an
ACK packet, including an acknowledgment of the recipient's sequence
number, ISNB + 1. At this point, the three-way handshake is complete. All
subsequent packets going from Machine A to Machine B have a series of
increasing sequence numbers based on the number of data octets
transmitted from A to B, starting at ISNA + 1. All packets going from
Machine B to Machine A will have a separate set of sequence numbers,
starting at ISNB + 1. Using these sequence numbers, the TCP stacks of each
system retransmit lost packets and reorder packets that arrive out of
sequence.

Given this understanding of TCP, we next analyze some of the scan types
supported by Nmap.

The Polite Scan: TCP Connect

TCP Connect scans, sometimes called "plain vanilla" scans, attempt to
complete the TCP three-way handshake with each target port on the system
being scanned. Because they are the most polite scan, adhering to the
defined TCP specifications, there is little chance a Connect scan will crash
the target system. However, an out-of-control Connect scan launched from a
fast system on a high-bandwidth connection could result in a flood of a
target. To conduct a Connect scan, the attacker's system sends out a SYN
and awaits a SYN-ACK response from the target port. If the port is open, the
scanning machine completes the three-way handshake with an ACK, and
then gracefully tears down the connection using FIN packets.

If the target port is closed, the target returns no SYN-ACK response. For
closed ports, the attacker's system receives no response, a RESET packet, or
an ICMP Port Unreachable packet, depending on the system type and the
target network configuration. Any of these messages means the port is
closed.

Unfortunately for the attacker, however, Connect scans are really easy to
detect. A complete connection is made to the end system, which might
record the connection in its logs if full connection logging is activated. For
example, if the attacker scans a Web server, the Web server's log file
indicates that a connection was opened from the attacker's IP address.
Because this evidence can be rather inconvenient for attackers, they often
use stealthier scan techniques.

A Little Stealthier: TCP SYN Scans

Whereas Connect scans follow the TCP three-way handshake completely,
SYN scans stop two-thirds of the way through the handshake. Sometimes
referred to as half-open scans, SYN scans involve the attacking machine
sending a SYN to each target port. If the port is open, the target system
sends a SYN-ACK response. The attacking machine then immediately sends a
RESET packet, aborting the connection before it is completed. In a SYN scan,
only the first two parts of the three-way handshake occur.

If the target port is closed, the attacker's system receives no response, a
RESET packet, or an ICMP Port Unreachable packet, again depending on the
target machine type and network architecture.

SYN scans have two primary benefits over Connect scans. First, SYN scans
are stealthier, in that most end systems do not record the activity in their
logs. With a SYN scan, a true connection never occurs, because it is torn
down before it is established. Therefore, in our previous example, the Web
server's logs won't display a connection from the attacker's IP address if the

attacker uses a SYN scan. It is important to note, however, that routers,
firewalls, network-based IDSs, and network-based Intrusion Prevention
Systems (IPSs) that have logging enabled on the target network record the
SYN packet. Therefore, although the target host does not log the connection,
the infrastructure of the target network can record the scan, including the IP
address of the attacker.

A second advantage of a SYN scan is its speed. Connect scans require
sending more packets and waiting for the entire three-way handshake and
connection tear down to complete. SYN scans require sending only SYN
packets, and waiting only for the SYN-ACK. Because it is simpler and
involves less waiting, SYN scanning can be quite fast.

One area of concern with SYN scans is the possibility that the target system
could become flooded with outstanding SYNs, resulting in an accidental DoS
attack. SYN floods are described in more detail in Chapter 9, Phase 3:
Denial-of-Service Attacks. If the target system is running an old, unpatched
operating system, the attacker could take it offline by doing a simple SYN
scan. Of course, Nmap quickly sends a RESET packet to help to avoid
flooding the target with outstanding incoming SYNs. Despite this precaution,
however, a feeble system could be overwhelmed by a simple SYN scan.

Violating the Protocol Spec: TCP FIN, Xmas Tree, and Null
Scans

Connect scans followed the TCP specification perfectly; TCP SYN scans
followed them two-thirds of the way. The FIN, Xmas Tree, and Null scans all
violate the protocol by sending packets that are not expected at the start of
a connection.

A FIN packet instructs the target system that the connection should be torn
down. However, during a FIN scan, no connections are set up! The target
system just sees a bunch of packets arriving saying to tear down nonexistent
connections. According to the TCP specification, if a closed port receives an
unexpected FIN when no connection is present, the target system should
respond with a RESET. Therefore, a RESET indicates that the port is closed.
If the port is open and an unexpected FIN arrives, the port sends nothing
back. Therefore, if nothing comes back, there is a reasonable chance the
port is open and listening (although a firewall might have blocked the
incoming packet or the response). In this way, FIN scans can be used to
determine which ports might be open and which are closed.

In a similar manner, an Xmas Tree scan sends packets with the URG, ACK,
PSH, RST, SYN, and FIN control bits set. Its unusual name comes from the
observation that all these control bits set in a TCP header resemble a strand
of Christmas tree lights. It takes a pretty twisted mind to make that

observation, but the name persists and is widely used. If a router or firewall
is looking for specific control bits set before it allows packets in, it'll find
them in an Xmas Tree scan, because they're all lit up with a value of 1.
Furthermore, because this combination of bits is not a valid setting according
to the RFC that defines TCP, some older IDSs ignore such packets. Newer
IDS tools have signatures that indicate an Xmas Tree scan. A Null scan
involves sending TCP packets with no control bits set. Again, Xmas Tree and
Null scans expect the same behavior from the target system as a FIN scan: A
closed port sends a RESET, and a listening port sends nothing.

Unfortunately, this technique does not work against Windows-based
systems, which don't follow the RFCs regarding when to send a RESET if a
FIN, Xmas Tree, or Null packet comes in. For other platforms, though, these
scan types are very useful.

Kicking the Ball Past The Goalie: TCP ACK Scans

Like FIN, Xmas Tree, and Null scans, an ACK scan also violates the protocol
specification, allowing an attacker to be stealthier and get through some
packet filtering devices. To understand how ACK scanning benefits an
attacker, recall our discussion of packet filtering from Chapter 2. Packet
filters, which can be implemented in routers or firewalls, allow or deny
packets based on the contents of their packet headers, both the IP header
and the TCP or UDP header. By looking at the source and destination IP
addresses, source and destination ports, and TCP control bits, a packet filter
determines whether it should transmit a packet or drop it.

In a common architecture, many networks are configured to allow internal
network users to access an external network (most often, the Internet). In
this scenario, shown in Figure 6.11, an external packet-filtering device
allows outbound traffic so that the internal machines can access servers on
the external network. This packet-filtering device could be a router or
firewall supporting traditional packet filtering. The top arrow in Figure 6.11
shows the allowed outbound traffic. For example, if we want to allow
outbound Web access (HTTP), users need to make connections from high-
numbered source ports on internal machines to destination TCP port 80 on
external systems. We define a rule allowing such traffic on the packet-
filtering device.

Figure 6.11. Allowing outgoing sessions (and responses), while
blocking incoming session initiation.

[View full size image]

However, when an internal user accesses the external network, we have to
handle the response traffic. We allow outgoing Web requests to destination
TCP port 80, but how do the Web pages get back in? Using a traditional
packet filter, we can only filter based on information in the packet headers:
the IP addresses, port numbers, and control bits. We can't just allow packets
to come in if they start at a given source port (for example, TCP port 80),
because then attackers could simply set their port scanners to use a source
TCP port of 80 and scan our entire network.

The resolution implemented in many traditional (nonstateful) packet filters
involves checking the TCP control bits of the incoming packets. We will drop
all incoming connections that don't have the ACK control bit set. All of the
responses to internally initiated traffic, which we want to allow, will have the
ACK bit set. That way, no sessions can be initiated from the external
network, because they would have a SYN control bit. The middle arrow in
Figure 6.11 shows these incoming ACK packets. These packets with the ACK
bit set are often referred to as established connections, because they are
responses to connections already established using packets from the inside.
Many routers are configured with filtering rules that allow outgoing traffic
and support the responses by admitting these established connections. This
is a common solution for filtering at border routers, some DMZ systems, and
internal network routers.

So we've solved the problem of allowing incoming responses to our outgoing
sessions, right? Well, not exactly. In Chapter 2, we discussed the analogy of
a firewall as a goalie in a game of soccer. Is there any way an attacker can
kick a ball past this simple packet-filtering goalie to get it into the net? An
attacker wanting to scan our internal network can simply send packets with
the ACK control bit set. The packet-filtering device allows these packets into
the network, because it thinks they are responses to outgoing connections
given that the ACK control bit is set.

Figure 6.12 shows how an attacker can conduct an ACK scan to determine
which ports through the firewall allow established connection responses. In
an ACK scan, Nmap sends an ACK packet to each of the target ports. If a

RESET comes back from the target machine, we know that our packet got
through the packet-filtering device, and that there appears to be a system at
the given address that we scanned. When this happens, Nmap classifies the
target port as unfiltered in its output, because the packet-filtering device
allows established connections to that target port on the internal network. If
no response or an ICMP Port Unreachable message is returned, Nmap labels
the target port as filtered, meaning that it appears something is obstructing
the response, likely a packet filter. In this way, ACK scanning can be used to
determine what kind of established connections a packet filter device, such
as a firewall or router, will allow into a network. A list of ports allowing
established connections into a network is interesting stuff for an attacker.
Another tool discussed later in this chapter, Firewalk, offers an even more
powerful technique for discovering packet filter firewall rules. More
important, the ACK scan (and the accompanying RESET packet) have
confirmed for the attacker that there is a machine at the target address the
attacker scanned.

Figure 6.12. ACK scanning.

[View full size image]

Unfortunately, different operating systems respond in different manners to
ACK packets sent to open or closed ports. Some operating systems send a
RESET if the port is open, whereas others send it if the port is closed. Thus,
ACK scanning is not useful in determining if a port is open or closed; it is
useful in measuring filtering capabilities of simple routers and firewalls, as
well as determining which addresses are in use.

Obscuring the Source: FTP Bounce Scans

Attackers typically do not want to get caught. The last thing they want is for
their source IP address to show up in the logs of a target system or network,
because an investigator will be able to find the system used to launch the
scan. For particularly nasty attacks, the investigator might call law
enforcement, diligent police officers might then show up with handcuffs, and
the attacker would have a very bad day indeed. Therefore the bad guys have
a vested interest in making sure that their scanning machine's IP address

does not show up at the target. To obscure their location on the network,
attackers sometimes use Nmap's FTP Proxy Bounce scan option, which
utilizes an old feature of FTP servers. FTP servers supporting this old option
allow a user to connect to them and request that the server send a file to
another system. Normally, of course, an FTP client requests a file from a
server to be sent back to that same client. However, with this FTP file-
forwarding feature, an FTP client can request that a file be forwarded to
another machine. This feature was intended to allow a user to connect to an
FTP server over a low-bandwidth connection, and rapidly transport a file to
another machine over a faster link. Today, most FTP servers have disabled
this file-forwarding feature, but some machines on the Internet and on
internal networks still support it. In particular, many printers that support
FTP transfer of files to be printed have this option enabled by default. Some
individuals in the computer underground actively trade addresses of FTP
servers supporting these forwarding capabilities because of their usefulness
in obscuring the source of a scan.

Using this feature, an attacker can bounce an Nmap TCP scan off of an
innocent FTP server to help obscure the source of the attack. As shown in
Figure 6.13, Nmap opens an FTP control connection to the FTP server
configured to support the file-forward feature. Then, the attacker's tool
requests that the innocent FTP server forward a file to a given port on the
target system. If the port on the target is closed, the FTP server tells the
attacker's tool that it couldn't open the connection. If the target port is open,
the FTP server tells the attacker it opened the connection, but couldn't
communicate with the listener using FTP. Either way, the attacker now
knows the status of the port, open or closed, on the target system.

Figure 6.13. FTP Bounce scans.

The attacker's tool can scan every port of interest this way. The target
system's logs, as well as the firewalls and routers associated with the
target's network infrastructure, will all show that the scan came from the

innocent FTP server. Only by analyzing the FTP server's logs can the true
source of the scan be identified. To avoid this type of bounce from your FTP
servers, you should make sure that your FTP server does not support this
forwarding capability. CERT has released a guideline for checking your FTP
servers for this bounce capability, available at .

Idle Scanning: An Even Better Way to Obscure the Source
Address

Now, suppose the attacker cannot find an FTP server supporting this bounce
capability, but still wants to obscure the source of a scan so the target
doesn't know the attacker's IP address. Nmap supports another more widely
applicable source-obscuring option called Idle scanning. To understand the
Idle scan, we have to revisit the IP header format that we discussed in
Chapter 2. As shown in Figure 2.11, the IP header includes a field named IP
Identification (also known as IP ID for short). This fairly esoteric field is used
to group together a bunch of packet fragments that all belong to one larger
packet. In other words, when a big packet is broken into smaller fragments,
all of the fragments get the same IP ID value to tell the end system that
they should all be reassembled together into a larger IP packet. IP supports
this fragmentation option because some network links have better
performance with smaller packets, so we let router or other gateway devices
fragment packets to achieve better speed and link utilization.

For each packet a system sends, its IP stack must assign a unique number in
the IP ID field. That way, if the packet gets fragmented, all of the little
piece-part fragments will have IP headers with the same IP ID value, telling
the end system that they should be assembled back together. If a machine
were to generate two different packets with the same IP ID value and send
them across the network at the same time, and if both of those packets get
fragmented, the end system will try reassembling them together into a
single packet, seriously mangling the information.

Many operating systems achieve a unique number for the IP ID field by just
incrementing the field by one for each packet that they send. So, the first
packet that gets sent will have an IP ID value of X. The next packet will have
the value of X + 1. The next will have X + 2. You can probably guess the
next value in this highly complex algorithm. Windows machines are one of
the most common systems with these incremental IP ID values.

Now, you might be thinking, "Thanks for that stroll down IP fragmentation
memory lane, but what does this have to do with port scanning?" After all,
port scanning is a concept at the TCP layer, and IP ID fields are in the IP
header. The two seem totally unrelated, right?

Well, remember the attacker's goal: to determine which ports are open on a

target, without the target finding out the attacker's IP address.

To achieve this goal, the attacker first picks a machine to blame for the
attack. The Idle scan makes it appear that this blamed machine launched the
scan against the target, from the target's perspective. This blamed machine
could be any system on the Internet that the attacker can send packets to
and receive packets from, such as a popular Web server, a client machine
hanging off of a cable modem, or someone's mail server. Additionally, this
blamed machine must have two highly related characteristics. First, the
blamed system must have a predictable IP ID field (ideally, incrementing by
one for each packet it sends). Most Windows systems will do nicely. Second,
the blamed machine cannot send much traffic; it has to be idle, which gives
this scan type its name. These two characteristics are related in that, if the
blamed machine weren't idle, it would send traffic incrementing the IP ID
field. The IP ID field wouldn't then be very predictable because it would keep
changing for each packet that the blamed system spews out.

Now, assuming the blamed system has these characteristics, consider Figure
6.14, which shows how the attacker gets ready to launch an Idle scan.

Figure 6.14. Getting ready for an Idle scan.

In Step 1, the attacker sends a SYN packet to the blamed machine. The
attacker gets back a SYN-ACK in Step 2. This response includes an IP
header, with an IP ID field value we'll call X. In Step 3, the attacker
remembers X. The bad guy might run through Steps 1 through 3 a dozen or
more times, just to make sure X changes in a predictable fashion.

Now, on to the scan. As shown in Figure 6.15, in Step 4, the attacker selects
a port that is going to be tested on the target machine. The attacker sends a
SYN packet to the target's destination port. The attacker spoofs the source IP
address in this SYN packet so that it appears to be coming from the blamed

machine.

Figure 6.15. Running the Idle scan.

If the target port is listening, in Step 5, the target sends a SYN-ACK
response back to the apparent source address of the SYN packet. That is, the
target sends a SYNACK to the blamed machine if the port is listening. When
the blamed machine receives a SYN-ACK out of the blue, it won't understand
why the target sent a response for a never-initiated connection. In Step 6,
the blamed machine therefore responds with a RESET. Because it sent a
RESET packet, the IP ID field on the machine that gets blamed will be
incremented, to X + 1, if the port is listening.

Now, if the target port is closed, Step 5 either has no traffic going from the
target to the blamed machine, or it sends something like a RESET message.
Either way, if the target port is closed, no traffic is sent in Step 6! Therefore,
the IP ID field will remain at X if the port is not listening.

In Step 7, the attacker needs to measure the IP ID field on the blamed
machine by sending a SYN packet to it. In Step 8, the blamed machine
responds with a SYNACK. Of course, this SYN-ACK response itself increments
the IP ID field by one.

Now, by analyzing the IP ID field from Step 8, the attacker can determine if
the port is open or closed on the target. If the IP ID value is X + 2, the
attacker knows that it was incremented once because of Step 7. Therefore, it
must have been incremented another time. Because the blamed machine is
idle, it was likely incremented because Step 6 occurred and included a
RESET packet. Well, Step 6 would only include a RESET if Step 5 occurred
with a SYN-ACK. A SYN-ACK in Step 5 means that the port is therefore
open! Cha-ching!

The logic is even more compelling if the port is closed. If, in Step 8, the IP ID

value is X + 1, the blamed machine could not have sent a RESET in Step 6.
Of course, if it didn't send a RESET, no SYN-ACK could have occurred in Step
5. Without a SYN-ACK, the port must have been closed. We should note that
Idle scanning only works for TCP and not UDP ports, because only TCP has
the RESET behavior necessary to increment the IP ID value.

From the target's perspective, the whole scan appears to be coming from the
blamed machine, leaving the attacker stealthy and happy. Now, this might
look very complicated, but it really isn't all that bad. All the attacker is doing
is measuring the IP ID value of the blamed machine (Steps 1–3). Then, the
bad guy is spoofing a SYN packet trying to cause the target and the blamed
machine to talk to each other (Step 4–6). Then, the attacker measures the
IP ID value again (Steps 7–8) to see if they did have an exchange. In fact,
the attacker using Nmap doesn't even have to understand any of this or
know what an IP ID field is. Nmap's Idle scan option only requires the
attacker to say, in effect, "Launch an Idle scan at this target, and blame
him." Nmap does all of the work for the attacker, checking if the IP ID value
on the blamed machine is predictable, and then running all of the steps for
each port to be measured.

Now, of course, if the blamed machine isn't truly idle, the attacker will run
into some problems. For example, suppose that the blamed machine shoots
out a packet sometime in between Step 3 and Step 7. Because the IP ID
value got an extra increment, Nmap might label a port as open that is really
closed, yielding a false positive. This occurs sometimes when an attacker is
trying to blame a scan on a Windows machine, which sends one of those
annoying NetBIOS packets every so often. Still, for short periods of time, the
Idle scan works just great. An attacker can launch the same Idle scan three
or four times. If a given set of ports is listed as consistently open across all
of those scans, they are, in all likelihood, really open.

Don't Forget UDP!

So far, every one of the scans we've discussed is based on TCP. Unlike TCP,
UDP does not have a three-way handshake, sequence numbers, or control
bits. Packets can be delivered out of order, and are not retransmitted if they
are dropped. Because UDP is so much simpler, Nmap has far fewer options
for UDP scanning, and UDP scans from any port-scanning tool are inherently
less reliable. When scanning TCP services, the control bits of the response
are very helpful in determining whether a port is open or closed. TCP
provides the helpful SYN-ACK or RESET to let the attacker know the status
of ports.

For UDP scans, on the other hand, Nmap generates a UDP packet destined
for each target port. If the target system returns an ICMP Port Unreachable
message, Nmap interprets the port as being closed. If the target responds

with a UDP packet, Nmap labels the port as open. Those are the two easy
and reliable conditions. However, quite often, the port is open, but the
service won't respond with a UDP packet unless the requesting UDP packet
has a specific payload. In such cases, Nmap won't get anything back, and will
call such ports open|filtered, a sign that it doesn't really know the answer for
the given port. You see, this effect could arise from a whole bunch of
conditions: A listening UDP service only responding to requests with specific
payloads, a closed port not responding with an ICMP Port Unreachable
message, a firewall filtering out the response from an open or closed port, or
a packet having been lost from an open or closed port. Nmap isn't sure, and
open|filtered UDP ports are a big unknown from the attacker's perspective.
Still, Nmap gives the attacker a rough approximation of which UDP ports are
open. Based on the output from Nmap, the attacker can then use the client
associated with the discovered UDP service to verify that the server is
listening on the target port. For example, if Nmap tells the attacker that UDP
port 53 appears to be listening, the attacker will try to interact with it using
a DNS tool such as nslookup or dig, described in Chapter 5, to launch DNS
interrogations. If Nmap indicates that UDP port 7070 is open, the attacker
might use the Real-Player client to connect to the server to verify the use of
RealAudio/Video.

Version Scanning

Nmap also includes a Version-scan feature that allows the attacker to detect
which ports are open and also the particular service and software version
listening on those ports. You see, not all services listen on their "official"
ports. An administrator can configure a Web server to listen on some high-
numbered port, like 35567, in an attempt to obscure the fact that it is a Web
server. However, Nmap's Version-scan capability will still smoke out the Web
server, even detecting applications that are running over Secure Sockets
Layer (SSL).

When an attacker uses the Version-scan option, Nmap starts with a normal
port scan and gathers a list of all the open ports on a target. For TCP ports,
Nmap completes the three-way handshake and waits for the application to
present its banner. Many services automatically present their banners once
a connection is established, indicating the service type and version number.
If Nmap receives a banner, its version scanning functionality matches the
banner against an internal version-scan database and attempts to find a
matching application to display for the attacker. If the target presents no
banner, Nmap then sends some probing traffic to elicit a response from the
host to identify the target service listening on that port. These probe
responses are also matched in the database for identification. For SSL-
enabled ports, Nmap connects to the SSL service, completes the SSL
handshake negotiation, and then runs the detection scan to determine the

actual service behind the SSL encryption, such as HTTP or FTP over SSL.

UDP traffic goes through a similar process, except there is no session (with a
three-way handshake) to be established before listening for a banner and
sending probes. Nmap sends a UDP packet, waits for a UDP response, and
then matches the data in any UDP responses with its version-scan database.

With this Version-scan feature, the old security-by-obscurity trick of "hiding"
services from attackers by running them at obscure ports just doesn't
provide any major benefits anymore. Even if your SSH service is running at
TCP port 65534, the script kiddies will still be able to identify it with the
Version-scan feature of Nmap.

Oh Yes, Ping Sweeps, Too

Nmap's Ping scan capability supports identifying live hosts on the target
network. Like Cheops-ng or other network-mapping tool, Nmap sends an
ICMP Echo Request packet to all addresses on the target network to
determine which have listening machines. Furthermore, Nmap can conduct a
sweep of addresses using TCP packets, instead of ICMP. If incoming ICMP is
blocked, the attacker can do a sweep of the target network, looking to see
which addresses respond to packets sent to TCP port 80, 25, 135, or any
other port of the attacker's choosing. Although these network-sweeping
features to find in-use addresses are not really port scanning, they are a
useful inclusion, helping round out Nmap's feature set.

Find Those Insecure RPC Programs

Nmap also supports an application-level scanning option focused on RPCs,
which are a convenient tool for software developers creating distributed
systems. As shown in Figure 6.16, an RPC program takes the software
developer's concept of a procedure call and extends it across a network.
Code executes on one computer until it needs information from another
system. Then, the originating program calls an RPC program on another
machine, where processing continues. When the remote system has finished
the procedure, it returns its results and execution flow to the original
machine.

Figure 6.16. RPC programs: The arrows show the flow of execution
through the program.

Many companies have developed extensive applications based on RPCs, and
numerous network tools distributed with operating systems have been
developed using RPCs. Familiar RPC services on UNIX and Linux
environments include the following:

Rpc.rstatd, a service that returns performance statistics from the
server's kernel.

Rwalld, a service allowing messages to be sent to users logged into a
machine.

Rup, a service displaying the current up time and load average of a
server.

Sadmind, an older service used to administer Solaris systems.

Rpc.statd, a service associated with locking files and sending reboot
notification for the Network File System (NFS) service.

Unfortunately, many well-known and widely used RPC programs have
significant security vulnerabilities.

Because of the vulnerabilities found in many RPC services, an inventory of
the RPCs running on the target network is highly useful information for the
attacker. Nmap's RPC scanning option creates just such an inventory. The
RPC scanner uses the port list discovered during any of the TCP or UDP
scans offered by Nmap, and connects to each of them searching for RPC
services. Similar to its Version-scan, Nmap sends empty (null) RPC
commands to each open port, in an effort to determine which RPC service is
running. If attackers determine that a vulnerable RPC service is running on
the target machine, they will download an exploit for the discovered
vulnerability to attempt to gain access on the target.

But Wait ... There's More!

In addition to all of these scan types, Nmap includes a variety of other
features that help make it even more useful in the hands of a skilled
attacker.

Setting Source Ports for a Successful Scan

To improve the chances that the packets generated by the scanner will get
through routers and firewalls protecting the target network, attackers
typically choose specific TCP and UDP source ports for the packets
transmitted during a scan. Remember, the scanner sends the packets to the
target system, varying the destination port to determine which ones are
open or closed. The source port is also included in the header, and might be
used by the target network to determine whether the traffic should be
allowed. The goal here is to set the source port so that the packets appear
like normal traffic, thereby increasing the chance they'll be allowed into the
network and lowering the potential for detection. To accomplish this goal, an
attacker can configure Nmap to use various source ports for all packets in
the scan.

TCP port 80 is a popular choice for a source port during a scan, as the
resulting traffic might appear to be coming from a Web server. Attackers
also widely use source TCP port 25, which appears to be traffic from an
Internet mail server using the Simple Mail Transfer Protocol (SMTP). For any
of these TCP services, combining a source port of 25 or 80 together with an
ACK scan will make the TCP header information look like responses to Web
traffic or outgoing e-mail.

Another interesting option involves using a TCP source port of 20, which will
look like an FTP data connection. Just as with FTP Proxy Bounce scans, some
of the quirkiness of the seemingly innocuous FTP is immensely helpful for
attackers. As shown in Figure 6.17, when you FTP a file, you actually have
two connections: an FTP control connection and an FTP data connection.

Figure 6.17. Standard FTP control and data connections.

[View full size image]

The FTP control connection is opened from client to server, and carries
commands to the server, such as logging in, requesting a file list, and so on.
After receiving a request for a file, the FTP server opens a connection back
to the FTP client. That's what makes standard FTP somewhat harder for
simple routers and firewalls to handle—the FTP data connection starts from
the server and comes back to the client. It is an incoming connection. Most
networks today deal with this problem by using a stateful packet filter or
proxy firewall that can check for the accompanying outbound FTP control
connection when an inbound data connection request is received. Some
older networks without these stateful or proxy technologies are configured
to allow incoming FTP data connections, so users can transport files into the
network. Alternatively, some networks force users to rely on Passive-mode
FTP, which reverses the flow so the data connection goes from the client to
the server. For those networks that allow standard inbound FTP data
connections, some attackers try to take advantage by conducting a port scan
using a TCP source port of 20, as shown in Figure 6.18.

Figure 6.18. Scanning using TCP source port 20 to impersonate FTP
data connections.

[View full size image]

Similarly, for scanning UDP services, a source port of 53 might look like DNS
responses, and is much more likely to be allowed into the target network
than other arbitrary UDP source ports. That's why attackers quite frequently
use UDP port 53 for a source port when UDP scanning.

Decoys Aren't Just for Duck Hunters Any More

No attacker wants to get caught in the act of scanning your network. In
addition to the FTP Bounce and Idle scans, Nmap can help hide the attacker's
address by inserting spoofed decoy source addresses in various scans. When
configuring Nmap with decoys, the attacker enters a complete list of IP
addresses that will be used as the apparent source of the packets. For each
packet that it sends during a scan, Nmap generates a copy of the packet

appearing to originate at each decoy address. So, if the attacker enters four
decoys, Nmap generates five packets for each port to be checked—one with
a source of the attacker's actual IP address, and one from each of the four
decoys. Nmap randomizes the order of the actual source and decoy packets
sent out. Note again that these decoys are totally independent of FTP
Bounce and Idle scans; they are merely designed to confuse the target with
a bunch of traffic from innocent sources.

When using decoys for scans other than the FTP Bounce and Idle options,
the attacker's actual address must be included in each barrage of packets, or
the attacker will not be able to get the results from the scan. One set of the
SYNACK, ICMP Port Unreachable, or RESET packets must be returned to the
attacker's machine, or Nmap will not be capable of determining the results.
The only way to get the results back is to include the valid source address in
one packet; all the others are decoys.

A victim network being scanned with decoys will not know where the packets
really originate, as the attacker's address is blended in with all of the
decoys. If the attacker uses 30 decoys, the victim network will have to
investigate many different sources for the attack. Therefore, decoys impede
the investigation, allowing the attacker more time to conduct a scan without
being successfully traced back.

A Critical Feature: Active Operating System Fingerprinting

In addition to finding out which ports are open on a system, an attacker also
wants to determine which underlying operating system the target machine is
running. By determining the operating system type, the attacker can further
research the machine to determine particular vulnerabilities for that type of
system. By knowing the open ports and operating system type together, the
attacker can search the Internet looking for well-known vulnerabilities of the
target system. A more sophisticated attacker might even set up a lab
environment similar to the target network in an effort to discover new
vulnerabilities in the infrastructure.

So how does Nmap determine the underlying operating system type? It uses
a technique called active operating system fingerprinting. The RFCs defining
TCP specify how a system should respond during connection initiation (the
three-way handshake). The RFCs do not define, however, how the system
should respond to the various illegal combinations of TCP control bits. That's
totally reasonable, because the RFCs say how the protocol should work, and
don't define how it shouldn't work with every freakishly bizarre twist of the
attackers' imaginations. Because of this lack of a coherent standard in the
face of illegal combinations, different implementations of TCP stacks respond
differently to unexpected flags. For example, a Windows TCP stack responds
differently from a Linux machine to illegal control bit sequences. Likewise, a

Cisco router and a Solaris box have different responses as well. Nmap uses
this inconsistency to determine the operating system type of the target
machine by sending out a series of packets to various ports on the target,
including the following:

SYN packet to open port

NULL packet to open port

SYN|FIN|URG|PSH packet to open port

ACK packet to open port

SYN packet to closed port

ACK packet to closed port

FIN|PSH|URG packet to closed port

UDP packet to closed port

Further, Nmap measures the predictability of the initial sequence number
returned by an open port in the SYN-ACK response (that is, the ISNB from
Figure 6.10). By sending several SYN packets to open ports and analyzing
how the sequence number in the SYN-ACK packets change with time, Nmap
determines whether a predictable pattern of the sequence numbers can be
determined. This technique helps to further identify the operating system
type because some operating systems have more predictable sequence
numbers than others. Additionally, as we discuss in Chapter 8, TCP sequence
number predictability can help in IP spoofing attacks.

This overall process of sending traffic to measure the operating system type
is called active operating system fingerprinting because the attacker
interacts with target, sending packets to make the operating system
measurement. In Chapter 8, we look at passive operating system
fingerprinting techniques, which involve sending no traffic to the target, in
our discussion on sniffers. Nmap includes a database describing how various
systems respond to the illegal control bit combinations and the sequence
number prediction check. This database of operating system fingerprints
includes information for detecting more than 1,000 platforms, including the
following:

Win2000/XP/2003

Solaris

Linux

BSD

VAX/VMS, Open VMS

HP-UX

AIX

Cisco IOS

MacOS X

HP printers

Users can easily update the growing database of Nmap system fingerprints
to include new system types.

Another tool totally independent of Nmap that focuses just on active
operating system fingerprinting is Xprobe2, available at , by Ofir Arkin and
Fyodor Yarochkin (who is no relation to Nmap's author, Fyodor, by the way).
Like Nmap, Xprobe2 also sends several test packets to a target machine. In
measuring a target, though, Xprobe2 sends fewer packets than Nmap
because of its embedded tightly coded logic tree. Working its way through
this logic tree in its code, the tool first sends a packet to determine certain
characteristics of the target. Then, based on the response that comes back,
Xprobe2 specifically crafts a second packet to step down the logic tree of
target operating system types. The process continues, typically for only four
packets, each constructed to narrow down the operating system type based
on earlier responses. Nmap, on the other hand, always sends the same
packets in the same order when measuring the operating system type.

Also unlike Nmap, Xprobe2 applies fuzzy logic to calculate the probabilities
of its operating system type. The attacker gets a result that says, in effect,
"There is an 80 percent chance the target is a Windows XP machine, but a
40 percent chance that it is a Linux box." Nmap just says, "Based on my
closest match, this looks like a Windows XP box," without any indication of
other possibilities. In my experience, Xprobe2 gives more accurate overall
results than Nmap, although Nmap has a larger signature base. Therefore, in
my own penetration-testing regimen, I run both active fingerprinting tools,
Nmap and Xprobe2, against each target to get a second opinion of the target
operating system type.

Useful Timing Options

An attacker might want to send packets very slowly to a target to help
spread out the appearance of log entries resulting from the scan.
Furthermore, if a scan occurs too quickly against a slow target, it is possible

for open ports to be missed, or the target system could even crash in a flood
of packets. Alternatively, an attacker might be in a significant hurry, and
wants to conduct a scan as quickly as possible. To support these disparate
needs, Nmap includes different timing options for scans. These timing
options have wonderfully descriptive names, such as:

Sends one packet approximately every five minutes resulting in a super-
slow scan.

Sends one packet approximately every 15 seconds.

Sends one packet approximately every 0.4 seconds.

Runs as quickly as possible without missing target ports.

Waits a maximum of 1.25 seconds for any response.

Waits a maximum of 0.3 seconds for any response. You will lose traffic in
this mode, getting false negatives listing open ports as closed because
you were too impatient to wait for their responses.

These six options are quite well tuned, but an attacker with more fine-
grained timing needs can even customize the timeouts and wait periods
associated with packets. When I scan systems, I tend to use the Normal
mode. If the system has particularly sensitive performance characteristics,
and I want to avoid a potential flood, I use Polite mode. I've never had the
need to run in Aggressive or Insane mode, but it's nice knowing that they
are there should I need to use them some day.

A Little Bit of Fragmentation Never Hurt Anyone

Nmap also supports basic IP packet fragmentation, slicing IP packets into
smaller chunks, a technique that can be used to foil some network-based
IDSs and IPSs. We discuss how IDS and IPS evasion works using packet
fragmentation later in this chapter.

Defenses Against Port Scanning
Harden Your Systems

Although it might sound axiomatic, the best way to prevent an attacker from
discovering open ports on your machine is to close all unused ports. If you
do not need an FTP, telnet, mail, or Web server on the machine, for
goodness sakes, shut it off! Unless there is a defined, approved business
need for a given network service, it should be disabled.

When you bring a new system online, you should be very familiar with the

ports that are open on the box and why they are required. All unneeded
ports and their related services must be shut off. You should also create a
secure configuration document that describes how a new machine should be
securely hardened.

Also, check periodically to see which TCP and UDP ports are in use on your
machine, either from across the network (using a port scanner like Nmap) or
locally. The procedure for checking locally listening ports and shutting off
unneeded ones varies between Windows and Linux/UNIX.

On Windows, you can run netstat –na from a command prompt to see
which ports are in use. To be even more specific and look for just listening
ports, you can type

C:\> netstat –na | find "LISTENING"

Unfortunately, Windows 2000 netstat gives very little information; it simply
shows the protocol (TCP/UDP), the Local and Remote IP address, and the
Local and Remote port number, as well as the state of the connection
(LISTENING/ESTABLISHED).

Windows XP and Windows 2003 have another command flag, which gives a
bit more info. The -o flag, as in netstat –nao, shows the listening ports,
as well as the Process ID (PID) of the listening process. Armed with this
information, you can then hunt for the PID and shut it off if you don't want
the port to be listening. In Windows XP Service Pack 2, Microsoft added
another flag to netstat, the -b option, which shows all TCP and UDP ports,
the process listening on those ports, the associated executable's name, and
any dynamic link libraries (DLLs) the executable has loaded. That's a
treasure trove of information, but watch out for the performance hit of
running netstat -naob, which usually drives my CPU to 80 percent
utilization or more for about 30 seconds.

Alternatively, rather than relying on the limited tools built into Windows,
you could also use third-party tools that give you far more useful
information about port listeners on Windows. My favorites are the free
command-line tools Open-Ports by DiamondCS () and Fport by Foundstone
(). If you prefer a GUI tool for analyzing TCP and UDP ports, check out
Active Ports (free at) and TCPView (also free at). OpenPorts, Fport, Active
Ports, and TCPView show the executable file that was run to create the port
listener. The output from TCPView is shown in Figure 6.19.

Figure 6.19. TCPView shows a list of TCP and UDP ports in use.

[View full size image]

Once you find listening ports, you need to evaluate whether the given
network service is required on the box. If the service is not needed, you can
disable it temporarily, abruptly, and unsmoothly by killing the associated
process in Task Manager. Be careful with this maneuver, as it could make
your system highly unstable. Also, the process will likely return when you
reboot the machine.

A cleaner way to disable a listening port, if the listening process was started
as a Windows service, involves disabling the service itself. You can do this by
running the services control panel, easily invoked by going to Start Run...
and typing services.msc. Then, double-click the offending service, click
Stop, and set its Startup Type to Disabled.

If you are more of a command-line person, you can do the same thing using
the Service Controller command, sc, built into Windows XP and Windows
2003, or available from Microsoft as a separate download for Windows 2000.
To get a list of services and their status, type sc query. To stop a service
temporarily, until the next reboot, type sc stop [service]. To
permanently disable a service, type sc config [service] start=
disabled. Be careful with that space between the start= and disabled.
It must be start-equals-space-disabled, or else the command won't work
properly.

Finally, please be careful with shutting down services willy-nilly. If you
disable a crucial service, you could make your system highly unstable or
crash it altogether.

By default, Linux and UNIX give us far more detail about listening TCP and
UDP ports using built-in tools. As with Windows, we could use the netstat

command with the –na options to get a simple list of in-use ports. On Linux,
the additional –p flag shows PIDs and program names, as in netstat –
nap.

We can get even more detail about processes listening on ports using the
lsof command, which I find absolutely essential in analyzing my own Linux
and UNIX boxes. I run the lsof command with the -i flag to list all TCP
and UDP ports in use. Then, using the PID of the listening process that I got
from lsof, I review a lot more detail by typing lsof –p [pid]. As
illustrated in Figure 6.20, that command shows all files associated with the
listening process, including the associated executable, any libraries the
program uses, all configuration files that it has opened, as well as numerous
other juicy tidbits.

Figure 6.20. The lsof command, with the –i and –p options.

[View full size image]

To stop a process on Linux or UNIX, you can use the kill [pid]
command. Of course, be careful with killing processes, as it could make your
system unstable. Also, this only temporarily disables the process. It might
restart automatically or during the next boot.

The procedure for disabling a service listening on a port permanently
depends on whether the service is invoked by inetd, xinetd, or one of
the service initialization scripts.

If the service is started by inetd, you can comment out its line in
/etc/inetd.conf by placing a # at the beginning of the line.

If the service is started by xinetd, you can delete the file
/etc/xinetd.d/[service] or edit that file so that it contains a line that
says disable=yes.

If the service is started by one of the service initialization scripts, it will have
a link called S[Number][Service] in the directory /etc/init.d. You
can shut off such services by editing the rc.d directory for each runlevel on
your system, removing the S links for that runlevel. Such editing of links
can be a real pain in the neck. More easily, you could use the chkconfig
command, which is built into RedHat and Mandrake Linux distributions as
well as some other flavors. It is also available as a separate download for
Debian Linux, and there is a port for Solaris. To get a list of services
installed on the machine, as well as their configuration for startup, run the
command chkconfig --list. To disable a service, you can type
chkconfig [svc_name] off. That service is automatically disabled in
all of the appropriate rc.d directories and won't come back the next time
you reboot. It will, however, continue to run until you reboot or shut its
service off.

Furthermore, for critical systems, you might want to delete the program files
associated with the unneeded service. Even if the service software is not
actively running on the machine, it could allow a malicious user with access
to the system to do nasty things. Even worse, if an attacker still gains access
to the machine even though you've hardened the operating system, the
attacker could use the programs on the machine against you and the rest of
your network.

For example, suppose you have a UNIX-based Internet Web server that is
managed using a command-line interface. The server does not require a GUI
at all, so you disable the X Window system on the machine (good move!).
However, you leave all of the X Window software installed but disabled on
the system. An attacker who has taken over the machine could still use the
various X Window client programs, such as xterm, to simplify access to the
system. Another example involves compilers on critical production systems. I
have been involved with numerous penetration tests in which we gain access
to a Web server, only to discover a C-compiler on the box. A production Web
server usually has no need for a compiler, but an attacker gaining access to
the system can use the compiler to simplify his or her attacks against the
rest of your infrastructure.

By leaving these tools on the system, you've just made the attacker's job
easier. It's best to have a secure configuration that minimizes all services
and tools installed on the system so that only items with production business
needs remain. Of course, the intruder could simply download the missing

tools, but you've made the attacker's job more difficult, thereby raising the
bar for the attackers to jump over. Furthermore, if the attacker starts
installing additional items, you'll have a better chance of detecting such
activities in your environment, making the bad guys less stealthy.

Always try potential changes first on a test infrastructure mimicking your
production environment to make sure your systems operate properly. Only
when the hardened configuration has been tested satisfactorily on a
laboratory network should it be rolled into production.

Find the Openings Before the Attackers Do

As with war driving and war dialing, you should scan your systems before an
attacker does to verify that all ports are closed except those that have a
defined business need. You could use Nmap to scan each of your Internet-
accessible systems, as well as critical internal machines. Because you don't
need stealth capabilities when scanning your own systems, you can use the
simple TCP Connect scan. When you get your list of open ports, reconcile
them to the business needs of the machine. Is there a business need for
having TCP port 25 (the SMTP port for Internet e-mail) open on your Web
server? Probably not. How about those other ports besides TCP port 80 and
443? Close them down and update your system hardening guidelines
appropriately.

Be Careful: Don't Shoot Yourself in the Foot!

It is critical to note that you could very easily cause mayhem on your
network by running any one of the scanning tools described in this chapter
against your systems. Network mappers, port-scanning tools, and the other
scanners we discuss later all could cause significant problems on your
network if they are not used properly. These tools actively send packets to
their targets, formatting some of the packets in various ways not anticipated
by the developers of your system code. These packets will certainly consume
network bandwidth, which could slow performance for other users.
Additionally, it is possible that the target system could be configured in such
a way that it crashes when it receives a strangely formatted packet.

Because of the potential for crashing the target systems, if you use these
tools against your own network, you should monitor network performance
and system availability while the tool is running. A periodic ping to the
target machine can help you verify that it is alive while scanning occurs.
Better yet, you could set up a script to try to access its business-critical
services periodically while your scan runs. If a critical machine crashes
during the scan, you will find out quickly and can restart the service or
reboot the system if necessary.

Add Some Intelligence: Use Stateful Packet Filters or
Proxies

Scans using the FTP data source port and ACK scans, along with other
techniques supported by Nmap, take advantage of limitations in traditional
packet filters. These filters make decisions based on the contents of a
packet's header, a very limited view of what's really happening on the
network. If you use a router or firewall with only traditional packet-filtering
capabilities, an attacker can scan past your defenses.

To defend against such scans, you should use a more intelligent filtering
device on your network, such as a stateful packet filter or a proxy-based
firewall. Stateful packet filters can remember earlier packets and allow new
packets through a barrier if they are associated with earlier packets. This
capability is tremendously helpful in protecting against ACK scans and the
FTP data source port scans. Using stateful packet filtering, an ACK packet
will be allowed into a network only if it comes from the proper address and
ports used by an earlier SYN packet that was allowed out of the network.
The stateful packet filter remembers all outgoing SYNs in a connection table,
and checks incoming packets to verify their association with an earlier SYN.
If the incoming ACK does not have a previous SYN, it will be dropped.
Likewise, a stateful packet filter can remember the outgoing FTP control
connection and allow an incoming FTP data connection only if the FTP control
connection is in place.

Alternatively, as described in Chapter 2, a proxy-based firewall operates at
the application level, so it knows when a session is present. An incoming
ACK packet will be dropped because there is not an outgoing session at the
application level. Furthermore, an FTP data connection will only be allowed if
the proxy has an established FTP control connection.

Stateful packet filtering and proxy-based firewall techniques are strong tools
to prevent a variety of scanning shenanigans. You should consider using
such tools on your Internet gateway, business partner connections, and even
on critical internal networks. Most organizations are using stateful packet
filters and proxies to defend their main internal network. However, we still
frequently see Internet-accessible servers separate from a corporate DMZ,
such as stand-alone Web servers, mail servers, and DNS servers, protected
by only a traditional packet-filtering router. Also, we often see a satellite
network supporting a small, remote office protected by only a router with
traditional packet filters. With powerful tools like Nmap in widespread use,
intelligent network-level controls, such as stateful packet filtering or proxy-
based firewalls, are quite important even in these circumstances.

Determining Firewall Filter Rules with Firewalk

Additional port-scanning techniques give an attacker even more information
about the target network infrastructure. In particular, Firewalk allows an
attacker to determine which packets are allowed through a packet-filtering
device, such as a router or firewall. Firewalk was written by David Goldsmith
and Michael Schiffman, and is available at . Knowing which ports are open
through your firewall is incredibly useful information for an attacker. You
might be thinking, "You already discussed how to find open ports using
Nmap. Why are we discussing this again?" Good question.

There is a crucial difference between the capabilities of Nmap and Firewalk.
Remember, Nmap is used to send packets to an end system to determine
which ports are listening on that given target machine. If you Nmap a
firewall, it will show you the ports listening for packets sent to the firewall
itself, not what the firewall is allowing through. Firewalk is used to send
packets through a packet filter device (firewall or router) to determine which
ports are open through it. Nmap cannot differentiate between what is open
on an end machine and what is being firewalled. Firewalk, on the other
hand, can determine if a given port is allowed through a packet-filtering
device. With this information, Firewalk allows an attacker to determine your
firewall rule set.

As we have seen, Nmap's ACK scanning capability allows an attacker to
determine a packet-filtering firewall's rule set regarding which ports allow
established connections. That is, the firewall will allow responses back into
the internal network if they are destined for these given ports.

Firewalk goes much further than ACK scanning. Firewalk allows an attacker
to determine which ports are allowed through a firewall for opening new
connections, not just sending data along established connections with the
ACK bit set. Suppose an Nmap ACK scan shows that the firewall allows
established connections to TCP port 1026 on the internal network. Although
this might be interesting to attackers, they cannot instantly start making
connections to TCP port 1026, because all of the SYN packets in their
connection initiation would be dropped. If the attacker sends ACK packets,
the target system likely just sends RESETs, not allowing any connection to
be started. Firewalk, on the other hand, tells the attacker that the firewall
allows new connection initiations to various TCP and UDP ports from where
the attacker sits. Using Firewalk's output, an attacker knows where to send
SYN packets to try to open a new connection. Therefore, the information
from Firewalk is often much more useful than the results of an ACK scan.

Attackers use the information provided by Firewalk to probe target DMZs
and internal systems through the proper ports. For example, if you allow
TCP port 2391 through your firewall, but nothing is listening on your DMZ
on TCP port 2391, you might feel safe. The firewall will let these packets in,
but there is nothing on the protected systems to answer these requests.

Using Firewalk, an attacker can discover the open port through your firewall,
even though nothing on your DMZ has that port open. An attacker can use
this information to augment his or her map of your network, knowing now
where filtering occurs and how it is configured.

How Firewalk Works

Similar to the traceroute tool discussed earlier in this chapter, Firewalk
utilizes the TTL field of the IP header. Because TTL is part of the IP header,
an attacker can use Firewalk to determine which ports are filtered for either
UDP or TCP, both of which ride on top of IP.

Firewalk requires the attacker to enter two IP addresses to start its scan.
The first IP address belongs to the network hop before filtering takes place,
typically the external address of the packet-filtering device itself, which
might be your firewall or border router. The second IP address is associated
with a destination machine on the other side of the packet-filtering device.
Based on this input, Firewalk gathers its data by conducting two phases:
network discovery and scanning.

During the network discovery phase shown in Figure 6.21, Firewalk sends a
series of packets with incrementing TTLs to determine how many network
hops exist between the tool and the firewall. First, a packet with a TTL of
one is sent. Then, Firewalk sends a packet with a TTL of two, and so on,
incrementing the TTLs until the packet-filtering device is reached. This is
essentially the same function as traceroute, except that the output of this
phase is not a list of the routers between source and destination, but a
simple count of the number of hops between the attacker and the filtering
function. Once this hop number is determined, Firewalk can conduct the
scanning phase.

Figure 6.21. The Firewalk network discovery phase counts the
number of hops to the firewall.

[View full size image]

For the scanning phase, shown in Figure 6.22, Firewalk creates a series of
packets with a TTL set to one greater than the hop count to the filtering
device. The destination address of the packets in this phase is the protected
server on the other side of the packet-filtering device. This type of scan even
works if the filtering device is configured for one-to-one Network Address
Translation (NAT) to hide the protected server. Such a filter merely changes
the IP address of packets that traverse it from some externally viewable
address to the protected inside address and vice versa. In such instances,
the attacker just inserts a target address of the outside viewable address of
the protected server behind the one-to-one NAT.

Figure 6.22. Firewalk scanning phase determines open ports through
the firewall.

[View full size image]

When doing the scan of the target address with a TTL of one greater than
the hop count to the filter, these packets will get to the filtering device, and
potentially one hop beyond it. If a packet gets through the filter, an ICMP
Time Exceeded message will be sent by the system immediately on the other
side of the filter (possibly a router). Or, the protected server itself might
receive the packet, if it is the next hop, and respond with an ICMP Port
Unreachable or even a SYN-ACK response. If any response message comes
back, regardless of the type, Firewalk knows that the port is open through
the firewall, because the packet lived through enough hops to make it
through the firewall to trigger that response message. If nothing comes
back, the port is most likely filtered by the firewall. By sending these packets
with incrementing TCP and UDP port numbers, the attacker can get a very
accurate idea of the filtering rules applied to inbound traffic into the target
network. Note that the attacker cannot directly determine the outbound
rules with this method. For that, the attacker would have to conquer a
target on the protected network, and Firewalk outward.

Firewalk Focuses on Packet Filters, Not Proxies

For Firewalk to work properly, the packet-filtering device must transmit
packets without clobbering the TTL field. Sure, it can decrement the TTL by
one, but it cannot totally reset the TTL to some higher value. Therefore,
Firewalk can determine the filtering rules associated with packet-filtering
devices, such as firewalls or routers. Firewalk even works against both
traditional and stateful packet filters, which both just decrement the TTL by
one. However, Firewalk does not work against proxy-based firewalls,
because proxies do not forward packets. Instead, a proxy application absorbs
packets on one side of the gateway and creates a new connection on the
other side, destroying all TTL information in the process. Packet filters
actually forward the same packets, after applying filtering rules, keeping the
TTL relatively intact (albeit decremented by one). So, although Firewalking
is a highly effective technique against packet filter firewalls, it does not work
at all against proxy firewalls. For services that the firewall is proxying,
Firewalk reports that the associated ports are closed.

Firewalking even works against the so-called Layer 2 or bridging firewalls
and IPS tools. These devices don't have an IP address themselves, and don't
decrement the TTL of packets that go through them. With such a device, the
attacker configures Firewalk to scan that last hop before the filtering takes
place, the router before the Layer 2 firewall or IPS device. From the
attacker's perspective on the network, the filtering capabilities of this
firewall or IPS are merged with the routing functionality of that last hop
before it.

Layered Filtering

Additionally, many networks today apply a series of filters on their inbound
traffic, perhaps a router with access control lists (ACLs) up front, followed by
a packet-filtering firewall or two before reaching a DMZ. The attacker can
Firewalk such networks as well, configuring the tool to look for the filtering
rules for each hop near the end of the network, one by one. Now, with
Firewalk, the attacker will be able to see the exact inbound filter on the first
layer the attacker has access to (such as the outmost border router). Then,
for the second layer (behind the first), the attacker will only be able to see
those ports allowed through the first layer AND second layer (that's a logical
AND, meaning that it has to be allowed through both the first and second
layers to be visible.) This process is rather like looking through a series of
screened doors to see if openings line up all the way through. If a port is
allowed through the second layer but is blocked by the first layer, the
attacker won't be able to see it.

Putting Firewalk Output to Use

So how can an attacker use a list of the ports allowed through a firewall? If

attackers place nasty software on an internal system listening for
connections from the outside world (techniques we discuss in more detail in
Chapter 10, Maintaining Access), they'll need to know which ports are open
so they can communicate with their nasty internal programs. The output
from Firewalk tells the attacker the ports that are allowed into the target
network. They can then find some other exploit to set up a listening service
on the internal network, and communicate with their listener using one of
these open ports. Nasty stuff, indeed!

Furthermore, having discovered the open ports allowed through your
firewall, an attacker can easily set up a script to check if any DMZ systems
suddenly have new services enabled on those ports. I have seen some
instances of an attacker learning that TCP port 22 (the SSH destination port)
was open through the firewall using Firewalk. No internal systems were
running sshd because the administrator used a Web admin interface for
these boxes, so the attacker couldn't use this knowledge to gain immediate
access to the systems. The attacker then set up a script that tried to SSH to
all systems on the protected network every 15 minutes every day for
months. Of course, this almost always failed.

However, the unsuspecting administrator activated an SSH server briefly on
an internal system to troubleshoot some problems with the Web admin
interface. SSH was only enabled on the server for an hour, but during this
hour, the attacker's script informed the attacker that SSH was accessible on
a system. The attacker then successfully launched a buffer-overflow attack
against the unpatched SSH server. Because the SSH service was seldom
used, the administrator didn't keep it patched properly. Firewalk had told the
attackers that they could get SSH past the firewall. Once an SSH server was
activated on an internal host, gaining access was very straightforward.
Although we have focused on SSH, an attacker could employ this technique
against any service allowed through your firewall.

Firewalk Defenses

There are several options in defending against Firewalk-type attacks. The
first option is to just accept that such attacks are possible and harden your
firewall. The idea is that Firewalk is based on the fundamental building
blocks of TCP/IP and an attacker can determine your firewall rule set using
those building blocks. Therefore, make sure your firewall is configured with a
minimum set of ports allowed through it, and accept the fact that an
attacker could determine your firewall rules. This option is followed by most
organizations, given that it is easiest to implement.

Another option for defending against Firewalk is to replace your packet-
filtering devices with proxy-based firewalls. Because proxies do not transmit
TTL information, an attacker cannot Firewalk through a proxy. Although a

proxy firewall solution does address this particular problem, it could
introduce other problems. Particular vendor products vary, but proxy
firewalls tend to have somewhat lower performance characteristics than
packet filters. Therefore, your solution to Firewalk might slow down the
network. Furthermore, there might be particular features of your packet-
filtering firewall that you rely on for various network services. Getting rid of
your packet filter might limit the services you can offer.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Vulnerability-Scanning Tools

Let's review the information gathered by the attacker so far. Table 6.3
summarizes what the attacker has learned about the target using the IP-
based tools discussed in this chapter.

Table 6.3. What the Attacker Has Learned
So Far Using Scanning Tools

What the Attacker
Knows

Tools Used to Get
the Information

List of addresses for
live hosts on the
network

Ping and Cheops-ng

General network Traceroute and

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

topology Cheops-ng

List of open ports on
live hosts

Nmap port scan

List of services and
versions running on
the target ports

Nmap version scan

Operating system
types of live hosts

Nmap and Xprobe2
active operating
system
fingerprinting

List of ports open
through packet
filters on the target
network

Firewalk

Clearly, the attackers' scanning has proven fruitful—they have a lot of useful
information about the target. But they still don't know about how to get into
the target systems. The next class of tools provides that information: a list
of vulnerabilities on the target systems that an attacker can exploit to gain
access.

Vulnerability scanners are really based on a simple idea: automating the
process of connecting to a target system and checking to see if
vulnerabilities are present. By automating the process, we can quickly and
easily check the target systems for many hundreds of vulnerabilities. A
vulnerability-scanning tool has an inventory of many system vulnerabilities
and goes out across the network to check to see if any of these known
vulnerabilities are present on the target. Most vulnerability-scanning tools
automatically check across the network for the following types of
vulnerabilities on target systems:

Numerous systems have poor configuration settings, leaving various

openings for an attacker to gain access.

Out of the box, many systems have very weak security settings,
sometimes including default accounts and passwords.

Every day, volumes of new security holes are discovered and published
in a variety of locations on the Internet. Vendors try to keep up with the
onslaught of newly discovered vulnerabilities by creating security
patches. However, once the vulnerabilities are published, a flurry of
attacks against unpatched systems is inevitable.

For example, a vulnerability-scanning tool can check to see if you are
running an older, vulnerable version of the SSH server that allows an
attacker to take control of your machine. It will also check to see if you've
misconfigured your Windows system to allow an attacker to gather a
complete list of users. These are only two examples of the hundreds or
thousands of checks a vulnerability-scanning tool will automatically conduct.
Many vulnerability scanners also include network-mapping programs and
port scanners. Although particular implementations vary, most vulnerability-
scanning tools can be broken down to the following common set of elements,
illustrated in Figure 6.23:

Figure 6.23. A generic vulnerability scanner.

This element is the brain of the vulnerability scanner. It contains a list of

vulnerabilities for a variety of systems and describes how those
vulnerabilities should be checked.

By interacting with this component of the vulnerability scanner, the user
selects the target systems and identifies which vulnerability checks to
run.

This element is the arms and legs of the vulnerability scanner. Based on
the vulnerability database and user configuration, this tool formulates
packets and sends them to the target to determine whether
vulnerabilities are present.

This element acts like the short-term memory of the tool, keeping track
of the current scan, remembering the discovered vulnerabilities, and
feeding data to the scanning engine.

This element generates pretty reports for its user, explaining which
vulnerabilities were discovered on which targets and possibly
recommending remedial actions for dealing with the discovered flaws.

A Whole Bunch of Vulnerability Scanners

A large number of very effective commercial vulnerability scanners are
available today, including the following:

Harris STAT Scanner ()

ISS's Internet Scanner ()

GFI LANguard Network Security Scanner ()

E-eye's Retina Scanner ()

Qualys' QualysGuard, a subscription-based scanning service that scans
their customers' systems across the Internet on a regular basis ()

McAfee's Foundstone Foundscan, another subscription-based scanning
service ()

It is important to note that each of these commercial tools is highly
effective, and also includes technical support from a vendor. Although all of
these tools have their merits, my favorite vulnerability-scanning tool is the
free Nessus, because of its great flexibility and ease of use. In addition,
commercial variants of Nessus are available, along with support, from the
folks who created Nessus, via Tenable Network Security (). Another high-
quality free, open source scanner similar to Nessus is the Attacker Tool Kit
(ATK), available at . Because it is a superb illustration of vulnerability-

scanning tools, let's analyze the capabilities of the free version of Nessus in
more detail.

Nessus: The Most Popular Free Vulnerability Scanner
Available Today

The Nessus vulnerability scanner was created by the Nessus Development
Team, lead by Renaud Deraison. Nessus is incredibly useful, including some
distinct advantages over other tools in this genre (including some of the
commercial tools). Its advantages include the following:

The freedom to write your own vulnerability checks and incorporate
them into the tool.

The knowledge that a large group of developers is involved around the
world creating new vulnerability checks.

The price is right. It's free!

Nessus Plug-Ins

Nessus includes a variety of vulnerability checks, implemented in a modular
architecture. Each vulnerability check is based on a small program called a
plug-in. One plug-in conducts one check of each target system. Together,
these plug-ins comprise the Nessus vulnerability database. Nessus sports
more than 1,000 distinct plug-ins that check for a variety of vulnerabilities.
The plug-ins are divided into the following categories:

These checks look for signs of remote control and backdoor tools
installed on the target system, including Virtual Network Computing
(VNC) and some of the more common bots.

These checks look for vulnerable CGI scripts, and related Web
technologies, including Active Server Pages (ASPs), Java Server Pages
(JSPs), Cold Fusion scripts, and more. These various types of scripts are
run on Web servers, and are used to implement Web applications.

This category of plug-ins looks for various flawed versions and common
misconfigurations in Cisco products, especially the Internetwork
Operating System (IOS) router software and VPN concentrator products.

This set looks for various common UNIX accounts with easily guessed
passwords, including "guest" and "demos."

These attacks look for vulnerable services that can be crashed across the
network. Many of these tests will actually cause the target system to

crash, but some merely check version numbers of the services.

These checks all center around the Finger service that was historically
used on UNIX machines to get a list of current users.

These checks look for misconfigured firewall systems.

This category includes a very large number of checks for misconfigured
and unpatched FTP servers.

This category of plug-ins looks for vulnerabilities that allow an attacker
to gain command-line access to the target system.

These plug-ins look for the holy grail of vulnerabilities—the ability to
have super-user access on the target system across the network.

This catch-all category includes a variety of checks, such as gathering
the server type and version number for Web servers, FTP servers, and
mail servers.

This is another catch-all category of plug-ins, including tracerouting and
system fingerprinting.

This small number of plug-ins looks for flaws in Novell Netware servers.

These checks look for vulnerabilities in the Network Information Service
(NIS) used by UNIX machines to share account information and other
system data.

These plug-ins look for the presence of various filesharing applications,
such as KaZaA and Gnutella, as well as common misconfigurations in
these tools.

These checks look for vulnerabilities in file sharing, including the
Network File System (NFS) and Trivial File Transfer Protocol (TFTP).

These plug-ins scan for vulnerable RPC programs, rather like the Nmap
RPC scanning capability we discussed earlier in this chapter.

These plug-ins look for vulnerable mail servers.

This category of plug-ins looks for vulnerable systems managed via the
Simple Network Management Protocol (SNMP) and attempts to extract
sensitive system configuration information using it.

This category focuses on attacks against Windows systems, ranging from
Window 9 to Windows 2003 and later.

These checks determine whether the target is running any services that
have doubtful functional value, including the daytime and chargen
services.

Whew! That's quite a list of categories, with each group including between
two and more than 100 different vulnerabilities to be tested. Nessus also
includes Nmap as a built-in port-scanning tool, increasing its usefulness
tremendously.

The Nessus Architecture

Nessus is based on a classic client–server architecture, where the client
hosts a user configuration tool, results repository, and report generation
tool. The Nessus server includes a vulnerability database (the set of plug-
ins), a knowledge base of the current active scan, and a scanning engine.
The Nessus client–server architecture is shown in Figure 6.24.

Figure 6.24. The Nessus architecture.

[View full size image]

Nessus supports strong authentication for the client-to-server
communication, based on public key encryption. Furthermore, the
confidentiality and integrity of all communication between clients and
servers are supported using strong encryption. The separation of client and
server can be useful in some network architectures, particularly with remote
locations connected via low-bandwidth links. The client can configure the
server over the low-bandwidth link, and the server at a remote location can
scan the targets at that location over a faster short-range network. The most
common use of the tool, however, involves running the client and server on
a single machine. For my own scanning adventures, I carry a Linux laptop
that includes both the client and server.

The Nessus server runs on a variety of UNIX and UNIX-like platforms,
including Linux, Solaris, Mac OS X, and FreeBSD. Tenable Network Security
has released a Windows version of the Nessus server called NeWT with two
licensing options. The free NeWT is limited so that it can scan only the local
network on which it is running. The commercially licensed NeWT doesn't
have this limitation, but you'll have to buy it from the folks at Tenable. The
Nessus client runs on Linux, Solaris, Mac OS X, and FreeBSD. A free
Windows client called NessusWX is available, but requires a server (either a
UNIX/Linux server or NeWT).

Configuring Nessus for a Scan

Nessus includes an easy-to-use GUI that allows for the configuration of the
tool. Via the GUI, a user can configure the following:

Which plug-ins to run

Target systems (network ranges or individual systems)

Port range and types of port scanning (all Nmap scan types are
supported)

The port for Nessus client–server communication

Encryption algorithms for client-to-server communication

E-mail address for sending the report

Write Your Own Attack Scripts!

One of the best features of Nessus is the ability to write your own plug-ins, a
capability not supported in many major commercial scanners. Nessus allows
its users to write plug-ins in the C language or a custom Nessus Attack-
Scripting Language (NASL). These custom plug-ins can interface with a
defined Nessus API, supporting interaction of various plug-ins with the
knowledge base of the current active scan. The customizability offered by
NASL really makes Nessus shine, and allows an active community of
developers to create numerous plugins quickly and easily.

Tenable Network Security releases its own plug-ins, of course, but keeps
them exclusively for registered, paying customers for a period of seven days
after a new plug-in set is released. After the seven-day lag, the plug-ins are
available for free to all Nessus users.

Reporting the Results

Nessus includes a reporting tool that allows for viewing and printing results,

as shown in Figure 6.25. I'm not a big fan of the built-in Nessus reporting
tool, which can be cumbersome to use. However, the reports can be
exported to a file in a variety of formats, including Hypertext Markup
Language (HTML), LaTeX, ASCII, and XML, a really nice feature. Graphical
HTML reports are also supported, creating fancy pie charts of the results.
The reports also include specific recommendations for fixing each discovered
vulnerability. Furthermore, numerous developers have released Perl scripts
for massaging Nessus output. Some of the best were written by Sami O.
Koskinen and are available for free at . Dozens of others can be found by
simply searching the Web for the terms nessus output perl script.

Figure 6.25. The built-in Nessus report viewer shows a list of
vulnerabilities, sorted by TCP and UDP port number.

[View full size image]

The reporting tool displays the relative sensitivity of each discovered
vulnerability, categorized as high, medium, and low risk. The developers of a
given plug-in assign these risk levels to the vulnerability when they create
the plug-in itself. However, these risks typically vary for particular networks.
For example, the same medium-risk vulnerability on my run-of-the-mill
server could pose a high risk to your mission-critical system. Likewise,
Nessus might rank a vulnerability as high risk that has little impact on your
sacrificial server. Therefore, these vulnerability levels in Nessus, or any
other scanning tool, should be taken as an approximation of the actual
vulnerability. You need to interpret the results in accordance with your own
network policies and security stance.

So, What Does an Attacker Do with These Results?

At this point of the scan, the attacker now has a list of vulnerabilities on the
target systems discovered by the vulnerability-scanning tool. What next?
Most attackers take this list of vulnerabilities and search for particular
exploits based on them, a process we discuss in detail at the beginning of
the next chapter.

Vulnerability-Scanning Defenses
Close Unused Ports and Keep Your Systems Patched (You
Knew I'd Say That!)

A recurring theme throughout this chapter, and indeed the whole book, is
that you must close all unused ports and apply patches to your systems. This
is not rocket science, yet it does require a significant amount of time and
effort. Make sure you have a patching process in place that lets you quickly
acquire new patches, test them in a quality assurance environment, and
move them to production in a quick yet controlled fashion.

Run the Tools Against Your Own Networks

Just as we did with war driving, war dialers, and port scanners, you should
run a vulnerability-scanning tool against your own network on a periodic
basis to identify vulnerabilities before an attacker does. You can use any one
of the free or commercial tools described in this section to find
vulnerabilities and get recommendations for fixing the holes. You should use
your vulnerability-scanning tool to scan for vulnerabilities as frequently as
possible. Given the dynamic nature of the information security environment,
with new vulnerabilities being discovered every day, I recommend that you
scan your own network every month and after every significant upgrade to
your infrastructure. If you have the resources and a very dynamic network,
you might even want to scan more frequently. Analyze the results of your
vulnerability-scanning tool, and make sure you implement fixes to all of the
significant vulnerabilities in a timely fashion.

Be Careful with Denial of Service and Password Guessing
Tests!

When you run vulnerability scanners against your own network, make sure
you understand what you are doing! You could damage your systems if you
misconfigure the tools. Nessus includes the concept of "dangerous plug-ins,"
and can be configured to run tests with or without these potentially scary
checks. The dangerous plug-ins are specific checks that could impair or even
crash the target machine, indicated by a little triangle-shaped yield sign in
the plug-in selection screen, as shown in Figure 6.26. Some of the DoS
checks are dangerous, but others aren't.

Figure 6.26. Some Nessus DoS plug-ins are dangerous; others aren't.

[View full size image]

A few of these plug-ins connect to the target, send a packet or two, and then
based on a version number in the response, report whether or not the target
is vulnerable. Such plug-ins aren't dangerous, of course. Other DoS plug-ins
work this way: They ping the target machine to see if it is alive. They then
launch the DoS attack. Then, they ping the target again. If they don't get a
ping response, the target is vulnerable ... but it's also dead! Launching such
tests in a vulnerability scan against your employer could be a major career-
limiting move, so please be careful.

Also, watch out with password-guessing modules included in most major
vulnerability scanners, including the ones in Nessus that are listed as
dangerous. These modules attempt to log in to various accounts as a variety
of users, guessing common passwords along the way. Unfortunately, they
might lock out legitimate users by supplying three or four incorrect
passwords in the space of a few seconds. If account lockout is activated on
the target machine, the system will not allow the legitimate user to log in
after the vulnerability-scanning tool is run. I've seen several instances of
security personnel running a vulnerability scanner and accidentally locking
out hundreds of users. You might want to disable these password-guessing
modules from running across the network, and instead use the password
cracking techniques discussed in Chapter 7 to determine the strength of

your system passwords.

Unfortunately, even if you configure Nessus or another vulnerability scanner
to omit dangerous plug-ins from your scan, the target could still crash. Each
of these tools is generating some unusual packets, and you could have a
really strangely configured service, or a particularly weak machine that the
tool will knock over, even on its best behavior. Therefore, always warn
management in advance of the possibility of target network and system
impairment when running a scan.

Be Aware of Limitations of Vulnerability-Scanning Tools

Vulnerability-scanning tools are extremely useful because they automate
security checks across a large number of systems over the network.
However, please understand their limitations. A major limitation is that
these tools only check for vulnerabilities that they know about. They cannot
find vulnerabilities that they don't understand. You must be sure to keep the
vulnerability database up to date, or you will miss vulnerabilities on your
network that the attackers will be able to find.

Before you run a scanner against your own systems, download the latest
vulnerability database to ensure you are as up to date as your tool allows.
For this very reason, that seven-day lag time between the release of Nessus
plug-ins for paying Tenable customers versus users of the free version of the
tool was purposely designed to help encourage people to subscribe to the
commercial service.

Another major limitation of vulnerability-scanning tools involves the fact
that they look for vulnerabilities on the target addresses that you configure
and don't really understand the network architecture. A real attacker will
apply a great deal of intelligence to try to reverse engineer the target
network. Instead of just looking at the outside interfaces like a vulnerability
scanner, intelligent attackers try to understand what's going on behind
them.

A final limitation of the tools is that they only give their user a snapshot in
time of the system security. As new vulnerabilities are discovered and the
configuration and topology of the network changes, so too does its exposure
to vulnerabilities. Unfortunately, the vulnerability scan you ran last week
(and perhaps even yesterday!) might no longer indicate all of your
vulnerabilities accurately today.

Don't get me wrong. Although these limitations are very real, I strongly
recommend that you include vulnerability scanning in your own information
security program. Despite their limitations, vulnerability scanners are one of
the best methods of determining the true security stance of your network.

Sure, they don't comprise your entire security defense program. However,
vulnerability-scanning tools can really help you defend your network by
finding fundamental security holes before the attackers do.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks
and Effective Defenses

Intrusion Detection System and Intrusion Prevention System
Evasion

Thus far in the attack, the bad guys have had great success in gathering sensitive information about the
security secrets of the target computing infrastructure. Not only do they have lists of target systems,
platform types, knowledge of open ports, and a vulnerability inventory, but they are also poised to take
over machines on the target network. Not bad.

One factor, however, greatly jeopardizes the attacker's success. All of the scanning tools we've discussed
in this chapter, ranging from network mappers to vulnerability scanners and everything in between, are
incredibly noisy. A port scanner sends tens of thousands of packets or more. A robust vulnerability
scanner could send hundreds of thousands or millions of packets to the target network. Depending on the
network load of the target, a diligent system administrator might notice this traffic. Even worse for the
attacker, all of the tools described in this chapter can be detected by a network-based IDS or blocked by
a network-based IPS. An IDS could sit on the target network, listening for attacks and warning
administrators of the attacker's activities. Based on warnings from the IDS, the administrators of the
target systems could improve their security stance or even start an investigation, foiling the attacker's
ability to gain access. What's more, a vigorous investigation by the target network could result in a
criminal case. If the target network is defended by a network-based IPS, the actual attack itself might be
blocked as the attack traffic matches the signatures of the IPS tool for known attacks. All of the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

attacker's scanning work would then be for naught. Clearly, the attackers want to evade detection by IDS
and IPS tools.

How Network-Based IDS and IPS Tools Work

Network-based IDS and IPS tools gather packets associated with normal use of the network and attacks
alike. The network-based IDS and IPS must sort through this mountain of data to determine if an actual
attack is underway. Today, many network-based IDSs and IPSs have a database of attack signatures that
they try to match against network traffic. Increasingly, we are seeing more behavior-based IDS and IPS
tools, which look for attacker activity based on what the attacker does (such as stealing important data
or configuration files). Still, most of today's IDS and IPS tools focus on matching specific bits in packets
against the known attack signatures in their database. When an attack is discovered, the IDS warns an
administrator by sending e-mail, calling a pager, sending a message to a network management system,
or otherwise ringing bells and blowing whistles to put administrators on red alert. An IPS, when it
discovers an attack, not only triggers an alert, but typically drops the attack packets, blocking the attack
before it reaches its target.

Figure 6.27 shows a typical network-based IDS installation, where we have a network-based IDS probe
looking for signs of an attack. This probe includes a signature that tries to detect the theft of a password
file from a UNIX system, by searching the arriving network traffic for the string "cat /etc/shadow," the
common location of encrypted passwords on a UNIX machine.

Figure 6.27. A network-based IDS is configured to warn administrators when traffic matches
an attack signature.

How Attackers Can Evade Network-Based IDSs and IPSs

The attackers want to fly under the radar screen of the IDS and IPS. How can this very important
attacker goal be accomplished? Attackers will take advantage of the interaction of the following related
factors to avoid detection:

The attackers work hard to make sure their attacks don't look like the signatures checked by
common IDS and IPS tools. Sometimes this means using a new attack that the IDS or IPS doesn't
know about yet. Most often, however, it means using a standard attack, but altering the packet
structure or syntax in a way that the IDS or IPS does not anticipate.

Network-based IDS and IPS tools do not have complete context of how the packets they are
capturing will be interpreted by the end system. They are peering in on someone else's conversation,
and don't really know what the end system will do with the packets they are monitoring.

These methods associated with manipulating the attack data to avoid detection are known collectively as
IDS and IPS evasion techniques. Such evasion is a very active area of research in the computer
underground right now. The evolution in IDS and IPS evasion is definitely an area to keep close tabs on,
and can function at the network level or application level, or both. Let's look at each in turn.

IDS and IPS Evasion at the Network Level

As described in Chapter 2 and earlier in this chapter, IP offers the ability for network devices to fragment
packets to optimize the packet length for various transmission media. A large IP packet (and its contents,
which can be a TCP, UDP, or other type of packet) is broken down into a series of fragments, each with
its own IP header. The fragments are sent one by one across the network, where the destination host
reassembles them.

When these fragments pass by a network-based IDS or through a network-based IPS, all of them must
be captured, remembered, and analyzed to determine if an attack is underway. A large number of
disparate fragment streams, spread out over a long time, means that the IDS or IPS must have
considerable long-term buffers to store all of this data. These so-called virtual fragment reassembly
buffers are typically loaded into RAM and populated with fragments as they arrive. Thus, gathering and
analyzing fragments requires a great deal of memory and processing power on the IDS and IPS's part.

Furthermore, to analyze the communication reflected in the fragments, the IDS or IPS must reassemble
all of these packets in the same way that the target system performs reassembly. Unfortunately,
different operating system types have various inconsistencies in the way they handle fragment
reassembly. Given this knowledge of how an IDS or IPS interacts with fragments, attackers might be able
to evade them using any of the following approaches:

Perhaps the IDS or IPS cannot handle fragment reassembly at all. Older implementations (vintage
2000 and 2001) could not handle fragments well, although most modern IDS tools can handle some
form of fragmented packet analysis with varying degrees of success, as we discuss later.

The attacker might try to tie up all of the memory capacity of the IDS or IPS system by sending in so
many fragments that the system saturates. On saturation, the IDS or IPS might not be able to detect
a new attack, because it cannot gather the packets with its incoming packet queue flooded.

The attacker can fragment the packets in a variety of unusual ways to avoid detection. If the IDS
does not understand how to reassemble the packet properly, it will not discover the attack.

The impact of these techniques on IDS and IPS systems varies greatly from vendor to vendor. Snort will
behave differently from the Cisco Secure Network IDS, which will handle things differently than the ISS
RealSecure tool. To properly avoid detection, attackers will become intimately familiar with these various
products.

The Tiny Fragment Attack and the Fragment Overlap Attack

Let's explore a couple of examples of how an attacker might fragment packets to evade an IDS and IPS.
Although there are thousands of ways to fragment packets, two examples are quite illustrative: the tiny
fragment attack and the fragment overlap attack. There are many other more elaborate examples, but
by focusing on the basics of fragmentation attacks, we can get a good understanding of how they work.

The tiny fragment attack, shown in Figure 6.28, is designed to fool the IDS and IPS by creating two
fragments, neither of which includes enough information to trip the signature on the IDS or IPS. The
packet is sliced in the middle of some data that would otherwise trigger the IDS or IPS. As we discussed
before, suppose the signature is looking for cat /etc/shadow. Because the IDS or IPS is looking for this
string to make alerting or blocking decisions, it might ignore the tiny initial fragment as it passes. After
all, the first fragment doesn't match the signature. Likewise, the IDS might not alert on the second
fragment. You see, it's just part of the original packet associated with the first fragment, which didn't
trigger the signature. In this way, the attacker has sent in two packets that avoid detection by the IDS or
blocking by the IPS.

Figure 6.28. The tiny fragment attack.

[View full size image]

Most modern IDS and IPS tools can detect the tiny fragment attack using virtual fragment reassembly
buffers. They just have to make sure to gather all of the fragment streams and assemble them in
memory quick enough to detect this attack and alert on it.

A far more insidious fragmentation example is the fragment overlap attack, which is based on
manipulating the fragment-offset field of the IP header. The fragment-offset field tells the destination
system where the given fragment fits in the overall bigger packet that was sliced apart into fragments.
For this scenario, shown in Figure 6.29, the attacker creates two (or more) fragments for each IP packet.

One fragment has the TCP header, and a piece of innocuous-looking data that doesn't trigger the
signature, like cat /etc/fred. The second fragment has an offset value that is a lie. The offset is too small,
so that when the fragments are reassembled, they overlap. The second fragment is designed to overwrite
part of the first fragment with the text shadow, making it evil when the two parts are brought together.
The IDS or IPS doesn't detect any malfeasance in the first fragment (after all, it's totally benign). The
device then might ignore the second fragment (because it's just a fragment of the previous packet that
appeared innocuous, and doesn't in and of itself do anything evil). When the two fragments arrive at the
targeted protected server, they are reassembled. The reassembly overwrites part of fragment 1 (fred)
with the data from fragment 2 (shadow), and the TCP/IP stack passes the packet to the application,
which receives cat /etc/shadow. The attacker has evaded the IDS or IPS.

Figure 6.29. A fragment overlap attack.

[View full size image]

Now, I know what you are thinking: "Why can't the IDS sensor or IPS product just reassemble all of the
packets before it makes filtering decisions, including the overlapped fragments?" Unfortunately, different
operating systems reassemble fragmented packets differently. On some operating systems, the earliest
fragment (the one received first in time) can't be overlapped. It sticks in the end system's reassembly
buffer and won't be overwritten. On other operating system types, the fragment with the lowest offset
will overwrite others, regardless of when it arrives in time. Also, in various operating systems, complete
overlap and partial overlap are handled differently on the end system, thereby confusing the IDS and
IPS. In a sense, the IDS and IPS don't know how the end system is going to reassemble the packet, so
they can't be sure what impact these unusually overlapped fragments will have there. In our example,
the end system might receive different results if the fragments are sent out of order, depending on its
operating system type (getting cat /etc/shadow or perhaps even cat /etc/fredow if the packet order is
reversed in time). Sure, the IDS or IPS can alert that it received overlapped or misaligned packets. As an
attacker, I'd much rather have you see an innocuous sounding "unaligned fragment" alert than an alert
that says someone just stole your encrypted password file!

This whole overlap works because most of today's IDS and IPS tools have a single method of
reassembling the fragment before making their decisions about whether an attack is occurring. For
example, the Cisco Secure IDS has one setting so an administrator can choose to reassemble with the
behavior of Windows, Solaris, IOS, or BSD. Once you choose a setting, you'll miss attacks against other

operating systems. Older versions of Snort (running the frag-2 reassembly routine) always reassembled
in the same manner as Linux machines, regardless of the system type Snort runs on. It would be blind to
some fragmentation attacks specifically crafted for other operating systems. Newer versions of Snort run
the frag-3 reassembly routine, which includes multiple fragment reassembly buffers running
simultaneously, each one with behavior tuned for Windows, Solaris, IOS, or BSD.

FragRouter: A Nifty Tool for Conducting Fragmentation Attacks to Evade IDS and
IPS Tools

As stated earlier in this chapter, the Nmap port scanner includes a limited packet fragmentation option.
In Nmap, tiny fragments are sent, in the hope that the target network IDS or IPS will not be able to
understand them properly. Although useful in a pinch, the Nmap fragmentation routine is not
overwhelmingly powerful. There are far better ways to create fragment attacks for evasion.

FragRouter, created by Dug Song, implements a variety of fragmentation attacks. Available at ,
FragRouter runs on BSD, Linux, and Solaris. It supports more than 35 different ways of slicing and dicing
packets to manipulate the flow of data between a source and destination, including the options shown in
Table 6.4.

Table 6.4. Some of the Many Fragmentation Options
Offered by FragRouter

Fragmentation
Type Name

Flag Used
to
Configure
FragRouter

How the Packets
Are Mangled

frag-1 –F1
Send data in
ordered 8-byte IP
fragments.

frag-2 –F2
Send data in
ordered 24-byte IP
fragments.

frag-3 –F3

Send data in
ordered 8-byte IP
fragments, with one
fragment sent out of

order.

tcp-1 –T1

Complete TCP
handshake, send
fake FIN and RST
(with bad
checksums) before
sending data in
ordered 1-byte
segments.

tcp-5 –T5

Complete TCP
handshake, send
data in ordered 2-
byte segments,
preceding each
segment with a 1-
byte null data
segment that
overlaps the latter
half of it. This
amounts to the
forward-overlapping
2-byte segment
rewriting the null
data back to the real
attack.

tcp-7 –T7

Complete TCP
handshake, send
data in ordered 1-
byte segments
interleaved with 1-
byte null segments
for the same
connection but with
drastically different

sequence numbers.

The beauty of FragRouter is that it separates the attack functionality from the fragmentation
functionality. As its name implies, it really is a router, implemented in software. As displayed in
6.30, attackers install it on one of their own systems and then use any attack tool to send packets
through the machine with FragRouter installed.

Figure 6.30. Using FragRouter to evade a network-based IDS.

[View full size image]

In using FragRouter, the attacker first chooses a particular attack tool to launch against a target. This
tool generates attack packets. These packets are funneled through FragRouter, which slices and dices the
packets according to any one of its 35 fragmentation and scrambling options. Then, FragRouter forwards
these packets across the network to their ultimate destination, the target. The separation of the
fragmentation function from the particular attack tool allows an attacker to choose any tool, such as a
network mapper (like Cheops-ng), port scanner (such as Nmap), firewall rule scanner (such as Firewalk),
or vulnerability scanner (like Nessus). Using FragRouter, any of these tools now can be used while
evading IDS with packet fragmentation.

Dug Song released a follow-up tool called FragRoute (note that the latter tool doesn't have an "r" at the
end of its name). The FragRoute tool makes creating mystifying fragmentation schemes even more
flexible for the attacker.

FragRoute differs from the older FragRouter tool in that it doesn't route. The attack tool has to sit on the
same machine as FragRoute itself. That's not a huge change, but it's worth noting.

The biggest difference in FragRoute, however, is the inclusion of a new language for creating brand new
fragmentation schemes. The old FragRouter tool had a limited number of predefined methods for creating
fragments according to 35 different recipes. The newer tool can have an arbitrary number of
fragmentation recipes, limited only by the imagination and creativity of the attacker. As of this writing, a
few of the FragRouter options (specifically, the F2 and T1 options) can be used to penetrate popular

network-based IPS tools. In experiments in our lab, we found that a significant majority of commercial
IPS products were susceptible to at least one of the FragRouter evasion tactics.

IDS and IPS Evasion at the Application Level

Although FragRouter and FragRoute allow an attacker to manipulate a data stream at the network level,
application-level IDS and IPS evasion techniques let the bad guy modify particular application-level
syntax to confuse an IDS or IPS. Whisker, a tool written by Rain Forest Puppy, was the first free tool to
implement some application-level IDS and IPS evasion tactics. Not only were these ideas
Whisker itself, but the best free Web-specific scanner available today, Nikto, also includes these same
techniques for avoiding detection by altering HTTP syntax.

Nikto: A CGI Scanner That's Good at IDS and IPS Evasion

Nikto, created by a developer named Sullo, is an actively updated Web server scanner with a multitude
of features, freely available at . It provides similar base functionality to the older Whisker tool, but has
been extended to do much more.

Nikto scans for more than 2,500 potentially vulnerable Web scripts and related material and understands
version-specific configuration problems for more than 230 different Web server version types.

Most Web applications use some sort of active scripting technology running on the Web server, such as
CGI, ASP, JSP, and PHP scripts. A user might supply information to a CGI script through a form on his or
her browser. When the form's data is sent to the Web server, the CGI script runs on the Web server,
makes calculations, gathers appropriate data, and generates a response for the user. Common CGI
functions include searching a Web site for a particular term, entering user contact information, or
constructing online calculators. Really, most Web-based applications are written using CGI, or related
technologies, such as Microsoft's ASPs, Sun Microsystems' JSPs, PHP pages, and several others. Many
Web servers, such as the open source Apache or the commercial Internet Information Server from
Microsoft, are distributed with example CGI and ASP programs to teach coding techniques and offer a
head start to developers creating applications for the Web.

Unfortunately, a large number of these default CGI/ASP/JSP/PHP Web scripts have major vulnerabilities.
Remember, these scripts run on the Web server and are activated by a user across the network. Most of
these Web scripts must process user input, a dangerous thing to do when some of the users might be
trying to attack the Web server. Given that it executes on the Web server, a vulnerable Web script could
allow an attacker to take over the Web server, executing arbitrary commands on the machine. Many
widely used scripts include flaws that allow an attacker to send escape sequences in the user-supplied
input. By escaping from within a running Web script, an attacker can send data directly to the command
line of the target system for execution. A large number of vulnerable Web scripts are widely known,
including older versions of the AWStats CGI script (used for analyzing Web server logs), the phpBB
environment (used to implement bulletin board discussion groups), and numerous others. Flawed, older
versions of these scripts allow an attacker to execute commands on a target Web server. Attackers scan
systems far and wide looking for these well-known flawed Web scripts in an attempt to take over their
targets.

Nessus includes a specific category of plug-ins devoted to checking for well-known vulnerable CGI scripts
and other Web server problems. However, Nikto is the best general-purpose Web vulnerability scanner
available today and includes a generous feature set. It supports scanning virtual Web servers all hosted
on a single machine, allows an attacker to perform automated guessing of user ID and passwords for Web
authentication, and can even use the output from an Nmap scan to target Web servers listening on TCP
ports 80 and 443. Certainly, all of these are incredibly useful features to folks looking for vulnerabilities
on Web servers. However, one of the most interesting aspects of Nikto is its application-level IDS and IPS
evasion techniques, originally borrowed from the earlier Whisker scanning tool.

Most IDS and IPS systems have signatures for attacks against known weak Web scripts, and alert an
administrator if someone attempts to activate the vulnerable script. Nikto tries to evade IDS and IPS
tools by subtly changing the format of the requests it sends to scan for flawed scripts on the target
machine. To see how this works, suppose there is a hypothetical vulnerable CGI script, called broken.cgi.
When asking if this vulnerable GCI script is present on a Web server, a browser sends an HTTP request
across the network with the following format:

GET /cgi-bin/broken.cgi HTTP/1.0

Similar requests are composed for ASP, JSP, PHP, and other environments. This basic request
implements an HTTP GET method, trying to activate a program called broken.cgi, located in the
directory, using the HTTP version 1.0 protocol. A Web server scanner like Nikto will likewise send this
request to check if the vulnerable broken.cgi script is present. Nikto checks for thousands of real, known
vulnerable scripts, not just our hypothetical broken.cgi. A network-based IDS and IPS tool scans all
packets traversing the network looking for any signatures that match requests for known vulnerable Web
scripts. Nikto evades these tools by manipulating the requests that it sends so that they do not match the
signatures exactly, but still run appropriately on the target Web server. Nikto includes ten different
mechanisms for manipulating the HTTP request to avoid detection, as shown in Table 6.5

Table 6.5. Nikto and Whisker's IDS and IPS Evasion Tactics

IDS
Evasion
Tactic
Name

How Tactic
Works

Example

The request
for the CGI
script is
encoded
using the
hexadecimal

URL
encoding

equivalents of
the
characters.
Some (but
not many)
IDS and IPS
tools do not
recognize the
encoding as a
request for
the script.

GET /%63%67%69%2d%62%69%6e/broken.cgi
HTTP/1.0

/./
Directory
insertion

The request
includes the
/./ characters,
which say
"change to
the current
directory,"
resulting in
no change of
directories.
This doesn't
literally match
the signature.

GET /./cgi-bin/./broken.cgi HTTP/1.0

Premature
URL
ending

The URL
doesn't
include the
CGI script
information.
Instead, that
information is
placed in the
HTTP Header.
Again, this
doesn't match
the signature,

GET /HTTP/1.0\r\n HEADER: ../../cgi-
bin/broken.cgi HTTP/1.0\r\n

and might go
undetected.

Long URL

The request
includes a
nonexistent
directory with
a very long
name. This
fake directory
is ignored by
the Web
server
because of
the "/../" at
its end. An
IDS or IPS
might only
scan the first
couple dozen
characters of
the request
looking for a
signature
match.

GET
/thisisabunchofjunktomaketheURLlonger/../cgi-
bin/broken.cgi HTTP/1.0

Fake
parameter

A fake
parameter is
inserted into
the HTTP GET
request. The
variable has
no real
information or
use, but could
throw off the
signature

GET /index.htm?param=/../cgi-bin/broken.cgi
HTTP/1.0

matching of
the IDS or
IPS.

Tab
separation

Instead of
using spaces
in the HTTP
request, the
tool uses
tabs. If the
signature is
based on
spaces, the
IDS or IPS
will miss this
attack, yet it
still functions
on most Web
servers.

GET<tab>/cgi-bin/broken.cgi<tab>HTTP/1.0

Case
sensitivity

Windows
systems are
case
insensitive. If
the IDS or
IPS is looking
for cgi-bin
and we send
CGI-BIN, the
tool might not
notice, yet
the request
will still run
on a Windows
Web server
supporting
CGI scripts.

GET /CGI-BIN/broken.cgi HTTP/1.0

Windows
delimiter

By using the
annoying
backslash (\)
associated
with
Windows, the
IDS or IPS
might not
match a
signature.
However, a
Windows Web
server will still
process this
request.

GET /cgi-bin\broken.cgi HTTP/1.0

NULL
method

The IDS or
IPS might use
C-library
strings
functions like
string copy
(strcpy) or
string
compare
(strcmp) to do
its analysis.
These
functions
expect an
ASCII null
character
(%00) to
indicate the
end of a
string.
Attackers

GET%00 /cgi-bin/broken.cgi HTTP/1.0

might insert
the ASCII null
character in a
request to try
to stop the
analysis of
our request
after the null.
Therefore,
the
characters
/cgi-
bin/broken.cgi
will not be
processed by
the string
handling
routines.

Session
splicing

Unlike the
other nine
IDS and IPS
application-
level evasion
techniques,
this one
operates at
the transport
level. The
request is
broken down
into separate
TCP packets
consisting of
one to three
characters.
Note that
these are
separate TCP
packets

Send separate packets with GET /cg ibin...

associated
with the same
connection
and not
fragments.

As you can see, Nikto includes numerous ingenious techniques for avoiding detection. It is important to
note that all of these techniques are focused on Web server scanning for CGI and related technologies
via HTTP and HTTPS. Whereas FragRouter could be applied to any attack tool, Nikto's techniques are
used only in a Nikto scan.

Most modern IDS and IPS tools have detection capabilities for each individual evasion technique
described in Table 6.5. However, note that an attacker can formulate hundreds of different combinations
of these techniques, morphing a single HTTP GET request in multiple ways at the same time. By
combining three or more of these techniques together in the same attack, a bad guy can fool even many
modern IDS and IPS tools.

IDS and IPS Evasion Defenses
Don't Despair: Utilize IDS and IPS Where Appropriate

As we have seen, numerous techniques dodge network-based IDS and IPS tools. So, should you avoid
deploying IDS and IPS on your network? Let's not throw out the baby with the bath water. Intrusion
detection and prevention are a valuable part of securing a network. Even though there are a variety of
methods to fool IDS and IPS machines, most vendors work hard to ensure that they can detect the latest
attacks despite various evasion tactics. A well-deployed IDS infrastructure can give you an important
heads up that a determined attacker is targeting your network. Properly maintained IPS tools will block
large numbers of the most common attacks.

Keep the IDS and IPS Systems and Signatures Up to Date

It is absolutely critical that you have a defined process for keeping the signatures of your IDS and IPS
tools up to date. Because new attacks are constantly being developed, you must update your IDS and IPS
platforms on a weekly basis, or more often as the vendor releases new signatures. Just as you keep your
antivirus tools up to date on your end hosts because of the rapid development and spread of viruses,
worms, and bots, so too must you keep your IDS and IPS systems up to date. If your IDS or IPS tools fall
behind, you will definitely suffer some significant attacks.

Utilize Both Host-Based and Network-Based IDS and IPS

Whereas a network-based IDS and IPS listen to the network looking for attacks, host-based IDS and IPS
tools run on the end system that is under attack. For example, you might install a host-based IDS or IPS
agent on a sensitive Web, DNS, or mail server. These host-based technologies are less subject to evasion

tactics, as they run on the end host itself, as shown in Figure 6.31. Many of the IDS and IPS evasion
techniques focus on fooling network-based tools because they do not understand the full context of how
a series of packets will appear on the end system. This concept fueled the techniques used by
FragRouter, FragRoute, and Nikto. Host-based IDSs and IPSs address this concern by running on the end
system. They have more complete context information of the communication and can make more
realistic decisions about what is happening on the end system. A host-based IDS and IPS can look at the
logs, the system configuration, and the system's behavior to see what an attacker has actually done,
rather than trying to interpret what is going on by looking at packets.

Figure 6.31. Host-based IDS versus network-based IDS.

For example, the fragmentation attacks implemented in FragRouter target network-based IDS and IPS
systems by trying to fool them with unusually overlapping fragments. A host-based IDS or IPS tool
analyzes the attacker's tracks on the end system, after packets have been reassembled by the target's
TCP/IP stack. Similarly, many of Nikto's application-level evasion techniques are less effective against
host-based IDSs and IPSs than network-based tools because the host-based tool can watch for changes
made by the attacker on the end system. Host-based defensive tools, including commercial IDS and IPS
products such as Cisco's Security Agent (CSA) and McAfee's Entercept, can detect nefarious activity at a
much finer grained level than can network-based tools.

Does this mean that network-based IDS and IPS should be avoided? Absolutely not. Network-based tools
serve a valuable role in monitoring network traffic. Whereas a host-based IDS or IPS only defends the
host it is installed on, a network-based IDS or IPS can monitor a whole LAN. Consider this analogy: The
host-based tool acts like a police officer stationed in particular houses looking for burglars. A network-
based tool operates like a police helicopter flying above a neighborhood looking for burglars. Sure, a
burglar can dress up in a disguise and fool the helicopter, and a police officer in your house will notice
someone stealing your family jewels even if the crook is disguised. Still, it's awfully expensive to put a
police officer in every house. As in this analogy, you get economies of scale with a network-based IDS
and IPS that you just can't achieve with host-based IDSs and IPSs. In the end, a sound IDS and IPS
deployment usually utilizes both network- and host-based tools.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

When we started this chapter, the attackers had a list of contacts, a handful
of IP addresses for your network, and list of domain names. Using a variety
of scanning techniques, the attackers have now gained valuable information
about the target network, including a list of phone numbers with modems, a
group of wireless access points, addresses of live hosts, network topology,
open ports, and firewall rule sets. Indeed, the attacker has even gathered a
list of vulnerabilities found on your network, all the while trying to evade
detection. At this point, the attackers are poised for the kill, ready to take
over systems on your network. In the next chapter, we explore how
attackers, armed with information from a detailed network scan, can
compromise systems on the target network.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

After gathering information during the reconnaissance phase, attackers
often turn to scanning systems to gather further information about their
target. The scanning phase favors attackers, because they only have to find
one way in to achieve their goals, and often have the luxury of time.

War driving is the process of finding wireless access points on a target
network and determining their SSIDs, which act as network names. The
most popular wardriving tool is NetStumbler, which runs on Windows. To
detect a wireless network, NetStumbler sends probe packets with an SSID
field set to "any." With their default configuration, most access points
respond to this request. Wellenreiter is a passive war-driving tool, in that it
sniffs the wireless frequencies to see if WLANs are present. Because most
WLANs send their SSID in beacon packets, Wellenreiter can discover them
quickly using its rfmon mode. For those access points configured not to
include SSIDs in beacon packets, the attacker can either sniff the traffic
directly or use ESSID-Jack to force the targets to reveal their SSIDs. To
defend against war driving, make sure you find the weak access points in
your environment before attackers do, and consider using a stronger

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

wireless authentication protocol, such as WPA or 802.11i.

Unsecure modems are one of the easiest ways into a target network. To
locate such modems, attackers employ war dialing, a technique that dials
telephone number after telephone number looking for modem carrier tones.
For war dialing, attackers use telephone number ranges found on Web sites,
employee postings to newsgroups, and registration records. After discovering
modems, attackers look for systems without passwords, or machines with
easily guessed passwords. THC-Scan is one of the most popular war-dialing
tools in the computer underground today. Defenses against war dialing
include a strong modem policy requiring registration for modems in use, as
well as periodic war dialing to find renegade modems before attackers do.

Attackers use network-mapping techniques to discover an inventory of
target machines and the overall topology of the network architecture. By
sweeping the target network range, the attacker determines which hosts are
present. Using traceroute, the attacker can determine how systems, routers,
and firewalls are connected together. Cheops-ng is a useful tool that
includes sweeping and traceroute capabilities, among other useful functions.
To defend against network mapping, you should consider blocking some of
the ICMP messages used by the network-mapping tools, at least to sensitive
hosts.

Port scanners are used to determine which ports have listening services on a
target network. By interacting with various ports on the target systems, a
port scanner can be used to develop a list of running services. One of the
most fully featured port scanners is Nmap. Nmap supports a huge number of
scanning types, including TCP SYN scans, TCP ACK scans, UDP scans, and so
on. Nmap also includes operating system fingerprinting capabilities to
determine the underlying operating system of target machines based on
their protocol behavior. To defend against port scans, you must harden your
operating systems, shutting down all unneeded services and applying
appropriate filtering.

Attackers can determine the rules implemented on a packet filtering firewall
using the Firewalk tool to scan the target network. To defend against
Firewalking, make sure your firewall configuration allows only services with
a defined business need.

Vulnerability-scanning tools have the ability to check a target network for
hundreds or thousands of vulnerabilities. They employ a database of known
configuration errors, system bugs, and other problems. A variety of free and
commercial vulnerability scanners are available. Nessus is one of the best,
and it's free. To defend against vulnerability scanners, you must apply
system patches on a regular basis, and periodically conduct your own
vulnerability scans.

When conducting scans, attackers employ a variety of techniques to avoid
detection by IDSs and IPSs. Evasion techniques operate at the network and
at the application level. FragRouter and FragRoute implement network-level
IDS and IPS evasion by using packet fragments. Nikto (and the earlier
Whisker tool) implement application-level IDS and IPS evasion for Web
server targets. To foil IDS and IPS evasion techniques, keep your IDS and
IPS systems up to date, and utilize both network- and host-based IDSs and
IPSs.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 7. Phase 3: Gaining Access Using
Application and Operating System Attacks

At this stage of the siege, the attacker has finished scanning the target
network, developing an inventory of target systems and potential
vulnerabilities on those machines. Next, the attacker wants to gain access
on the target systems. The particular approach to gaining access depends
heavily on the skill level of the attacker, with simple script kiddies trolling
for exploits and more sophisticated attackers using highly pragmatic
approaches.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Script Kiddie Exploit Trolling

To try to gain access, the average script kiddie typically just takes the output
from a vulnerability scanner and surfs to a Web site offering vulnerability
exploitation programs to the public. These exploit programs are little chunks
of code that craft very specific packets designed to make a vulnerable
program execute commands of an attacker's choosing, cough up
unauthorized data, or even crash in a DoS attack. Several organizations
offer huge arsenals of these free, canned exploits, with search engines
allowing an attacker to look up a particular application, operating system, or
discovered vulnerability. Some of the most useful Web sites offering up large
databases chock full of exploits include the following:

The French Security Incident Response Team (Fr-SIRT) exploit list at

Packet Storm Security at

The Security Focus Bugtraq Archives

The Metasploit Project at

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Some controversy surrounds the organizations distributing these exploits.
Most of them have a philosophy of complete disclosure: If some attackers
know about these exploits, they should be made public so that everyone can
analyze, understand, and defend against them. With this mindset, these
purveyors of explicit exploit information argue that they are merely
providing a service to the Internet community, helping the good guys keep
up with the bad guys. Others take the view that these exploits just make
evil attacks easier and more prevalent. Although I respect the arguments of
both sides of this disclosure controversy, I tend to fall into the full-disclosure
camp (but you could have guessed that, given the nature of this book).

As shown in Figure 7.1, a script kiddie can search one of the exploit
databases to find an exploit for a hole detected during a vulnerability scan.
The script kiddie can then download the prepackaged exploit, configure it to
run against the target, and launch the attack, usually without even really
understanding how the exploit functions. That's what makes this kind of
attacker a script kiddie. Although this indiscriminate attack technique fails
against well-fortified systems, it is remarkably effective against huge
numbers of machines on the Internet with system administrators who do not
keep their systems patched and configured securely.

Figure 7.1. Searching FrSIRT for an exploit.

[View full size image]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Pragmatism for More Sophisticated Attackers

Whereas a script kiddie utilizes these Internet searches to troll for canned
exploits without understanding their function, a more sophisticated attacker
sometimes employs far more complex techniques to gain access. Let's focus
on these more in-depth techniques for gaining access and the ideas
underlying many of the canned exploits.

Of the five phases of an attack described in this book, Phase 3, the gaining
access phase, tends to be very free-form in the hands of a more
sophisticated attacker. Although the other phases of an attack
(reconnaissance, scanning, maintaining access, and covering tracks) are
often quite systematic, the techniques used to gain access depend heavily on
the architecture and configuration of the target network, the attacker's own
expertise and predilections, and the level of access with which the attacker
begins. In this book, we discussed the reconnaissance and scanning phases
in a roughly chronological fashion, stepping through each tactic in the order
used by a typical attacker. However, given that gaining access is based so
heavily on pragmatism, experience, and skill, there is no such clearly
defined order for this phase of the attack. Thus, we discuss this phase by

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

describing a variety of techniques used to gain access, without regard to the
particular order in which an attacker might apply them. Our discussion of
these techniques starts with attacks against operating systems and
applications in this chapter, followed, in the next chapter, by a discussion of
network-based attacks.

There are several popular operating systems and hundreds of thousands of
different applications, and history has shown that each operating system and
most applications are teeming with vulnerabilities. A large number of these
vulnerabilities, however, can be attacked using variations on popular and
recurring themes. In the remainder of this chapter, we discuss some of the
most widely used and damaging application and operating system attacks,
namely buffer overflow exploits, password attacks, Web application
manipulation, and browser flaw exploits.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Buffer Overflow Exploits

Buffer overflows are extremely common today, and offer an attacker a way
to gain access to and have a significant degree of control over a vulnerable
machine. Although the infosec community has known about buffer overflows
for decades, this type of attack really hit the big time in late 1996 with the
release of a seminal paper on the topic called "Smashing the Stack for Fun
and Profit" by Aleph One. You can find this detailed and well-written paper,
which is still an invaluable read even today, at . Before this paper, buffer
overflows were an interesting curiosity, something we talked about but
seldom saw in the wild. Since the publication of this paper, the number of
buffer overflow vulnerabilities discovered continues to skyrocket, with
several brand new flaws and exploits to take advantage of them released
almost every single day.

By exploiting vulnerable applications or operating systems, attackers can
execute commands of their choosing on target machines, potentially taking
over the victim machines. Imagine if I could execute one or two commands
on your valuable server, workstation, or palmtop computer. Depending on
the privileges I'd have to run these commands, I could add accounts, access

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

a command prompt, remotely control the GUI, alter the system's
configuration ... anything I want to do, really. Attackers love this ability to
execute commands on a target computer.

Buffer overflow vulnerabilities are based on an attacker sending more data
to a vulnerable program than the original software developer planned for
when writing the code for the program. The buffer that is overflowed is
really just a variable used by the target program. In essence, these flaws are
a result of sloppy programming, with a developer who forgets to create code
to check the size of user input before moving it around in memory. Based on
this mistake, an attacker can send more data than is anticipated and break
out of the bounds of certain variables, possibly altering the flow of the target
program or even tweaking the value of other variables. There are a variety
of buffer overflow types, but we look at two of the most common and
popular: stack-based buffer overflows and heap overflows.

Stack-Based Buffer Overflow Attacks

To understand how stack-based buffer overflow attacks work, we first need
to review how a computer runs a program. Right now, if your computer is
booted up, it is processing millions of computer instructions per second, all
written in machine language code. How does this occur? Consider Figure 7.2,
which highlights the relationship of a system's processor and memory during
execution. When running a program, your machine's Central Processing Unit
(CPU) fetches instructions from memory, one by one, in sequence. The
whole program itself is just a bunch of bits in the computer's memory, in the
form of a series of instructions for the processor. The CPU contains a very
special register called the Instruction Pointer, which tells it where to grab
the next instruction for the running program. The CPU grabs one program
instruction from memory by using the Instruction Pointer to refer to a
location in memory where the instruction is located within the given
segment of code. The CPU executes this instruction, and the Instruction
Pointer is incremented to point to the next instruction. The next instruction
is then fetched and run. The CPU continues stepping through memory,
grabbing and executing instructions sequentially, until some type of branch
or jump is encountered. These branches and jumps are caused by if–then
conditions, loops, subroutines, goto statements, and related conditions in the
program. When a jump or branch is encountered, the instruction pointer's
value is altered to point to the new location in memory, where sequential
fetching of instructions begins anew.

Figure 7.2. How programs run.

[View full size image]

In my opinion, the idea of the stored-program-controlled computer
illustrated in Figure 7.2 is one of the most important technical concepts of
the last century. Sure, splitting the atom was cool, but that feat has, so far,
had less impact on my life than this idea. Let's hope it stays that way!
Putting a person on the moon was sure nifty, but I feed my family because
of the concepts in Figure 7.2, and you probably do, too. In fact, we might not
have made it to the moon had we not already come up with this idea, given
the primitive computers that were required for the moon shots. In fact, all a
computer consists of is a little engine (the CPU) that moves data around in a
memory map, based on instructions that are located in that same memory
map. And that's where the problem is. By carefully manipulating elements in
that memory, an attacker can redirect the flow of execution to the attacker's
own instructions loaded into memory.

Function Calls and the Stack

Now that we've seen the microscopic level of how programs run, we've got to
step up to a higher view of the system. Most modern programs aren't written
directly in machine language, those low-level instructions we illustrated in
Figure 7.2. Instead, they are written in a higher level language, such as C,
C++, Java, or Perl. They are then converted into machine language (either
by a compiler for languages like C and C++ or a real-time interpreter for
stuff like Java and Perl) and executed. Most high-level languages include the
concept of a function call, used by programmers to break the code down into
smaller pieces. Figure 7.3 shows some sample code written in the C
programming language.

Figure 7.3. Some C code.

[View full size image]

When the program starts to run, the main procedure is executed first. The
first thing the main procedure does is to call our sample function. All
processing by the program will now transition from the main procedure to
the sample function. The system has to remember where it was operating in
the main procedure, because after sample_function finishes running,
the program flow must return back to the main procedure. But how does the
system remember where it should return after the function call is done? The
system uses a stack to remember this information associated with function
calls.

A stack is a data structure that stores important information for each process
running on a computer. The stack acts kind of like a scratch pad for the
system. The system writes down important little notes for itself and places
these notes on the stack, a special reserved area in memory for each
running program. Stacks are similar to (and get their name from) stacks of
dishes, in that they behave in a Last-In, First-Out (LIFO) manner. That is,
when you are creating a stack of dishes, you pile plate on top of plate to
build the stack. When you want to remove dishes from the stack, you start
by taking the top dish, which was the last one placed on the stack. The last
one in is the first one out. Similarly, when the computer puts data onto its
stack, it pushes data element after data element on the stack. When it needs
to access data from the stack, the system first takes off the last element it
placed on the stack, a process known as popping an item off of the stack.
Depending on the computing architecture, the stack may grow upward
(toward higher memory addresses) or downward (toward lower addresses) in
memory. The direction of growth isn't really important to us here; it's the
LIFO property that matters.

Now, what types of things does a computer store on a stack? Among other
things, stacks are used to store information associated with function calls. As
shown in Figure 7.4, a system pushes various data elements onto the stack
associated with making a function call. First, the system pushes the function
call arguments onto the stack. This includes any data handed from the main
procedure to the function. To keep things simple, our example code of Figure
7.3 included no arguments in the function call. Next, the system pushes the

return pointer onto the stack. This return pointer indicates the place in the
system's memory where the next instruction to execute in the main
procedure resides. For a function call, the system needs to remember the
value of the Instruction Pointer in the main procedure so that it knows
where to go back to for more instructions after the function finishes running.
The Instruction Pointer is copied onto the stack as a return pointer. That
return pointer is a crucial element, isn't it? It later controls the flow of the
program, directing where execution resumes after the function call is
completed.

Figure 7.4. A normal stack.

Next, the system pushes the Frame Pointer on the stack. This value helps
the system refer to various elements on the stack itself. Finally, space is
allocated on the stack for the local variables that the function will use. In
our example, we've got one local variable called buffer to be placed on the
stack. These local variables are supposed to be for the exclusive use of the
function, which can store its local data in them and manipulate their values.

After the function finishes running, printing out its happy message of "Hello
World," control returns to the main program. This transition occurs by
popping the local variables from the stack (in our example, the buffer
variable). For the sake of efficiency, the memory locations on the stack
allocated to these local variables are not erased. Data is removed from the
stack just by changing the value of a pointer to the top of the stack, the so-
called Stack Pointer. This Stack Pointer now moves down to its value before
the function was called. The saved Frame Pointer is also removed from the
stack and squirreled away in the processor. Then, the return pointer is
copied from the stack and loaded into the processor's Instruction Pointer

register. Finally, the function call arguments are removed, returning the
stack to its original (pre-function-call) state. At this point, the program
begins to execute in the main procedure again, because that's where the
Instruction Pointer tells it to go. Everything works beautifully, as function
calls get made and completed. Sometimes one function calls other functions,
which in turn call other functions, all the while with the stack growing and
shrinking as required.

What Is a Stack-Based Buffer Overflow?

Now that we understand how a program interacts with the stack, let's look at
how an attacker can abuse this capability. A buffer overflow is rather like
putting ten liters of stuff into a bag that will only hold five liters. Clearly
something is going to spill out. Let's see what happens when an attacker
provides too much input to a program. Consider the sample vulnerable
program of Figure 7.5.

Figure 7.5. Some very vulnerable C code.

[View full size image]

For this program, the main routine prints a "Hello World" greeting and then
calls the sample_function. In sample_function, we create two
buffers, bufferA, which is 50 characters in length, and bufferB, which
can hold 16 characters. Both of these are local variables of the
sample_function, so they will be allocated space on the stack, as shown
in Figure 7.6. We then prompt the user for input by printing "Where do you
live?" The gets function (which is pronounced "get-ess") from a standard C
library will pull input from the user. Next, we encounter the strcpy library
call. This routine is used to copy information from one string of characters to
another. In our program, strcpy moves characters from bufferA to
bufferB.

Figure 7.6. A view of the stack of the vulnerable program.

However, we've got a couple of problems here. Can you see them? First, the
gets library puts no limitation on the amount of data a user can type in. If
the user types in more than 50 characters, bufferA will be overflowed,
letting the attacker change other nearby places on the stack. In fact, the
gets call is extremely dangerous and should be avoided at all costs,
because it doesn't put any limitation on user input, thereby almost
guaranteeing a buffer overflow flaw.

But wait, there's more. Beyond gets, the strcpy library call is also very
sloppy, because it doesn't check the size of either string, and happily copies
from one string to the other until it encounters a null character in the source
string. A null character, which consists of eight zero bits in a row aligned in
a single byte, usually indicates the end of a string for the various C-
language string-handling libraries. This sloppiness of strcpy is a well-
known limitation found in many of the normal C language library functions
associated with strings. This is bad news because the system will allow the
strcpy to write far beyond where it's supposed to write. That's one of the
big problems with computers: They do exactly what we tell them to do, no
more and no less. Even if the attacker doesn't overflow bufferA with more
than 50 characters of user input in the gets call, the attacker has a shot at
overflowing bufferB by simply typing between 17 and 50 characters into
bufferA, which will be written to bufferB. Thus, we've got two buffer

overflow flaws in this sample code: the gets problem indicated by item
number 6, and the strcpy indicated by item number 7 in Figure 7.5. Ouch!

Now, let's suppose the user entering the input is an evil attacker, and types
in the capital A character a couple hundred times when prompted about
where he or she lives. What happens to the stack when the bad guy does
this? Well, it gets messed up. The A characters will spill over the end of
bufferA, bufferB, or both, running into the saved Frame Pointer, and
even into the return pointer on the stack. The return pointer on the stack
will be filled with a bunch of As. When the program finishes executing the
function, it will pop the local variables and saved Frame Pointer off of the
stack, as well as the return pointer (with all the As in it). The return pointer
is copied into the processor's Instruction Pointer, and the machine tries to
resume execution, thinking it's back at the main program. It tries to fetch
the next instruction from a memory location that is the binary equivalent of
a bunch of As (that would be hexadecimal 0x41414141 ... you can look it
up!). Most likely, this is a bogus memory location that the program doesn't
have permission to access or that contains data and not real executable
code. With a bogus Instruction Pointer value, we'll likely get a nasty
segmentation fault, an indication that the program is trying to access a place
in memory that it is not allowed to access, so the operating system shuts it
down. Thus, most likely, the program will crash.

So, after all this discussion, we've learned how to write a program that can
be easily crashed by a nefarious user. "Gee," you might be thinking, "Most of
the programs I write crash anyway." I know mine do.

But let's look at this more closely. Although loading a bunch of As into the
return pointer made the program crash, what if an attacker could overflow
bufferA or bufferB with something more meaningful? The attacker could
insert actual machine language code into the buffers, with commands that
he or she wants to get executed. When prompted for where they live, clever
attackers might type in the ASCII characters corresponding to machine
language code to run some evil command on the victim machine.

So, in this way, the attacker can load commands on the target machine that
the attacker wants to run. But how can the bad guy get the system to
execute these commands? If only there was a way to control the flow of
execution of the program, so the bad guy could say, "When you are done
with your nice stuff, Mr. Vulnerable Program, I want you to run my evil
stuff." Now, we get to that beautiful return pointer down below the local
variables and saved Frame Pointer. Remember, when the attacker's input
runs off the end of the local variables, that extra input can modify the return
pointer (as well as the saved Frame Pointer). The bad guy could overwrite
the return pointer with a value that points back into the buffer, which

contains the commands he or she wants to execute. The resulting recipe, as
shown in Figure 7.7, is a stack-based buffer overflow attack, and will allow
the attacker to execute arbitrary commands on the system. Cha-ching! It's
almost like the stack was designed to foster buffer overflow attacks, with
that highly important return pointer lining up nicely a little bit below the
local variables on the stack!

Figure 7.7. A smashed stack.

Let's review how the smashed stack works, focusing on just cramming too
much input into bufferA via that vulnerable gets() call. The attacker
gets a program to fill one of its local variables (a buffer) with data that is
longer than the space allocated on the stack, overwriting the local variables
themselves with machine language code. But the system doesn't stop at the
end of the local variables. It keeps writing data over the end of the buffer,
clobbering the saved Frame Pointer, and even overwriting the return pointer
with a value that points back to the machine language instructions the
attacker loaded into the bufferA on the stack. When the function call
finishes, the local buffers containing the instructions will be popped off the
stack, but the information we place in those memory locations will not be
cleared. The system then loads the now-modified return pointer into the
processor, and starts executing instructions where the return pointer tells it
to resume execution. The processor will then start executing the instructions
the attacker had put into the buffer on the stack. Voila! The attacker just
made the program execute arbitrary instructions from the stack.

This whole problem is the result of a developer not checking the size of the
information he or she is moving around in memory when making function
calls. Without carefully doing a bounds check of these buffers before
manipulating them, a function call can easily blow away the end of the stack.
Essentially, stack-based buffer overflows are a result of sloppy programming
by not doing bounds checks on data being placed into local variables, or
using a library function written by someone else with the same problem.

Now that we understand how an attacker puts code on the stack and gets it
to execute, let's analyze the kind of instructions that an attacker usually
places on the stack. Probably the most useful thing to force the machine to
run for the attacker is a command shell, because then the attacker can feed
the command shell (such as the UNIX and Linux /bin/sh or Windows
cmd.exe) any other command to run. This can be achieved by placing the
machine language code for executing a command prompt in the user input.
Most operating systems include an exec system call to tell the operating
system to run a given program. Thus, the attacker includes machine
language code in the user input to exec a shell. After spawning a command
shell, the attacker can then automatically feed a few specific system
commands into the shell, running any program on the target machine. Some
attackers force their shell to make a connection to a given TCP or UDP port,
listening for the attacker to connect and get a remote command prompt.
Others prefer to add a user to the local administrator's group on behalf of
the attacker. Still other attackers might force the shell to install a backdoor
program on the victim system.

Alternatively, instead of invoking the attacker's code in the stack, the bad
guy could change a return pointer so that it doesn't jump into the stack, but
instead resumes execution at another point of the attacker's choosing. Some
attackers clobber a return pointer so that it forces the program to resume
execution in the heap, another area of memory we discuss a little later. Or,
the attacker could have the program jump into a particular C library the
attacker wants to invoke, a technique known as a "return to libc" attack.

It's important to note that the attacker's code will run with the permissions
of the vulnerable program. Thus, if the vulnerable program is running as
root on UNIX or Linux or SYSTEM on Windows, the attacker will have
complete administrative control of the victim machine. Lesser privileges are
still valuable, though, as the attacker will have gotten a foot in the door with
the ability to run limited privileged commands on the target.

Buffer overflow attacks are very processor and operating system dependent,
because the raw machine code will only run on a specific processor, and
techniques for executing a command shell differ on various operating
systems. Therefore, a buffer overflow exploit against a Linux machine with

an x86 processor will not run on a Windows 2003 box on an x86 processor
or a Solaris system with a Sparc processor, even if the same buggy program
is used on all of these systems. The attack must be tailored to the target
processor and operating system type.

Exploiting Stack-Based Buffer Overflows

This might all sound great, but how does an attacker actually exploit a target
using this technique? Keep in mind that the vast majority of useful modern
programs are written with function calls, some of which do not do proper
bounds checking when handling their local variables. A user enters data into
a program by using the program's inputs. When running a program on a
local system, these inputs could be through a GUI, command-line interface,
or command-line arguments. For programs accessed across the network,
data enters through open ports listening on the network, usually formatted
with specific fields for which the program is looking.

To exploit a buffer overflow, an attacker enters data into the program by
typing characters into a GUI or command line, or sending specially formatted
packets across the network. In this input to the program, the attacker
includes the machine language code and new return pointer in a single
package. If the attacker sends just the right code with the right return
pointer formatted just the right way to overflow a buffer of a vulnerable
program, a function in the program will copy the buffer to the stack and
ultimately execute the attacker's code. Because everything has to be
formatted extremely carefully for the target program, creating new buffer
overflow exploits is not trivial.

Finding Buffer Overflow Vulnerabilities

Simple script kiddie attackers who do not understand how their tools work
carry out most stack-based buffer overflow attacks. These attackers just
scan the target with an automated tool that detects the vulnerability,
download the exploit code written by someone else, and point the exploit
tool at the target. The exploit itself was likely written by someone with a lot
more experience and understanding in discovering vulnerable programs and
creating successful exploits.

Beyond these script kiddies, how does the creator of a stack-based buffer
overflow exploit find programs that are vulnerable to such attacks? These
folks usually carry out detailed analyses of programs looking for evidence of
functions that do not properly bounds-check local variables. If the attackers
have the source code for the program, they can look for a large number of
often-used functions that are known to do improper bounds checking.
Alternatively, they can peer into an executable program looking for evidence

of the use of these library calls with a good debugger. The gets and
strcpy routines we saw earlier are just some of the commonly used
functions that programmers often misuse, resulting in a buffer overflow
vulnerability. Other C and C++ functions that often cause such problems
include the various string and memory handling routines like these:

fgets

gets

getws

sprintf

strcat

strcpy

strncpy

scanf

memcpy

memmove

Beyond these function calls, the developer of the program might have
created custom calls that are vulnerable. Some exploit developers reverse
engineer executables to find such flaws.

Alternatively, exploit creators might take a more brute force approach to
finding vulnerable programs. They sometimes run the program in a lab and
configure an automated tool to cram massive amounts of data into every
input of the program. The program's local user input fields, as well as
network inputs, will be inundated with data. When cramming data into a
program looking for a vulnerability, the attacker makes sure the entered
data has a repeating pattern, such as the character A repeated thousands of
times. Exploit creators are looking for the program to crash under this heavy
load of input, but to crash in a meaningful way. They'd like to see their
repeated input pattern (like the character A, which, remember, in
hexadecimal format is 0x41) reflected in the instruction pointer when the
program crashes. This technique of varying user input to try to make a
target system behave in a strange fashion is sometimes called . For buffer
overflows, attackers fuzz the input by varying its size. Note that you can't
just plop a billion characters into the input field to successfully fuzz most

buffer overflows. It's possible that a billion characters will be filtered, but
10,000 might not. Therefore, for successful size fuzzing with buffer
overflows, attackers typically start with small amounts of input (such as
1,000 characters or so) and then gradually increase the size in increments
of 1,000 or 10,000, looking for a crash.

Consider this example of the output dump of a debugger showing the
contents of a CPU's registers when a fuzzer triggers an overflow using a
bunch of A characters.

EAX = 00F7FCC8 EBX = 00F41130
ECX = 41414141 EDX = 77F9485A
ESI = 00F7FCC0 EDI = 00F7FCC0
EIP = 41414141 ESP = 00F4106C
EBP = 00F4108C EFL = 00000246

Don't worry about all the different values; just look at the Instruction
Pointer (called EIP on modern x86 processors). Attackers love this value!
The pattern being entered into the program (a long series of As; that is,
0x41) somehow made its way into the instruction pointer. Therefore, most
likely, user input overflowed a buffer, got placed into the return pointer, and
then transferred into the processor's Instruction Pointer. Based on this
tremendous clue about a vulnerability, attackers can then create a buffer
overflow exploit that lets them control a target machine running this
program.

Once the attackers find out that some of the user input made it into the
instruction pointer, they next need to figure out which part of all those As
was the element that landed on the return pointer. They determine this by
playing a little game. They first fuzz with all As, as we saw before. Then,
they fuzz with an incrementing pattern, perhaps of all of the ASCII
characters, including ABCDEF and all of the other characters repeated again
and again. I call this the ABCDEF game. They then wait for another crash.
Now, suppose that the attacker sees that DEFG is in the return pointer slot.
The attacker then fuzzes with each DEFG pattern of the input tagged, such
as DEF1, DEF2, DEF3, and so on. Finally, the attacker might discover that
DEF8 is the component of the user input that hits the return pointer. Voila!
The attacker now knows where in the user input to place the return pointer.
There are automated tools attackers can use to play this little game, which
will identify the location in the user input where the new return pointer
should be placed. Of course, the attacker still doesn't know what value to
place there, but at least he or she knows where it will go in the user input
once the value is determined.

So how does an attacker know what value to slide into our hypothetical
DEF8 slot for the return pointer so that it will jump back into the stack to
execute the attacker's instructions? With most programs, the stack is a
rather dynamic place. An attacker usually doesn't know for sure what
function calls were made before the vulnerable function is invoked. Thus,
because the stack is very dynamic, it can be difficult to find the exact
location of the start of the executable code the bad guy pushes onto the
stack. The attacker could simply run the program 100 or more times, and
make an educated guess of the address, a reasonable approach for some
programs. However, the odds might still be 1 in 10,000 that the attacker
gets the right address to hit the top of the evil code exactly in the stack.

To address this dilemma, the attackers usually prepend their machine
language code with a bunch of No Operation (NOP) instructions. Most CPUs
have one or more NOP instruction types, which tell the processor to do
nothing for a single clock cycle. After doing nothing, execution will resume
at the next instruction. By putting a large number of NOP instructions at the
beginning of the machine language code, the attacker improves the odds
that the guessed return pointer will work. This grouping of NOP instructions
is called a NOP sled. As long as the guessed address jumps back into the
NOP sled somewhere, the attacker's code will soon be executed. The code
will do nothing, nothing, nothing, nothing, and then run the attacker's code
to exec a shell.

You can think about the value of a NOP sled by considering a dart game.
When you throw a dart at the target, you'd obviously like to hit the bull's
eye. The guess of the return pointer is something like throwing a dart. If you
guess the proper location of the start of the machine language code on the
stack, that code will run. You've hit the bull's eye. Otherwise the program
will crash, something akin to your dartboard exploding. A NOP sled is like a
cone placed around the bull's eye on the dartboard. As long as your dart hits
the cone (the NOP sled), the dart will slide gently into the bull's eye, and
you'll win the game!

Attackers prepend as many NOP instructions at the front of their machine
language code as they can, based on the size of the buffer itself. If the
buffer is 1,024 characters long, and the machine language code the attacker
wants to run takes up 200 bytes, that leaves 824 characters for NOPs. The
simplest NOP is only one byte long for x86 processors. Thus, the bad guy can
improve the odds in guessing the return pointer value 825-fold (that's one
for each NOP, plus one for the very start of the attacker's machine language
code to exec a shell). You don't have to be a gambler to realize that's a
pretty good increase in odds, and it only gets better with bigger buffers. In
fact, for this very reason, it's far easier for an attacker to exploit a larger
buffer successfully than a smaller buffer. Remember, allocating more space

to make bigger buffers doesn't fix buffer overflows. Bigger buffers ironically
only make it easier to attack a program with a buffer overflow exploit. The
real fix here involves checking the size of user input and managing memory
more carefully, as we discuss later.

The NOP instructions used by an attacker in the NOP sled could be
implemented using the standard NOP instruction for the given target CPU
type, which might be detected by an IDS when a large number of NOPs
move across the network. Craftier attackers might choose a variety of
different instructions that, in the end, still do nothing, such as adding zero to
a given register, multiplying a register by one, or jumping down to the next
instruction in memory. Such variable NOP sleds are harder to detect.

As we have seen, the fundamental package for a buffer overflow exploit
created by an attacker consists of three elements: a NOP sled, machine
language code typically designed to exec a shell, and a return pointer to
make the whole thing execute. This structure of a common buffer overflow
exploit is shown in Figure 7.8.

Figure 7.8. The structure of an exploit (also known as a sploit) for a
buffer overflow vulnerability.

Note that the combined NOP sled and machine language code are sometimes
called the exploit's The entire package, including the code that alters a
return pointer, along with the egg, is formally called an and informally
referred to as a .

Heap Overflows

So far, our analysis of buffer overflow flaws has centered on the stack, the
place where a process stores information associated with function calls.
However, there's another form of buffer overflow attack that targets a
different region of memory: the heap. The stack is very organized, in that
data is pushed onto the stack and popped off of it in a coordinated fashion in
association with function calls, as we've seen.

The heap is quite different. Instead of holding function call information, the
heap is a block of memory that the program can use dynamically for
variables and data structures of varying sizes at runtime. Suppose you're
writing a program and want to load a dictionary in memory. In advance, you
have no idea how big that dictionary might be. It could have a dozen words,
or 6 million. Using the heap, you can dynamically allocate memory space as
your program reads different dictionary terms as it runs. The most common
way to allocate space in the heap in a C program is to use the malloc
library call. That's short for memory allocation, and this function grabs some
space from the heap so your program can tuck data there.

So what happens if a developer uses malloc to allocate space in the heap
where user input will be stored, but again forgets to check the size of the
user input? Well, we get a heap-based buffer overflow vulnerability, as you'd
no doubt expect. To illustrate this concern, consider the code in Figure 7.9.

Figure 7.9. A program with a heap-based buffer overflow
vulnerability.

[View full size image]

Our program starts to run and creates some pointers where we'll later
allocate memory to hold a user's color preference and name, called
color_pref and user_name, respectively. We then use the malloc call
to allocate ten characters in the heap to each of these variables, as
illustrated in Figure 7.10. Note that the heap typically grows in the opposite
direction as the stack in most operating systems and processors.

Figure 7.10. The heap holds the memory we malloc'ed.

Next, our program uses the strncpy call, which copies a fixed number of
characters into a string. We copy into the user_name a fixed value of
"fred," only four characters in length. This user_name is hard coded, and
shouldn't be alterable by the user in any way.

Next, we quiz our user, asking his or her favorite color. Uh-oh ... the
program developer used that darned gets function again, the poster child of
buffer overflow flaws, to load the user input into the color_pref variable
on the heap. Then, the program finishes by displaying the user's favorite
color and user name on the screen.

To see what happens when this program runs, consider Figure 7.11, which
shows two sample runs of the program. In the first run, shown on the left of
Figure 7.11, the user types a favorite color of blue. The program prints out a
favorite color of blue and a user name of fred, just like we'd expect. For the
next run, the user is an evil attacker, who types in a favorite color of
blueblueblueblueroot. That's 16 characters of blue followed by root. Check
out that display! Because the developer put no limitation on the size of the
user input with that very lame gets call, the bad guy was able to
completely overwrite all space in the color_pref location on the heap,
breaking out of it and overwriting the user_name variable with the word
root! Now, this wouldn't change the user ID of the running program itself in
the operating system, but it would allow the attacker to impersonate another
user named root within the program itself. Note that the attacker has to
type in more than just ten characters (in fact, 16 characters are required, as
in blueblueblueblue) to scoot out of the color_pref variable, instead of
just the ten characters we allocated. That's because the malloc call sets
aside a little more space than we ask for to keep things lined up in memory

for itself. Still, by exploring with different sizes of input using the fuzzing
techniques we discussed earlier, the attacker can change this variable and
possibly others on the heap.

Figure 7.11. Running the vulnerable program with two different
inputs.

[View full size image]

The Exploit Mess and the Rise of Exploitation Engines

We've seen both stack- and heap-based buffer overflows and how they could
let an attacker redirect the flow of program execution or change other
variables in a vulnerable program. However, there's a problem for the bad
guys. Historically, when a new vulnerability was discovered, such as a buffer
overflow flaw, crafting an exploit to take advantage of the flaw was usually a
painstaking manual process. Developing an exploit involved handcrafting
software that would manipulate return pointers on a target machine, load
some of the attacker's machine language code into the target system's
memory (the egg), and then calculate the new value of the return pointer
needed to make the target box execute the attacker's code. Some exploit
developers then released each of these individually packaged exploit scripts
to the public, setting off a periodic script kiddie feeding frenzy on vulnerable
systems that hadn't yet been patched. But due to the time-consuming
exploit development process, defenders had longer time frames to apply
their fixes.

Also, the quality of individual exploit scripts varied greatly. Some exploit
developers fine-tuned their wares, making them highly reliable in
penetrating a target.

Other exploit creators were less careful, turning out garbage sploits that
sometimes wouldn't work at all or would even crash a target service most of
the time. The functionality of eggs varied widely as well. Some developers

would craft exploits that created a command shell listener on their favorite
TCP or UDP port, whereas others focused on adding an administrative user
account for the attacker on the target machine, and others had even more
exotic functionality embedded in their sploits. Making matters worse, a really
good egg from one exploit wouldn't easily interoperate with another exploit,
making it hard to reuse some really choice code. The developers and users
of exploits were faced with no consistency, little code reuse, and wide-
ranging quality; in other words, the exploit world was a fractured mess.

To help tame this mess of different exploits, two extremely gifted software
developers named H. D. Moore and spoonm released Metasploit, an exploit
framework for the development and use of modular exploits to attack
systems, available for free at . Metasploit is written in Perl, and runs on
Linux, BSD, and Microsoft Windows. To run it on Windows, the user must
first install a Perl interpreter, such as the ActiveState Perl environment,
available for free at . Beyond the free, open-source Metasploit tool, some
companies have released high-quality commercial exploit frameworks for
sale, such as the IMPACT tool by Core Security Technologies () and the
CANVAS tool by Immunity ().

In a sense, Metasploit and these commercial tools act as an assembly line for
the mass production of exploits, doing about 75 percent of the work needed
to create a brand new, custom sploit. It's kind of like what Henry Ford did for
the automobile. Ford didn't invent cars. Dozens of creative hobbyists were
handcrafting automobiles around the world for decades when Ford arrived on
the scene. However, Henry revolutionized the production of cars by
introducing the moving assembly line, making auto production faster and
cheaper. In a similar fashion, exploit frameworks like Metasploit partially
automate the production of sploits, making them easier to create and
therefore more plentiful.

Some people erroneously think exploit frameworks are simply another take
on vulnerability scanners, like the Nessus scanner we discussed in Chapter
6, Phase 2: Scanning. They are not. A vulnerability scanner attempts to
determine if a target machine has a vulnerability present, simply reporting
on whether or not it thinks the system could be subject to exploitation. An
exploit framework goes further, actually penetrating the target, giving the
attacker access to the victim machine.

To understand how Metasploit works, let's look at its different parts, as
shown in Figure 7.12. First, the tool holds a collection of exploits, little
snippets of code that force a victim machine to execute the attacker's
payload, typically by overwriting a return pointer in a buffer overflow attack.
Most exploit frameworks have more than 100 different exploits today,
including numerous stack- and heap-based buffer overflow attacks, among
several other vulnerability types. The current Metasploit exploit inventory

includes some of the most widespread and powerful attacks, such as the
Windows RPC DCOM buffer overflow (that was the exploit used by the
Blaster worm, by the way), the Samba trans2open Overflow, the War-FTPD
passive flaw, and the good old WebDAV buffer overflow in NTDLL.DLL used
by the Nachi/Welchia worm. The Windows LSASS buffer overflow exploit is a
particularly nasty one as well, used by the Sasser worm. There are several
other exploits, including some that work against Solaris (the sadmind
exploit), Linux (against Real Server on Linux), and many more. It's
important to note that the Metasploit framework can attack any type of
operating system for which it has exploits and payloads, regardless of the
operating system on which Metasploit itself is running. So, for example,
Metasploit running on Linux can attack Linux, Windows, and Solaris
machines, and possibly many others.

Figure 7.12. The components of Metasploit.

[View full size image]

Next, Metasploit offers a huge set of payloads, that is, the code the attacker
wants to run on the target machine, triggered by the exploit itself. An
attacker using Metasploit can choose from any of the following payloads to
foist on a target:

This payload opens a command shell listener on the target machine
using the existing TCP connection of a service on the machine. The
attacker can then feed commands to the victim system across the
network to execute at a command prompt.

This payload opens a command shell listener on any TCP port of the
attacker's choosing on the target system.

This payload shovels a shell back to the attacker on a TCP port. With this
capability, the attacker can force the victim machine to initiate an
outbound connection, sent to the attacker, polling the bad guy for
commands to be executed on the victim machine. So, if a network or
host-based firewall blocks inbound connections to the victim machine,
the attacker can still force an outbound connection from the victim to
the attacker, getting commands from the attacker for the shell to
execute. As we discuss in Chapter 8, Phase 3: Gaining Access Using
Network Attacks, the attacker will likely have a Netcat listener waiting to
receive the shoveled shell.

This payload allows the attacker to control the GUI of the victim machine
remotely, using the Virtual Network Computing (VNC) tool sent as a
payload. VNC runs inside the victim process, so it doesn't need to be
installed on the victim machine in advance. Instead, it is inserted as a
DLL inside the vulnerable program to give the attacker remote control of
the machine's screen and keyboard.

This payload inserts VNC as a DLL inside the running process, and then
tells the VNC server to make a connection back to the attacker's
machine, in effect shoveling the GUI to the attacker. That way, the
victim machine initiates an outbound connection to the attacker, but
allows the attacker to control the victim machine.

This payload injects an arbitrary DLL of the attacker's choosing into the
vulnerable process, and creates a thread to run inside that DLL. Thus,
the attacker can make any blob of code packaged as a DLL run on the
victim.

This payload creates a new user in the administrators group with a name
and password specified by the attacker.

This general-purpose payload carries a very special DLL to the target
box. This DLL implements a simple shell, called the Metasploit
Interpreter, or Meterpreter for short, to run commands of the attacker's
choosing. However, the Meterpreter isn't just a tool that executes a
separate shell process on the target. On the contrary, this new shell
runs inside of the vulnerable program's existing process. Its power lies in
three aspects. First, the Meterpreter does not create a separate process
to execute the shell (such as cmd.exe or /bin/sh would), but instead
runs it inside the exploited process. Thus, there is no separate process
for an investigator or curious system administrator to detect. Second,
the Meterpreter does not touch the hard drive of the target machine, but
instead gives access purely by manipulating memory. Therefore, there is
no evidence left in the file system for investigators to locate. Third, if the
vulnerable service has been configured to run in a limited environment

so that the vulnerable program cannot access certain commands on the
target file system (known as a chroot environment), the Meterpreter can
still run its built-in commands within the memory of the target machine,
regardless of the chroot limitation. Thus, this Meterpreter payload is
incredibly valuable for the bad guys.

To support a user in selecting an exploit and payload to launch at a target,
Metasploit includes three different user interface options: a command-line
tool suitable for scripting, a console prompt with specialized keywords, and
even a point-and-click Web interface accessible via a browser. The Web
interface, shown in Figure 7.13, is probably the easiest to use of all three,
letting the attacker navigate using a browser to select the components of the
attack. However, my favorite Metasploit interface is the console, which
includes a specialized language for launching attacks. It's my favorite
because it is the most flexible way to attack one system and then rapidly
alter the configuration to attack another system, a really useful functionality
when performing penetration tests. The Metasploit console includes a nifty
lingo with keywords as simple as use [exploit], set [payload], and
the very lovely exploit command, which launches the attack against a
target. In the days before Metasploit, a script kiddie often had to figure out
how each individual exploit script should be configured to hit a target, a
sometimes difficult process of trial and error. Now, the attacker merely
needs to learn a single Metasploit user interface, and can then choose,
configure, and launch exploits in a consistent manner.

Figure 7.13. Metasploit's Web-based interface.

[View full size image]

Metasploit users don't even have to understand how the exploit or payload

works. They simply run the user interface, select an appropriate exploit and
payload, and then fire the resulting package at the target. The tool bundles
the exploit and payload together, applies a targeting header, and launches it
across the network. The package arrives at the target, the exploit triggers
the payload, and the attacker's chosen code runs on the victim machine.
These are the things of which script kiddie dreams are made.

Script kiddies aside, in addition to the exploits and payloads, Metasploit also
features a collection of tools to help developers create brand new exploits
and payloads. Some of these tools review potentially vulnerable programs to
help find buffer overflow and related flaws in the first place. Others help the
developer figure out the size, location, and offset of memory regions in the
target program that will hold and run the exploit and payload, automating
the ABCDEF game we discussed earlier in this chapter. Some of the exploit
development support tools include code samples to inject a payload into the
target's memory, and still others help armor the resulting exploit and
payload to minimize the chance it will be detected or filtered at the target.
These pieces make up the partially automated assembly line for the creation
of exploits.

And here's the real power of Metasploit: If a developer builds an exploit or
payload within the Metasploit framework, it can be used interchangeably
with other payloads or exploits as well as the overall exploit framework user
interfaces. Using Perl, developers can write and then publish their new
modules, and thousands of exploit framework users around the globe can
easily import the new building block into their own attacks, relying on the
same, consistent interface. Right now, hundreds of developers around the
world are coding new exploits and payloads within Metasploit. Some of these
people are even releasing their new attack code, created within Metasploit,
publicly.

Advantages for Attackers

Exploit frameworks like Metasploit offer significant advantages for the bad
guys, including those who craft their own custom exploits and even the
script kiddies just looking for low-hanging fruit. For the former, exploit
frameworks shorten the time needed to craft a new exploit and make the
task a lot easier. In the good old days of the 1990s, we often had many
months after finding out about a new vulnerability before an exploit was
released in the wild. Now, increasingly, we have only a couple of days before
a sploit is publicly unleashed. Exploit frameworks are helping to fuel that
shorter duration. As exploit frameworks are further refined, this time frame
could shrink even more. Some researchers are working on further
automating the reverse engineering of security patches to create an exploit
for a framework within a matter of hours or minutes after a new patch or

flaw is discovered and announced. Because of these trends, we need to patch
more diligently than ever before.

Furthermore, while shortening development time and effort, exploit
frameworks like Metasploit have simultaneously increased the quality of
exploit code, making the bad guys much more lethal. Unlike the
handcrafted, individual exploit scripts of the past, the sploits written in an
exploit framework are built on top of time-tested, interchangeable modules.
Some seriously gifted exploit engineers created these underlying modules
and have carefully refined their stuff to make sure it works reliably. Thus, an
attacker firing an exploit at a target can be much more assured of a
successful compromise.

At the SANS Institute's Internet Storm Center (), when a new vulnerability
is announced, we often see widespread port scanning for the vulnerable
service begin immediately, even before an exploit is released publicly.
Developers who have already quickly created an exploit might cause some of
this scanning, but a lot of it is likely due to anticipatory scanning. That is,
even script kiddie attackers know that an exploit will likely soon be created
and released for a choice vulnerability, so they want an inventory of juicy
targets as fast as possible. When the exploit is then actually released, they
pounce. Today, quite often, the exploit is released as part of an exploit
framework first.

Benefits for the Good Guys, Too?

Exploit frameworks aren't just evil. Tools like Metasploit can also help us
security professionals to improve our practices as well. One of the most
valuable aspects of these tools to infosec pros involves minimizing the glut
of false positives from our vulnerability-scanning tools. Chief Information
Security Officers (CISOs) and auditors often lament the fact that many of
the high-risk findings discovered by a vulnerability scanner turn out to be
mere fantasies, an error in the tool that thinks a system is vulnerable when
it really isn't. Such false positives sometimes comprise 30 to 50 percent or
more of the findings of an assessment. When a CISO turns such an
erroneous report over to an operations team of system administrators to fix
the nonexistent problems, not only does the operations team waste valuable
resources, but the CISO could lose face in light of these false reports.
Getting the ops team to do the right thing in tightening and patching
systems is difficult enough, and it only gets harder if you are wrong about
half of the vulnerability information you send them in this boy-who-cried-
wolf situation.

Metasploit can help alleviate this concern. The assessment team first runs a
vulnerability scanner and generates a report. Then, for each of the
vulnerabilities identified, the team runs an exploit framework like Metasploit

to verify the presence of the flaw. The Metasploit framework can give a
really high degree of certainty that the vulnerability is present, because it
lets the tester gain access to the target machine. Real problems can then be
given high priority for fixing. Although this high degree of certainty is
invaluable, it's important to note that some exploits inside of the frameworks
still could cause a target system or service to crash. Therefore, be careful
when running such tools, and make sure the operations team is on standby
to restart a service if the exploit does indeed crash it.

In addition to improving the accuracy of security assessments, exploit
frameworks can help us check our IDS and IPS tools' functionality.
Occasionally, an IDS or IPS might seem especially quiet. Although a given
sensor might normally generate a dozen alerts or more per day, sometimes
you might have an extremely quiet day, with no alerts coming in over a long
span of time. When this happens, many IDS and IPS analysts start to get a
little nervous, worrying that their monitoring devices are dead,
misconfigured, or simply not accessible on the network. Compounding the
concern, we might soon face attacks involving more sophisticated bad guys
launching exploits that actually bring down our IDS and IPS tools, in effect
rendering our sensor capabilities blind. The most insidious exploits would
disable the IDS and IPS detection functionality while putting the system in
an endless loop, making them appear to be just fine, yet blind to any actual
attacks. To help make sure your IDS and IPS tools are running properly,
consider using an exploit framework to fire some sploits at them on a
periodic basis, such as once per day. Sure, you could run a vulnerability-
scanning tool against a target network to test your detection capabilities, but
that would trigger an avalanche of alerts. A single sploit will tell you if your
detector is still running properly without driving your analysis team batty.

One of the most common and obvious ways the good guys use exploit
frameworks is to enhance their penetration testing activities. With a
comprehensive and constantly updated set of exploits and payloads, a
penetration tester can focus more on the overall orchestration of an attack
and analyzing results instead of spending exorbitant amounts of time
researching, reviewing, and tweaking individual exploits. Furthermore, for
those penetration testers who devise their own exploit code and payloads,
the frameworks offer an excellent development environment. Exploit
frameworks don't completely automate penetration test exercises, though.
An experienced hand still needs to plan the test, launch various tools
including the exploit framework, correlate tool output, analyze results, and
iterate to go deeper into the targets. Still, if you perform penetration testing
in-house, your team could significantly benefit from these tools, performing
more comprehensive tests in less time. If you rely on an external
penetration testing company, ask them which of the various exploit
frameworks they use, and how they apply them in their testing regimen to

improve their attacks and lower costs.

One final benefit offered by exploit frameworks should not be overlooked—
improving management awareness of the importance of good security
practices. Most security pros have to work really hard to make sure
management understands the security risks our organizations face,
emphasizing the need for system hardening, thorough patching, and solid
incident response capabilities. Sometimes, management's eyes glaze over
hearing for the umpteenth time the importance of these practices. Yet, a
single sploit is often worth more than a thousand words. Set up a laboratory
demo of one of the exploit frameworks, such as Metasploit. Build a target
system that lacks a crucial patch for a given exploit in the framework, and
load a sample text file on the target machine with the contents "Please don't
steal this important file!" Pick a very reliable exploit to demonstrate. Then,
after you've tested your demo to make sure it works, invite management to
watch how easy it is for an attacker to use the point-and-click Web interface
of Metasploit to compromise the target. Snag a copy of the sensitive file and
display it to your observers. When first exposed to these tools, some
managers' jaws drop at their power and simplicity. As the scales fall from
their eyes, your plea for adequate security resources might now reach a far
more receptive audience, thanks to your trusty exploit framework.

Buffer Overflow Attack Defenses

There are a variety of ways to protect your systems from buffer overflow
attacks and related exploits. These defensive strategies fall into the following
two categories:

Defenses that can be applied by system administrators and security
personnel during deployment, configuration, and maintenance of
systems

Defenses applied by software developers during program development

Both sets of defenses are very important in stopping these attacks, and they
are not mutually exclusive. If you are a system administrator or security
professional, you should not only adhere to the defensive strategies
associated with your job, but you should also encourage your in-house
software development personnel and your vendors to follow the defenses for
software developers. By covering both bases, you can help minimize the
possibility of falling victim to this type of nasty attack.

Defenses for System Administrators and Security Personnel

So what can a system administrator or security professional do to prevent
buffer overflows and similar attacks? As mentioned at several points

throughout this book, you must, at a minimum, keep your systems patched.
The computer underground and security researchers are constantly
discovering new vulnerabilities. Vendors are scrambling to create fixes for
these holes. You must have a regular program that monitors various mailing
lists, such as the Bugtraq, US-CERT, and the SANS mailing lists we discuss
in more detail in Chapter 13, The Future, References, and Conclusions. Most
vendors also have their own mailing lists to distribute information about
newly discovered vulnerabilities and their associated fixes to customers. You
need to be on these lists for the vendors whose products you use in your
environment.

In addition to monitoring mailing lists looking for new vulnerabilities, you
also must institute a program for testing newly patched systems and rolling
them into production. You cannot just apply a vendor's security fix to a
production system without trying it in a test environment first. A new
security fix could impair other system operations, so you need to work
things out in a test lab first. However, once you determine that the fix
operates in a suitable fashion in your environment, you need to make sure it
gets quickly deployed. Deploying fixes in a timely manner is quite important
before the script kiddie masses come knocking at your doors trying to exploit
a vulnerability recently made public. In addition to keeping your machines
patched, make sure your publicly available systems (Internet mail, DNS,
Web, and FTP servers, as well as firewall systems) have configurations with
a minimum of unnecessary services and software extras.

Also, you need to strictly control outgoing traffic from your network. Most
organizations are really careful about traffic coming into their network from
the Internet. This is good, but it only addresses part of the problem. You will
likely require some level of incoming access to your network, at least into
your DMZ, so folks on the Internet can access your public Web server or
send you e-mail. If attackers discover a vulnerability that they can exploit
over this incoming path, they might be able to use it to send an outgoing
connection that gives them even greater access, the so-called shell
shoveling technique we briefly discussed with Metasploit in this chapter and
go into more detail when we discuss Netcat in the next chapter. To avoid this
problem of reverse shells, you need to apply strict filters to allow outgoing
traffic only for services with a defined business need. Sure, your users might
require outgoing HTTP or FTP, but do they really need outgoing X Window
System access? Probably not. You should block unneeded services at
external firewalls and routers.

A final defense against buffer overflows that can be applied by system
administrators and security personnel is to configure your system with a
nonexecutable stack. If the system is configured to refuse to execute
instructions from the stack, most stack-based buffer overflows just won't

work. There are some techniques for getting around this type of defense,
including heap-based overflows and return-to-libc attacks, but the vast
majority of stack-based buffer overflows fail if they cannot execute
instructions from the stack. Solaris and HP-UX 11i have built-in
nonexecutable system stack functionality, but the system has to be
configured to use this capability. To set up a Solaris system so that it will
never execute instructions from the stack, add the following lines to the
/etc/system file:

set noexec_user_stack=1
set noexec_user_stack_log=1

Similarly, in HP-UX 11i, an administrator must set the kernel tunable
parameter executable_stack to zero.

The mainstream Linux kernel does not have built-in nonexecutable system
stack functionality, but separate tools can be downloaded to give a Linux
machine such functionality. To configure a Linux system with a
nonexecutable stack, you'll have to apply a kernel patch. Solar Designer, a
brilliant individual we encounter again later in this chapter, has written a
Linux kernel patch that includes a nonexecutable stack as well as other
security features. His handiwork can be downloaded from . Other tweaks of
the Linux kernel, including PaX (), also alter the way the stack functions to
minimize the chance of successful buffer overflow exploitation.

Unfortunately, Windows 2000 does not currently support nonexecutable
stack or heap capabilities. Currently, Microsoft has added this functionality
to Windows XP Service Pack 2 and Windows 2003 Service Pack 1, a feature
they call Data Execution Prevention (DEP). This capability marks certain
pages in memory, such as the stack and heap, as nonexecutable.

There are two kinds of DEP supported in Windows XP Service Pack 2 and
Windows 2003 Service Pack 1: hardware-based DEP and software-based
DEP. The hardware-based DEP feature works only on machines with
processors that support execution protection technology (a feature
advertised as NX capability, for nonexecution), a special setting in the CPU
that refuses to execute memory segments that are only supposed to hold
data, such as the stack and heap. Some of the more recent CPU products
include NX functionality.

The software-based DEP, on the other hand, works on any kind of processor
Windows runs on. It is activated by default in Windows XP Service Pack 2
and Windows 2003 Service Pack 1 for essential Windows programs and
services, those elements of the operating system itself that so often come

under attack. An administrator can increase this level of security to protect
all programs and services on the machine, but this might impact backward
compatibility with some specific programs that do attempt to run code from
the stack or heap, an unusual occurrence for most programs. If you do have
a few of these strange beasts, you could even set up DEP for all programs
except a list of specific programs that you expect to run data from the stack
or heap, such as unusual debuggers and programs that automatically alter
their own code. You can look at your DEP settings on Windows XP Service
Pack 2 and Windows 2003 Service Pack 1 by going to Start Settings
Control Panel System Advanced. Then, under Performance, click Settings
and go to Data Execution Prevention to see the user interface shown in
Figure 7.14.

Figure 7.14. Windows XP Service Pack 2 and Windows 2003 Service
Pack 1 Data Execution Prevention.

This software-based DEP is currently an active area of research within the
computer underground, as it has not been thoroughly documented by
Microsoft. Attackers are trying to reverse engineer it to see if it can be
foiled. Interestingly, a group of security researchers out of Russia released a
white paper describing how to attack the software-based DEP function using

a heap overflow by carefully re-creating the data structures that DEP
employs within the heap to protect it. The white paper is an amazing read,
and can be found at .

Buffer Overflow Defenses for Software Developers

Although system administrators and security personnel can certainly do a lot
to prevent buffer overflow attacks, the problem ultimately stems from sloppy
programming. Software developers are the ones who can really stop this
type of attack by avoiding programming mistakes involving the allocation of
memory space and checking the size of all user input as it flows through
their applications. Software developers must be trained to understand what
buffer overflows are and how to avoid them. They should refrain from using
functions with known problems, instead using equivalent functions without
the security vulnerabilities. The code review component of the software
development cycle should include an explicit step to look for security-related
mistakes, including buffer overflow problems.

To help this process, there are a variety of automated code-checking tools
that search for known problems, such as the appearance of frequently
misused functions that lead to buffer overflows like the gets function we
discussed earlier. The following free tools accept regular C and C++ source
code as input, to which they apply heuristic searches looking for common
security flaws including buffer overflows:

ITS4 (which stands for It's the Software, Stupid—Security Scanner),
available at

RATS (Rough Auditing Tool for Security), available at

Flawfinder, available at

Additionally, help educate your software developers by encouraging them to
read about secure programming. Some of my favorite resources for secure
coding on a Windows platform include the book by Howard and Leblanc
(Microsoft Press, 2002). For those who develop on a Linux and UNIX
platform, you can get a great, free white paper on developing secure code on
Linux and UNIX from Dave Wheeler's Web site ().

Download this and give it to your software development team. Print it out,
put a big red bow on it, and you've got a free gift for someone!

A final defensive technique for software developers can be implemented
while compiling programs, altering the way the stack functions. Two tools,
StackGuard and Stack Shield, can be invoked at compile time for Linux
programs to create stacks that are more difficult to attack with buffer

overflows. You can find StackGuard at , and Stack Shield is at .

StackGuard, available for Linux platforms for free, changes the stack by
inserting an extra field called a canary next to the return pointer on the
stack. The canary is essentially a hash of the current return pointer and a
secret known by the system. The canary operates much like its namesakes,
which were used by coal miners in the past. In a coalmine, if the canary
died, the miner had a pretty good warning that there was a problem with the
air in the tunnel. The miners would then evacuate the area. Similarly, if the
canary on the stack gets altered, the system knows something has gone
wrong with the stack, and stops execution of the program, thereby foiling a
buffer overflow attack. When a function call finishes, the operating system
first rehashes the return pointer with its special secret. If the hashed return
pointer and secret match the canary value, the program returns from the
function call normally. If they do not match, the canary, return pointer, or
both have been altered. The program then crashes gracefully. In most
circumstances, it is far better to crash gracefully than to execute code of an
attacker's choosing on the machine.

Stack Shield, which is also free and runs on Linux, handles the problem in a
slightly different way than StackGuard. Stack Shield stores return pointers
for functions in various locations of memory outside of the stack. Because
the return pointer is not on the stack, it cannot be overwritten by
overflowing stack-based variables. Both Stack Shield and StackGuard offer
significant protection against buffer overflows, and are definitely worth
considering to prevent such attacks. However, they aren't infallible. Some
techniques for creating buffer overflows on systems with StackGuard and
Stack Shield were documented by Bulba and Kil3r in Phrack 56 at .

Microsoft also added canary functionality to prevent the alteration of return
pointers in the Windows 2003 stack. This feature, which is built in and
turned on by default, does not require any activation or configuration by a
system administrator. That's the good news. Unfortunately, security
researchers have discovered techniques for thwarting this canary. In
particular, researcher David Litchfield has developed some techniques for
inserting code that makes it look like the canary is intact, even though it has
been altered, in effect tricking the system into running the attacker's code.
This technique is described in detail at .

Although none of the techniques discussed in this section for preventing
buffer overflows is completely foolproof, the techniques can, if applied
together in a judicious manner, be used to minimize this common and nasty
type of attack.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step
Guide to Computer Attacks and Effective Defenses

Password Attacks

Passwords are the most commonly used computer security tool in the world today. In
many organizations, the lowly password often protects some of the most sensitive
secrets imaginable, including health care information, confidential business strategies,
sensitive financial data, and so on. Unfortunately, with this central role in security,
easily guessed passwords are often the weakest link in the security of our systems. By
simply guessing hundreds or thousands of passwords, an attacker could gain access to
very sensitive information or shut down critical computing systems.

Compounding this problem with passwords is the fact that every user has at least one
password, and many users have dozens of passwords. Users are forced to remember
and maintain passwords for logging into the network, signing on to numerous
applications, accessing frequently used external Web sites, logging into voice mail,
and even making long-distance phone calls with a calling card. On almost all systems,
the users themselves choose the passwords, placing the burden of security on end
users who either do not know or sometimes do not care about sound security
practices. Users often choose passwords that are easy to remember, but are also very
easily guessed. We frequently encounter passwords that are set to days of the week,
the word or simple dictionary terms. A single weak password for one user on one

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

account could give an attacker a foothold on a system. Most users manually
synchronize their passwords for every password-protected system they access. Sadly,
therefore, a user who has a password in your high-security environment might be
using the same password for that external e-commerce application over which your
organization has no control. After guessing one weak password in the low-security
environment, the attacker can take over an account on the supposedly higher
security system. Indeed, the plague of passwords is quite widespread.

Why, then, do we continue to rely on them so much? We do so because password-
authentication mechanisms are really cheap. Most operating systems and applications
have built-in password authentication, so their users and administrators have simply
applied the least expensive (and often least secure) tool in place.

For even a low-skill attacker, guessing such passwords and gaining access can be
quite trivial. Numerous freely available tools automatically guess passwords at
relatively high speeds, looking for a weak password to enter a system. Let's explore
how these password-guessing tools work.

Guessing Default Passwords

Many applications and operating systems include built-in default passwords
established by the vendor. Often, overworked, uninformed, or lazy administrators fail
to remove default passwords from systems. Attackers can quickly and easily guess
these default passwords to gain access to the target. The Phenoelit hacking group out
of Germany maintains a huge database of default passwords for a variety of
platforms, available at . This Web site, shown in Figure 7.15, includes default
passwords for systems ranging from 3COM switches to Zyxel's modem routers, and
everything in between.

Figure 7.15. An online database of default passwords.

[View full size image]

Password Guessing Through Login Attacks

What if none of the default passwords works? Another technique for guessing weak
passwords is to run a tool that repeatedly tries to log in to the target system across
the network, guessing password after password. The attacker configures a password-
guessing tool with a common or known user ID on the target system. The password-
guessing tool then guesses a password, perhaps using a wordlist from a dictionary.
The attacker points the tool at the target machine, which might have a command-line
login prompt, Web front-end login dialog box, or other method of requesting a
password. The attacker's tool transmits its user ID and password guess to the target,
trying to log in, and then automatically determines if the guess was successful. If not,
another guess is tried. Guess after guess is launched until the tool discovers a valid
password.

One of the most fully functional and easy-to-use tools for automating this password-
guessing attack is Brutus, available for free at . It runs on Windows, has a point-and-
click GUI, shown in Figure 7.16, and is remarkably effective.

Figure 7.16. Brutus in action.

[View full size image]

The attacker configures Brutus with the following information:

The target system address or domain name

The source of password guesses, which can be a file of words or a brute-force
selection of all possible character combinations

The protocol to use when interacting with the target, which could be HTTP with
Basic Authentication, HTTP with an HTML form, Post Office Protocol 3 (POP3) e-
mail, FTP, Windows authentication and file sharing with Server Message Block
(SMB) protocol, and Telnet

The text that Brutus will receive if authentication is successful

The text the application generates when authentication fails

Then, the attacker simply clicks the Start button. Brutus grinds away for between
minutes and weeks, and starts popping back with answers.

It's important to note that Brutus often yields many false positives due to bugs in the
code, not problems with this overall type of attack. Keep that in mind if you ever run
Brutus: Not all of your discovered accounts will be accurate!

If you want a more UNIX/Linux-friendly password-guessing tool with better accuracy,
you should check out THC Hydra, available for free at . This fine tool, written by van
Hauser, includes a command-line interface and a GUI option if you really want it.
Hydra runs on Linux and many flavors of UNIX, and even works on Windows, provided
that you've installed the free Cygwin environment, an amazing UNIX-like world that
runs on top of Windows. You can get the Cygwin environment for free at .

The nicest part about Hydra is its generous protocol support. It can guess passwords
for more than a dozen different application-level protocols, including Telnet, FTP,
HTTP, HTTPS, HTTP-PROXY, LDAP, SMB, SMBNT, MS-SQL, MYSQL, REXEC, SOCKS5,
VNC, POP3, IMAP, NNTP, PCNFS, ICQ, SAP/R3, Cisco auth, Cisco enable, and Cisco
AAA. Whew! That's a lot of different applications, making it highly useful in password-
guessing attacks. Also, Hydra doesn't suffer from the false positive problems of
Brutus, making it my personal favorite for password guessing.

Password guessing can be a slow process. Each login attempt could take a few
seconds. To go through an entire 40,000-word dictionary could take days, and
guessing random combinations of characters could require weeks or months before a
usable password is discovered. However, the greatest asset the attackers have is
time. They can be very determined when focused on a given target, and often don't
mind spending many months trying to gain access.

Beyond being time consuming, this password-guessing technique has additional
limitations. The constant attempts to log in to the target generate a significant
amount of regular network traffic and log activity, which could easily be noticed by a
diligent system administrator or an IDS. An additional challenge an attacker faces
when trying to guess a password is account lockout. Some systems are configured to
disable a user account after a given number of incorrect login attempts with faulty
passwords. The account is reenabled only by a user calling the help desk, or through
an automated process after a period of time expires. Either way, the attacker's
guessing can be detected or at least slowed down significantly. Account lockout
features are a good idea in preventing password-guessing attacks. However, with
account lockout in place, an attacker could conduct a DoS attack by purposely locking
out all of your accounts using a script, so be careful to fine-tune your account lockout
policies based on the threats you face.

The Art and Science of Password Cracking

Guessing default passwords usually doesn't work, because many administrators
change the defaults. Password guessing with an automated tool could take a very long
time, and, at its worst, it could get an attacker detected or lock out accounts. A much
more sophisticated approach to determining passwords that avoids these problems is
password cracking, an approach totally separate from password guessing. However, to
analyze how password cracking works, you first need to understand how passwords
are stored on most systems.

When you log in to most machines, whether they are Linux systems, Windows boxes,
Novell servers, Cisco routers, or any other type of machines, you typically provide a
user ID and password to authenticate. The system has to check whether your
authentication information is accurate to make the decision whether to log you in or
not. The computer could base this decision on the contents of a local file of the
passwords for all users, comparing the password you just typed in with your password
in the file. Unfortunately, a file with every user's password in clear text would be an

incredible security liability, a sitting duck waiting for the bad guys to harvest it. An
attacker gaining access to such a password file would be able to log in as any user of
the system.

System designers, realizing this dilemma of requiring a list of passwords to compare
to for user login without having a huge security hole, decided to solve the problem by
applying cryptographic techniques to protect each password in the password file.
Thus, for most systems, the password file contains a list of user IDs and
representations of the passwords that are encrypted or hashed. I use the words
encrypted or hashed, because a variety of different cryptographic algorithms are
applied. Some systems use pure encryption algorithms, like the Data Encryption
Standard (DES), which require a key for the encryption. Others use hash algorithms,
such as Message Digest 4 (MD4), which are one-way functions that transform data
with or without a key. Either way, the password is altered using the crypto algorithm
so that an attacker cannot determine the password by directly looking at its encrypted
or hashed value in the password file.

When a user wants to log in to the system, the machine gathers the password from
the user, applies the same cryptographic transformation used to generate the
password file, and compares the results. If the encrypted or hashed value of your
password matches the encrypted or hashed value in the file, you are allowed to log in.
Otherwise, you are denied access. The process works beautifully, allowing you to log
in successfully, turning away attackers, and never keeping a clear text file of
password.

Let's Crack Those Passwords!

Most systems include a password file that contains encrypted or hashed
representations of the passwords. Password cracking involves stealing the encrypted
password representations and trying to recover the original clear text password using
an automated tool. A password-cracking tool operates by setting up a simple loop, as
shown in Figure 7.17.

Figure 7.17. Password cracking is really just a loop.

A password-cracking tool can form its password guesses in a variety of ways. Perhaps
the simplest method is to just throw the dictionary at the problem, guessing one term

after another from a dictionary. A large number of dictionaries are available online, in
many languages, including English, Russian, Japanese, French, and, for you fans,
even Klingon! Most password-cracking tools come with a small but effective wordlist.
For example, John the Ripper's list includes approximately 2,000 words, whereas the
Cain wordlist includes a whopping 306,000 entries!

For other wordlists that are quite effective, check out two sources: the CERIAS
wordlist collection (), and the Moby wordlist (). Both lists are free, and include
hundreds of thousands of words from a variety of languages. Of course, if the target's
passwords are not dictionary terms, this technique will fail. Happily for attackers, it
almost always succeeds.

Beyond guessing dictionary terms, many password-cracking tools support brute-force
cracking. For this type of attack, the tool guesses every possible combination of
characters to determine the password. The tool might start with alphanumeric
characters (a–z and 0–9), and then progress to special characters (!@#$, and so on).
Even for a fast password-cracking tool, this brute-force guessing process can take an
enormous amount of time, ranging from hours to centuries. It all depends on the
strength of the password crypto algorithm and how difficult the user's password is to
guess.

Hybrid password-cracking attacks are a nice compromise between quick but limited
dictionary cracks and slow but effective brute-force cracks. In a hybrid attack, the
password-cracking tool starts guessing passwords using a dictionary term. Then, it
creates other guesses by appending or prepending characters to the dictionary term.
By methodically adding characters to words in a brute-force fashion, these hybrid
attacks are often extremely successful in determining a password. The best hybrid
generators even start to shave characters off of dictionary terms in their guess-
creating algorithms.

From an attacker's perspective, password cracking is fantastic, because the cracking
loop does not have to run on the victim machine. If the attackers can steal the
encrypted or hashed password file, they can run the password-cracking tool on their
own systems, in the comfort of their own homes or on any other machine that suits
their fancy. This makes password cracking much faster than password guessing
through trying to log in to the target machine. Although using a password-guessing
tool to log in across the network requires many valuable seconds to evaluate each
guess, a password-cracking tool can guess thousands or tens of thousands of
passwords per second! The password cracker only has to operate on the stolen
password file stored locally, applying quick and optimized cryptographic algorithms.
Every word in a 50,000-word dictionary can be attempted in only a few minutes.

Furthermore, the more CPU cycles the attackers throw at the problem, the more
guesses they can make and the faster they can recover passwords. So an attacker
who has taken over dozens of machines throughout the world and is looking to crack
the passwords of a new victim can divide up the password-cracking task among all of

these machines to set up a password-cracking virtual supercomputer. Or, if an
attacker has compromised 100,000 machines using a bot for remote control of these
victims, the attacker can harvest the processing power of a 100,000-node network to
make the password cracking operation really fly! We discuss the nefarious bots that
can support such a feat in more detail in Chapter 10, Phase 4: Maintaining Access.

Password-cracking tools have been around for a couple of decades, and an enormous
number of them are available. Some of the most notable password-cracking tools in
widespread use today include the following:

Cain, a fantastic free tool available from Massimiliano Montoro at

John the Ripper, a powerful free password cracker for UNIX/Linux and some
Windows passwords, written by Solar Designer, available at

Pandora, a tool for testing Novell Netware, including password cracking, written
by Simple Nomad, and available at

LC5, the latest incarnation of the venerable L0phtCrack password cracker, an
easy-to-use but rather expensive commercial password cracker at

To understand how these tools work in more detail, let's explore two of the most
powerful password crackers available today, Cain and John the Ripper.

Cain and Abel: Cracking Windows (and Other) Passwords with a
Beautiful GUI

Cain and Abel are a dynamic duo of security tools that can be used for either
attacking systems or administering them. Their name is a nod to the biblical brothers
who didn't get along all that well. The Cain and Abel tools, happily, work together far
better than those ancient brothers ever did. Typically, a user relies on Cain to gather
information about systems and to manipulate them directly, while Abel usually runs
as a background process a user can access remotely to dump information about a
target environment. In other words, Cain is highly interactive, with a fancy GUI
offering all kinds of interesting attack functionality. Abel runs in the background, and
can be remotely accessed to dump data from its host system.

Frankly, the Cain and Abel pair of tools is hard to categorize. This amazing software
contraption, created by Massimiliano Montoro, includes more than a dozen different
useful capabilities that we discuss throughout this book. Although we're covering Cain
and Abel here in the section on password cracking, Cain and Abel are not designed
just for cracking passwords. They are extremely feature rich, including just about
everything and the kitchen sink, as a final touch! Montoro constantly scours the
Internet for useful ideas included in white papers and other tools, and then adds such
capabilities to Cain and Abel, making the duo a powerful collection of various
computer attack widgets. Cain includes the following functionalities:

Automated WLAN discovery, in essence a war-driving tool that looks quite similar
to NetStumbler, the tool we discussed in Chapter 6.

A GUI-based traceroute tool, using the same traceroute techniques we discussed
in Chapter 6 in the context of the traceroute, tracert, and Cheops-ng tools.

A sniffer for capturing interesting packets from a LAN, including a variety of user
IDs and passwords for several protocols. We discuss sniffers in more detail in
Chapter 8.

A hash calculator, which takes input text and calculates its MD2, MD4, MD5, SHA-
1, SHA-2, and RIPEMD-160 hashes, as well as the Microsoft LM, Windows NT,
MySQL, and PIX password representation of that text. That way, an attacker can
quickly verify assumptions associated with specific information discovered on a
target system.

A network neighborhood exploration tool to scan for and find interesting Windows
servers available on the network.

A tool to dump and reveal all encrypted or hashed passwords cached on the local
machine, including the standard Windows LM and NT password representations, as
well as the application-specific passwords for Microsoft Outlook, Outlook Express,
Outlook Express Identities, Outlook 2002, Microsoft Internet Explorer, and MSN
Explorer.

An ARP cache poisoning tool, which can be used to redirect traffic on a LAN so
that an attacker can more easily sniff in a switched environment, a technique we
discuss in more detail in Chapter 8.

A remote promiscuous mode checker, to try to test whether a given target
machine is running a sniffer that places the network interface in promiscuous
mode.

Numerous other features, with new functionality added on a fairly regular basis.

Cain integrates each of these functions into a nice GUI, which, although complex,
sorts out the individual features quite nicely. The Abel tool, on the other hand, has no
GUI. Instead, it runs as a service in the background, giving remote access capabilities
to a lot of functionality, including the following:

A remote command shell, rather like the backdoor command shells we discuss in
Chapter 10.

A remote route table manager, so an administrator can tweak the packet routing
rules on a Windows machine.

A remote TCP/UDP port viewer that lists local ports listening on the system

running Abel, rather like the Active Ports and TCPView tools we discussed in
Chapter 6.

A remote Windows password hash dumper, which an attacker can use to retrieve
the encrypted and hashed Windows password representations from the Security
Accounts Manager (SAM) database, suitable for cracking by ... you guessed it ...
the Cain tool.

In this section, however, we're going to focus on one of the most useful capabilities of
Cain, namely its extremely functional password cracker. Cain is able to crack
passwords for more than a dozen different operating system and protocol types. Just
for the Windows operating system, Cain can crack the following password
representations:

Microsoft LM, the really weak Windows password authentication also known as
LanMan, still included by default in all Windows NT, 2000, XP, and 2003 systems
in the local SAM database

The LM challenge passed across the network, which is a challenge–response
authentication protocol based on the underlying LM hash, but includes special
features for network authentication to a Windows domain or a file server

Windows NT hash, a form of Windows password storage stronger than LM,
supported in Windows NT, 2000, XP, and 2003 machines and stored in the local
SAM database, as we discussed in Chapter 4, Windows NT/2000/XP/2003
Overview.

NTLMv1, a challenge–response protocol passed across the network, offering
slightly better security than the LM challenge passed across the network

NTLMv2, an even stronger form of challenge–response authentication across a
Windows network

MS-Kerberos5 Pre-Auth, the Microsoft Kerberos authentication deployed in some
Windows environments

Retrieving the Password Representations from Windows

To use Cain to crack Windows operating system passwords, the attacker usually first
grabs a copy of the password representations stored in the SAM database of the
target machine. To accomplish this, Cain includes a built-in feature to dump password
representations from the local system or any other machine on the network.
However, this built-in password dump capability requires administrator privileges on
the system with the target SAM database. These administrator rights are required
because the password dump function must attach to the running Windows
authentication processes to extract the SAM database right from their memory space,

a process that requires administrative privileges. It's interesting to note that dumping
the SAM database from memory allows Cain to bypass Windows Syskey protection,
which adds an extra 128 bits of cryptographic protection around the SAM database
while it resides on the hard drive only. When in the memory of running
authentication processes, Cain can easily grab it with administrative rights. Besides
Cain, an alternative program for getting these password representations using the
same memory-dumping technique is the free Pwdump3 program, available at . As
with Cain, to use Pwdump3 to extract password representations, the attacker must
have administrative privileges on the target system.

Besides dumping the SAM, attackers also have many other options for getting a copy
of the password representations. They could search the system looking for files used
during a system backup and steal the password representations. For example, when
an administrator backs up a system using the built-in Windows tool Ntbackup.exe, by
default, a copy of the SAM database with the password representations is usually
placed in the %systemroot%\repair\sam._ file.

Another option for getting the password representations is to steal the administrator
recovery floppy disks. When a Windows system is built, a good administrative practice
is to create floppy disks that can be used to recover the machine more quickly if the
operating system gets corrupted. These floppy disks include a copy of the SAM
database with at least a representation of the administrator's password. Alternatively,
an attacker with physical access to the target machine could simply boot the system
from a Linux CD-ROM and retrieve the SAM database by dumping it from the local
registry image on the hard drive. A handy tool for retrieving and altering Windows
passwords using a Linux boot disk can be found at . This tool can be used to change
the administrator or other user's password, even if Syskey is installed. It's important
to note, however, that changing a user's password by booting to a Linux CD-ROM
causes the system to lose access to the EFS keys for that user on Windows XP and
2003. Thus, on those versions of Windows, if you use the password-changing boot
disk, you'll lose all EFS-protected data in the accounts for which you change
passwords. On Windows 2000, the EFS keys are stored differently, letting this Linux
boot disk change the passwords without losing EFS-encrypted files.

Cain offers one final option for getting password representations: sniffing them off of
the network. Cain includes a very powerful integrated network capture tool that
monitors the LAN looking for Windows challenge–response authentication packets,
which Windows will send in a variety of different formats, depending on its
configuration, including LM Challenge–Response, NTLMv1, NTLMv2, and Microsoft
Kerberos. Whenever users try to authenticate to a domain or mount a remote file
share or print server, their Windows machine authenticates to the server using one of
these protocols. Taken together, the challenge and response associated with each
protocol are based cryptographically on the user's password. After grabbing the
challenge and response from the network using its integrated sniffing tool, Cain can
crack them to determine the user's password. We discuss sniffers and how they

manipulate LAN traffic in more detail in Chapter 8. But for now, keep in mind that
Cain can sniff a variety of Windows authentication protocols and crack the passwords
associated with them.

Configuring Cain

Cain is very easy to configure, as shown in Figure 7.18. The attacker can set up the
tool to do dictionary attacks (using any wordlist of the attacker's choosing as a
dictionary, or the integrated 306,000-word dictionary Cain includes). Cain also
supports hybrid attacks that reverse dictionary guesses, apply mixed case to guesses,
and even append the numbers 00 through 99 to dictionary words. It also offers
complete brute-force password-cracking attacks, attempting all possible character
combinations to form password guesses.

Figure 7.18. Configuration options for Cain.

[View full size image]

Finally, instead of forming, encrypting, and comparing the password guesses in real
time, Cain supports a password-cracking concept sometimes called Rainbow tables, in
honor of the first tool that implemented this attack, RainbowCrack, by Zhu Shuanglei.
With a Rainbow-like attack, the bad guy computes an encrypted dictionary in
advance, storing each password along with its encrypted form in memory or in a file
on the hard drive. This table is typically indexed for fast searching based on the
encrypted password representation. Then, when mounting a password-cracking
attack, the bad guy bypasses the guess–encrypt–compare cycle, instead just grabbing
the cryptographic password representation from the victim machine and looking it up
in the Rainbow table. After spending the initial time and energy to create the Rainbow
tables, all subsequent cracking is much quicker, because the tool simply has to look
up the password representations in the table. In effect, we preload most of the

password-cracking work. For Cain, the attacker can generate the Rainbow tables
using a separate tool called Winrtgen.exe, available at the Cain Web site (). Then,
once the encrypted wordlist is developed, the attacker can point Cain to it to perform
the comparisons to determine the passwords.

Cracking Passwords with Cain

After loading the password representations, selecting a dictionary, and configuring the
options, the attacker can run Cain by clicking the Start button. Cain generates and
tests guesses for passwords very quickly. Table 7.1 depicts the amount of time
necessary to crack the very weak LM hashes using a quad-processor 2.4-GHz
machine, a pricy machine, but not out of range for some attackers. Of course, with
Moore's law resulting in faster computers every other year, these numbers are
plummeting. Keep in mind, however, that Table 7.1 illustrates the times for LM hash
cracking. NT hashes are several orders of magnitude stronger than the incredibly
weak LM hashes, for reasons described in Chapter 4.

Table 7.1. Approximate LM Cracking Times
with Cain, Using a Quad-Processor Machine

Character Set Time

Alphanumeric < 2 hours

Alphanumeric, some special
characters

< 10 hours

Alphanumeric, all special
characters (except high-end
ASCII typed with the ALT
key)

< 120
hours (5
days!)

That's pretty impressive performance! A full brute-force attack (every possible
keystroke character) against the weak LM representations takes less than 120 hours,
or 5 days, to recover any password, regardless of its value of normal alphanumeric
and special characters (those that you can form using the SHIFT key).

And, if the attacker has more processing horsepower, the attack requires even less

time. It's important to note, though, that Windows allows users to choose passwords
that include the upper-end ASCII characters by holding down the ALT key and typing
numbers to represent such characters. Although these ALT characters significantly
drive up password cracking times, most users don't rely on them, instead favoring the
easier-to-type alphanumeric and special characters.

The main Cain screen, illustrated in Figure 7.19, shows the information dumped from
the target's SAM database (including User Name, LM representation, and NT Hash). As
Cain runs, each successfully cracked password is highlighted in the display. There is
one especially interesting column in Figure 7.19: the "<8" notation. This column is
checked for each password with an LM representation that ends in AAD3B43... That's
because, as we discussed in Chapter 4, the original password was seven characters or
less, padded to be exactly 14 characters by the LM algorithm. When LM splits the
resulting string into two seven-character pieces, the high end will always be entirely
padding. Encrypted padding, with no salts, always has the same value, AAD3B43 and
so on. Salts, those little random numbers used to boost the difficulty of cracking
passwords, are described in more detail in Chapter 4. Of course, if Windows used salts
to force some nonpredictability into the password crypto scheme, the same encrypted
padding would indeed have different results. So, the presence of this "<8" column
illustrates two things: that the passwords are split into two seven-character pieces by
LM, and that no salts are used in Windows.

Figure 7.19. Successful crack using Cain.

[View full size image]

Using Cain's Integrated Sniffer

As we discussed earlier, Cain allows an attacker to sniff challenge–response
information off of the network for cracking.

But how can an attacker force users to send this information across the network?
Well, attackers could position their machine or take over a system on the network at
a point where they will see all traffic for users authenticating to the domain or a very
popular file server. In such a strategic position, whenever anyone authenticates to
the domain or tries to access a share, the attacker can run Cain in sniffing mode to
snag user authentication information from the network.

Of course, it might be very difficult for attackers to insert themselves in such a
sensitive location. To get around this difficulty, an attacker can trick a user via e-mail
into revealing his or her password hashes. Consider the e-mail shown in Figure 7.20
which was sent by an attacker, pretending to be the boss. Note that the message
includes a link to a file share on the machine SOMESERVER, in the form of
file://SOMESERVER. On this SOMESERVER machine, the attacker has installed Cain
and is running the integrated sniffing tool.

Figure 7.20. Would you trust this e-mail?

[View full size image]

When the victim clicks the file:\\ link, the victim's machine attempts to mount the
share on the attacker's server, interacting with the server using a Windows
challenge–response protocol such as LM Challenge, NTLMv1, NTLMv2, or Kerberos,
depending on the system's configuration. Once the victim clicks the link, the
attacker's sniffer displays the gathered challenge and response, as shown in Figure
7.21.

Figure 7.21. Cain's integrated sniffer captures the challenge–response from
the network for cracking.

[View full size image]

To complete the attack, the attacker can save this captured data and feed it into Cain
to retrieve the user's password, as shown in Figure 7.22. This technique, which
combines social engineering via e-mail, sniffing data from the network, and password
cracking, really demonstrates the power of several aspects of Cain.

Figure 7.22. A sniffed Windows challenge–response successfully cracked.

[View full size image]

Cain Doesn't Do Just Windows

Beyond these Windows operating system password-cracking capabilities, Cain can also
crack Cisco-IOS Type-5 enable passwords, Cisco PIX enable passwords, APOP-MD5
hashes, CRAM-MD5 hashes, RIPv2-MD5 hashes, OSPF-MD5 hashes, VRRP-HMAC-96
hashes, VNC's 3DES passwords, RADIUS Shared Secrets, Password List (PWL) files
from Windows 95 and Windows 98, Microsoft SQL Server 2000 passwords, MySQL323
passwords, MySQLSHA1 hashes, and even IKE preshared keys. Whew! That's quite an
exhaustive list. That last item in the list, associated with the IKE protocol, is
especially useful for the bad guys in a VPN environment. Many IPSec implementations
use IKE to exchange and update their crypto keys. Most systems and VPN gateways,
by default, use IKE in a manner called aggressive mode, designed to exchange new
keys quickly across the network. Many organizations have deployed their IPSec
products using a preshared key as an initial secret to exchange the first set of session
keys via aggressive mode IKE. This preshared key is usually just a password typed by
an administrator into the IPSec clients and VPN gateway. Unfortunately, if an attacker
sniffs the aggressive mode IKE exchange using Cain's built-in sniffer, the bad guy can

crack this preshared key. Using this information, the attacker can then load the
preshared key into the attacker's own IPSec client, and ride in through the VPN
gateway, impersonating the original user. This preshared key IKE cracking capability
originated in a tool called IKE Crack, but the functionality has been nicely imported
into both Cain's sniffer and password-cracking features.

Cracking UNIX (and Other) Passwords Using John the Ripper

Despite its ability to attack other operating systems, Cain still runs just on Windows.
Another free, high-quality password cracker that can run on more environments is
John the Ripper, one of the best tools today focused only on password cracking. John
the Ripper (called John for short) is a free tool developed by Solar Designer, the
gentleman we discussed earlier in this chapter who wrote the nonexecutable kernel
patch for Linux to defend against stack-based buffer overflows. Although John is
focused on cracking UNIX and Linux passwords, it has some extended modules that
can crack other password types, including Windows LM representations and NT
hashes.

John runs on a huge variety of platforms, including Linux, UNIX, Windows of all kinds,
and even the ancient DOS platform. Yes, you can dust off that old DOS system and
use it to crack passwords. To boost its speed, John even includes optimized code to
take advantage of various specific CPU capabilities, such as Intel's MMX technology.

Further showing its great flexibility, John can be used to crack passwords from a
variety of UNIX variants, including Linux, FreeBSD, OpenBSD, Solaris, Digital UNIX,
AIX, HP-UX, and IRIX. Although it was designed to crack UNIX passwords, John can
also attack LM hashes from Windows machines. Also, Dug Song, the author of the
FragRouter IDS and IPS evasion tool that we discussed in Chapter 6, has written
modular extensions for John that crack files associated with the S/Key one-time-
password system and AFS/Kerberos Ticket Granting Tickets, which are used for
cryptographic authentication. Finally, a developer named Olle Segerdahl has written
an NT hash-cracking module for John, freely available at .

Retrieving the Encrypted Passwords

As described in Chapter 3, Linux and UNIX Overview, UNIX systems store password
information in the /etc directory. Older UNIX systems store encrypted passwords in
the /etc/passwd file, which can be read by any user with an account on the
system. For these types of machines, an attacker can grab the encrypted passwords
very easily, just by copying /etc/passwd.

Most modern UNIX variants include an option for using shadow passwords. In such
systems, the /etc/passwd file still contains general user account information, but
all encrypted passwords are moved into another file, usually named /etc/shadow
/etc/secure. Figures 7.23 and 7.24 show the /etc/passwd and /etc/shadow

files, respectively, from a system configured to use shadow passwords. A shadow
password file (/etc/shadow or /etc/secure) is only readable by users with root-
level privileges. To grab a copy of a shadow password file, an attacker must find a
root-level exploit, such as a buffer overflow of program that runs as root or a related
technique, to gain root access. After achieving root-level access, the attacker makes a
copy of the shadow password file to crack.

Figure 7.23. When password shadowing is used on a system, the
/etc/passwd file contains user information, but no passwords.

[View full size image]

Figure 7.24. The corresponding /etc/passwd file contains the encrypted
passwords.

[View full size image]

Another popular technique used on systems with or without shadow passwords
involves causing a process that reads the encrypted password file to crash, generating
a core dump file. On UNIX machines, the operating system will often write a core file
containing a memory dump of a dying process that might have been a victim of a
buffer overflow that simply crashed the target process. The core file is generated for
debugging purposes and to store unsaved data. After retrieving a copy of a core file
from a process that read the encrypted passwords before it died, an attacker can
comb through it to look for the encrypted passwords. This technique of mining core
dumps is particularly popular in attacking FTP servers. If attackers can crash one
instance of the FTP server, causing it to create a core dump, they can then use
another instance of the FTP server to transfer the core file from the target machine.
They'll then pore through the core file looking for passwords to crack to gain access to
the FTP server.

Configuring John the Ripper

Although it doesn't have a fancy GUI like Cain, the command-line John tool is still
trivially easy to configure. The attacker must feed John a file that includes all user

account and password information. On a UNIX system without shadow passwords, all
of this information is available in the /etc/passwd file itself, so that's all John
requires. On a system with shadow passwords, this information is stored in
/etc/passwd and /etc/shadow (or /etc/secure). To merge these two files into
a single file for input, John includes a program called, suitably enough, unshadow,
which is shown in Figure 7.25.

Figure 7.25. Running the unshadow script from John the Ripper.

[View full size image]

Another very nice feature of John is its ability to detect automatically the particular
encryption algorithm to use during a cracking exercise, differentiating various UNIX
and Linux password encryption techniques from each other, as well as the Windows
LM representation. This autodetect capability is based on the character set, length,
and format of the given file containing the passwords. In this way, John practically
configures itself automatically. Although the autodetect function is nifty, the absolute
greatest strength of John is its ability to create many permutations quickly for
password guesses based on a single wordlist. Using a wordlist in a hybrid-style attack,
John appends and prepends characters, and attempts dictionary words forward,
backward, and typed in twice. It even truncates dictionary terms and appends and
prepends characters to the resulting strings. This capability lets the tool create many
combinations of password guesses, foiling most users' attempts to create strong
passwords by slightly modifying dictionary terms. Quite simply, John has the best
hybrid guessing engine available publicly today.

With all of this slicing and dicing of words to create password guesses, John acts like a

dictionary food processor. The process of creating permutations for password guesses
is defined in a user-configurable rule set. The default rules that John ships with are
exceptionally good, and most users won't have to tinker with them.

When conducting a password-cracking attack, John supports several different modes
of operation, including the following:

This mode is the fastest and most limited mode supported by John. It bases its
guesses only on information from the user account, including the account name
and General Electric Computer Operating System (GECOS) field, a block of
arbitrary text associated with each account.

As its name implies, this mode guesses passwords based on a dictionary, creating
numerous permutations of the words using the rule set.

This is John's mode for implementing a complete brute-force attack, trying all
possible character combinations as password guesses. A brilliant feature of this
mode is to use character frequency tables to ensure the most widely used
characters (such as e in English) have a heavier weighting in the guessing.

You can create custom functions to generate guesses using this external mode.

By default, John starts using single-crack mode, moves onto wordlist mode, and
finally tries incremental mode. Even in the face of all of this flexibility, John's default
values are well tuned for most password-cracking attacks. By simply executing the
John program and feeding it an unshadowed password file, the attacker can quickly
and easily crack passwords, as shown in Figure 7.26.

Figure 7.26. Running John the Ripper to crack passwords.

[View full size image]

While John is running, it displays successfully cracked passwords on the screen, and
stores them in a local file called john.pot. If you ever run John, make sure you clean
up after yourself by removing john.pot! Whenever I'm doing a security assessment, I

always look for leftover john.pot files that a lazy system administrator or auditor
forgot to destroy. Using a remnant john.pot, I can rely on the password-cracking work
having been done by another user, making my attack go much more quickly. Also,
while John is running, the attacker can press any key on the keyboard to get a one-
line status check, which displays the amount of time John has been running, the
percentage of the current mode that is completed, as well as the current password
guess John has just created.

Defenses Against Password-Cracking Attacks

Cain and John the Ripper represent the best of breed password-cracking tools, and
can quickly determine passwords in most environments. In my experience at
numerous organizations, Cain or John often return dozens of passwords after running
for a couple of minutes. Given the obvious power of these cracking tools, together
with the widespread use of passwords as security tools, how can we successfully
defend our systems? To defend against password-cracking attacks, you must make
sure your users do not select passwords that can be easily guessed by an automated
tool. Carefully apply several defensive techniques that work together to help
eliminate weak passwords, starting with establishing an effective password policy.

Strong Password Policy

A strong password policy is a crucial element in ensuring the security of your systems.
Your organization must have an explicit policy regarding passwords, specifying a
minimum length and prohibiting the use of dictionary terms. Passwords should be at
least nine characters long, and should be required to include nonalphanumeric
characters. In fact, I prefer having a minimum password length of at least 15 or even
more characters. I know what you are thinking: "There'd be riots in the cubicles if I
configured a minimum password length of 15 characters!" However, we need to get
our users out of the mindset of having passwords, and move them into the notion of
passphrases. For example, a password of "Gee, I think I'll buy another copy of
Counter Hack!" is a lot harder to crack than a password of #dx92!$XA, and the former
is a lot easier to type as well. Also, I didn't arbitrarily choose that 15-character
minimum. As it turns out, on Windows 2000 and later, if you set a password to 15
characters or more, the system will not store a LM hash at all for that password,
instead relying solely on the stronger NT hash in the SAM database. That
automatically gets rid of the scourge of LM hashes for such accounts, significantly
improving your password security in a Windows environment. We look at an
additional LM purging capability shortly.

Furthermore, passwords should have a defined maximum lifetime of 90, 60, or 30
days, depending on the particular security sensitivity and culture of your
organization. I tend to recommend a 60- or 90-day policy, because, in my experience,
users nearly always write down passwords that expire every 30 days on sticky notes.
Of course, your culture might vary. Finally, make sure that your password policy is

readily accessible by employees on your internal network and through employee
orientation guides.

User Awareness

To comply with your password policy, users must be aware of the security issues
associated with weak passwords and be trained to create memorable, yet difficult-to-
guess passwords. A security awareness program covering the use of passwords is very
important. Such a program could take several forms, ranging from posters in the
workplace to explicit training for users in how to create good passwords and protect
them.

In your password awareness program (as well as your password policy), tell users how
to create good difficult-to-guess passwords. If you don't opt for passphrases, you
should alternatively recommend that users rely on the first letters of each word from
a memorable phrase, mixing in numbers and special characters. When training users
in selecting good passwords, I like to use an example from the theme song from the
television show "Just sit right back, and you'll hear a tale, a tale of a fateful trip." A
password derived from this phrase would be Jsrb,Ayhat,atoaft. As you might recall,
there were seven stars in the TV program, so, we can add that information to the
password, coming up with Jsrb,Ayhat,atoaft7*, which would be reasonably difficult to
guess, as it contains alphabetic and numeric characters, mixed cases, and special
characters. Using the same technique, your users should be able to create their own
memorable passwords. Of course, if you use this example from in your own awareness
initiatives, make sure to warn your users not to set their password to the example
Jsrb,Ayhat,atoaft7*, because if you don't warn them, a large number of them will just
use the password from your example!

Password Filtering Software

To help make sure users do not select weak passwords, you can use password filtering
tools that prevent them from setting their passwords to easily guessed values. When
a user establishes a new account or changes his or her password on a system, these
filtering programs check the password to make sure that it meets your organization's
password policy (i.e., the password is sufficiently complex and is not just a variation
of the user name or a dictionary word). With this kind of tool, users are far less able
to create passwords that are too easily guessed. However, by being creative enough,
some users will be able to come up with something that gets through the password
filter yet is still easily crackable. However, the vast majority of your user population
will have strong passwords, significantly improving the security of your organization.

For filtering software to be effective, it must be installed on all servers where users
establish passwords, including UNIX servers, Windows Domain Controllers, and other
systems. Many modern variants of UNIX include password-filtering software. For those
that do not, you can use a variety of third-party tools to add this capability, including
a pluggable authentication module (PAM) tool written by Solar Designer, the author of

John the Ripper. This module is available for Linux, Solaris, and FreeBSD systems for
free at .

For Windows environments, you can select from numerous password filtering tools as
well, including the following:

Password Guardian, a commercial tool available for sale at

Strongpass, a free tool available at

Where Possible, Use Authentication Tools Other Than Passwords

Of course, one of the main reasons we have this password-cracking problem in the
first place is our excessive use of traditional reusable passwords. If you get rid of
access through passwords, you deal a significant blow to attackers trying to utilize
password-cracking programs. For particularly sensitive systems or authentication
across untrusted networks, you should avoid using traditional password
authentication. Instead, consider one-time password tokens or smart cards for access.
Or, utilize biometric authentication to augment passwords, such as handprint,
fingerprint, or retina scanners.

Conduct Your Own Regular Password-Cracking Tests

To make sure your users are selecting difficult-to-guess passwords and to find weak
passwords before an attacker does, you should conduct your own periodic password-
cracking assessments. Using a high-quality password-cracking tool, like Cain or John
the Ripper, check for crackable passwords every month or every quarter. As always,
avoid using programs from untrusted sources.

Before conducting this type of assessment, make sure you have explicit permission
from management. Otherwise, you could damage your career path by cracking the
password of some very cranky employees, possibly in senior management positions.
When weak passwords are discovered, make sure you have clearly defined,
management-approved procedures in place for interacting with users whose
passwords can be easily guessed. Don't e-mail or call them on the phone to tell such
users to change their passwords, because you'd then make them more subject to
social engineering attacks. Instead, configure their accounts to require a password
change the next time they log in.

Protect Your Encrypted or Hashed Password Files

A final very important technique for defending against password-cracking tools is to
protect your encrypted or hashed passwords. If the attackers cannot steal your
password file or SAM database, they will not be able to crack your passwords en
masse. You must carefully protect all system backups that include password files (or
any other sensitive data, for that matter). Such backups must be stored in locked

facilities and possibly encrypted. Similarly, lock up any system recovery floppy disks
in a safe location.

On all of your UNIX systems that support it, make sure that you activate password
shadowing, which stores the password representations in the /etc/shadow file,
readable only by root. On Windows machines, if you do not have to support backward
compatibility for Windows for Workgroups or Windows 95 or 98 clients, disable the
incredibly weak LM authentication. In an environment that includes only Windows NT
and later machines, you can get rid of the weak LM representations by defining the
registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\NoLMHash on all
systems. This registry key tells the system not to store the LM representation when
each user next changes his or her password. Thus, with this key defined, your LM
hashes will gradually disappear as each user's password expires over the next 90, 60,
or 30 days. Furthermore, the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\LMCompatibilityLevel
can be set to a value of three on Windows NT and later clients to force them to send
the more difficult-to-crack NTLMv2 representations across the network. This same
registry key can be set on servers to a value of five to force them to accept only
NTLMv2 authentication, again breaking backward compatibility with Windows for
Workgroups, Windows 95, and Windows 98, but significantly improving your security.

Finally, whenever you make a backup using the Ntbackup.exe program, remember to
delete or alter the permissions on the copy of the SAM database stored in the
%systemroot%\repair\sam._ file. Using these techniques, you can significantly
lower the chances of an attacker grabbing your password hashes.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and Effective Defenses

Web Application Attacks

Now that we understand how the frequently exploited buffer overflow and password-cracking attacks operate, let's turn our
attention to a class of attacks that is rapidly growing in prominence: World Wide Web application exploits. More and more
organizations are placing applications on the Internet for all kinds of services, including electronic commerce, trading, information
retrieval, voting, government services, and so on. New applications are being built with native Web support, and legacy
applications are being upgraded with fancy new Web front ends. As we "webify" our world, the Web has proven to be a particularly
fruitful area for attackers to exploit.

In my investigations of a large number of Web sites, I have frequently encountered Web applications that are subject to account
harvesting, undermining session tracking mechanisms, and SQL injection. The concepts behind these vulnerabilities are not
inherently Web-specific, as these same problems have plagued all kinds of applications for decades. However, because Web
applications seem particularly prone to these types of errors, it is important to understand these attacks and defend against them.

All of the Web attack techniques described in this section can be conducted even if the Web server uses the SSL protocol. So often,
I hear someone say, "Sure, our Web application is secure ... we use SSL!" SSL can indeed help by strongly authenticating the Web
server to the browser and preventing an attacker from intercepting traffic, when it is used properly. In other words, SSL supports
authentication, and protects data in transit. You should definitely employ SSL to protect your Web application. However, SSL
doesn't do the whole job of protecting a Web application. There are still a large number of attacks that function perfectly well over
an SSL-encrypted connection. When the data is located in the browser, SSL doesn't prevent changes to that data by the person
sitting at the browser. If an attacker is browsing your Web application, he or she might just change some crucial data in the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

browser. If your Web application trusts whatever comes back, the bad guy might be able to undermine your Web application
completely. Remember, the browser is potentially enemy territory, with an attacker sitting at its controls, so you can't trust what
comes back from it unless you explicitly validate that data. Let's look at such attacks in more detail, starting with account
harvesting.

Account Harvesting

Account harvesting is a good example of a technique that has been applied to all kinds of systems for decades, but now seems to
be a particular problem with Web applications. Using this technique, an attacker can determine legitimate user IDs and even
passwords of a vulnerable application. Account harvesting is really a simple concept, targeting the authentication process when an
application requests a user ID and password. The technique works against applications that have a different error message for
users who type in an incorrect user ID than for users who type a correct user ID with an incorrect password.

Consider the error message screens for the application shown in Figure 7.27 and Figure 7.28
proprietary Web application called Mock Bank, written by Arion Lawrence, a brilliant colleague of mine. We use Mock Bank
internally to show common real-world problems with Web applications to our clients, as well as to train new employees in the
methods of ethical hacking. The first screen shows what happens when a user types in a wrong user ID, and the second shows the
output from a correct user ID and an incorrect password. The actual HTML and appearance of the browser in both pages are
identical. However, look at the location line in the browser of each figure a bit more closely. Notice that when the user ID is
incorrect, error number 1 is returned, as in Figure 7.27. When the user ID is valid and the password is wrong, error number 2 is
returned, as in Figure 7.28. This discrepancy is exactly what an attacker looks for when harvesting accounts.

Figure 7.27. Mock Bank's error message when a nonvalid (i.e., bad) user ID is entered.

[View full size image]

Figure 7.28. Mock Bank's error message when a valid (i.e., good) user ID is entered with a bad password. Note the
change in the URL error number parameter.

[View full size image]

Based on this difference in error messages in the URL, an attacker can write a custom script to interact with the Web application,
conducting a dictionary or brute-force attack guessing all possible user IDs, and using an obviously false password (such as zzzzz).
The script will try each possible user ID. If an error message is returned indicating that the user ID is valid, the attacker's script
writes the user ID to a file. Otherwise, the next guess is tested. This is pure user ID guessing through scripting, adding a bit of
intelligence to discriminate between invalid and valid user IDs. In this way, an attacker can harvest a large number of valid user
IDs from the target application. In this Mock Bank example, the parameter called error is the differentiating point between the two
conditions. Of course, any element of the returned Web page, including the HTML itself, comments in the HTML, hidden form
elements, cookies, or anything else, could be the differentiator between the bad user ID and good user ID conditions. The attacker
will choose a suitable differentiating point to include in the logic check of the login attack script.

After running a script to harvest good user IDs, the attacker can try to harvest passwords. If the target application doesn't lock out
user accounts due to a given number of invalid password attempts, the attacker can write another script or use the Brutus or
Hydra tools we discussed earlier in this chapter to try password guessing across the network. The attacker takes the user IDs
previously harvested and tries guessing all passwords for that account using login scripting. If the target application does lock out
accounts, the attacker can easily conduct a DoS attack using the harvested user ID information.

Account Harvesting Defenses

For all of your Web applications (or any other application, for that matter), you must make sure that you use a consistent error
message when a user types in an incorrect user ID or password. Rather than telling the user, "Your user ID was incorrect," or
"Your password was incorrect," your application should contain a single error message for improper authentication information.
You could display a message saying, "Your user ID or password was incorrect. Please enter them again, or call the help desk." Note
that all accompanying information sent back to the browser must be completely consistent for the two scenarios, including the raw
HTML, URL displayed in the browser, cookies, and any hidden form elements. Even a single space or period that is different
between the two authentication error conditions could tip off an attacker's script.

Undermining Web Application Session Tracking and Other Variables

Another technique commonly used to attack Web applications deals with undermining the mechanisms used by the Web application
to track user actions. After a user authenticates to a Web application (by providing a user ID and password, or through a client-
side certificate on an HTTPS session), most Web applications generate a session ID to track the user's actions for the rest of the
browsing session of that site. The Web application generates a session ID and passes it to the
"Here, hold this now and give it back to me every time you send another request for the rest of this session." This session ID is
passed back and forth across the HTTP or HTTPS connection for all subsequent interactions that are part of the session, such as
browsing Web pages, entering data into forms, or conducting transactions. The application uses this information to track who is
submitting the request. In essence, the session ID allows the Web application to maintain the state of a session with a user.

Note that a session ID can have any name the application developer or the development environment used to create the Web
application assigned to it. It does not have to be called sessionID, sid, or anything else in particular. A Web application developer
could call the variable Joe, but it would still be used to track the user through a series of interactions.

Furthermore, a session ID is completely independent of the SSL connection in the vast majority of applications. The session ID is
application-level data, generated by the application and exchanged by the Web browser and Web server. Although it is encrypted
by SSL as it moves across the network, the session ID can be altered at the browser by the browser user without impacting the
underlying SSL connection.

Implementing Session IDs in Web Applications

So how do Web applications implement session IDs? Three of the most popular techniques for transmitting session IDs are URL
session tracking, hidden form elements, and cookies. For URL session tracking, the session ID is written right on the browser's
location line, as shown in Figure 7.29, and passed as a parameter in an HTTP GET request. For all subsequent Web requests, the
URL is passed back to the server, which can read the session ID from this HTTP field and determine who submitted the request.

Figure 7.29. Session tracking using the URL.

[View full size image]

A second technique for tracking session IDs involves putting the session ID information into the HTML itself, using hidden form
elements. With this technique, the Web application sends the browser an HTML form with elements that are labeled as hidden. One
of these form elements includes the session ID. When it displays the Web page, the browser does not show the user these hidden
elements, but the user can readily see them simply by invoking the browser's view source function for the page. In the raw HTML,
a hidden form element will have the following appearance:

<INPUT TYPE="HIDDEN" NAME="Session" VALUE="34112323">

Cookies are the most widely used session tracking mechanisms. A cookie is simply an HTTP field that the browser stores on behalf
of a Web server. A cookie contains whatever data the server wants to put into it, which could include user preferences, reference
data, or a session ID. There are two types of cookies: persistent cookies and nonpersistent cookies. A persistent cookie is written
to the local file system when the browser is closed, and will be read the next time the browser is executed. Persistent cookies,
therefore, are most often used to store long-term user preferences. A nonpersistent cookie, on the other hand, is stored in the
browser's memory and is deleted when the browser is closed. This type of cookie has a short but useful life, and is often used to
implement session IDs.

Attacking Session Tracking Mechanisms

Many Web-based applications have vulnerabilities in properly allocating and controlling these session IDs. An attacker might be
able to establish a session, get assigned a session ID, and alter the session ID in real time. For applications that don't handle
session tracking properly, if the attacker changes the session ID to a value currently assigned to another user, the application will
think the attacker's session belongs to that other user! In this way, the attacker usurps the legitimate user's session ID, a process
sometimes referred to as As far as the application is concerned, the attacker becomes the other user. Of course, both the
legitimate user and the attacker are using the same session ID at the same time. Still, many Web-based applications won't even
notice this problem, accepting and processing transactions from both the attacker and the legitimate user.

In fact, it's pretty hard for an application to even figure out that this has happened. Suppose the application associates a session
ID number with the IP address of the user. Well, there's a problem in that many users might be surfing from behind a single proxy
or a many-to-one dynamic NAT device, so all such users will have the same apparent IP address. One user on the other side of the
proxy could still clone the session of another user of the proxy. Furthermore, trying to nail the session ID to the IP address is bad
because sometimes a user who surfs through a large ISP will have a changed apparent source IP address, right in the middle of a
surfing session! Because of some complex routing and proxying that some ISPs perform, a completely legitimate user might get a
different IP address in real time. Web applications that check session credentials against the IP addresses would think that such
users are really being attacked, when they aren't. They were just given a different IP address.

An application with predictable session credentials allows an attacker to do anything a legitimate user can do. In an online banking
application, the attacker could transfer funds or possibly write online checks. For online stock trading, the attacker could make
trades on behalf of the user. For an online health care application ... well, you get the idea.

To perform this kind of attack, the bad guy first needs to determine another user's session ID. To accomplish this, the attacker logs
in to the application using a legitimate account assigned to the attacker, and observes the session ID assigned to that session. The
attacker looks at how long the session ID is and the types of characters (numeric, alphabetic, or others) that make it up. The
attacker then writes a script to log in again and again, gathering hundreds of session IDs to determine how they change over time
or to see if they are related in any way to the user ID. Then, applying some statistical analysis to the sampled session IDs, the
attacker attempts to predict session IDs that belong to other users.

So how does an attacker actually manipulate the session ID? First, the attacker logs in to the application using his or her own
account to be assigned a session ID. Then, the attacker attempts to modify this session ID to clone the session of
many session tracking mechanisms, such modifications are trivial. With URL session tracking, the attacker simply types over the
session ID in the URL line of the browser. If hidden form elements are used to track sessions, the attacker can save the Web page
sent by the server to the local file system. The attacker then edits the session ID in the hidden form elements of the local copy of
the Web page, and reloads the local page into the browser. By simply submitting the form back to the server, the attacker can
send the new session ID and could clone another user's session.

If sessions are tracked using persistent cookies, the attacker can simply edit the local cookie file. In Mozilla Firefox and Netscape
browsers, all persistent cookies are stored in a single file called cookies.txt. For Internet Explorer, cookies from different
servers are stored in their own individual files in the Temporary Internet Files directory for each user. An attacker can edit these
persistent cookies using any text editor, as shown in Figure 7.30. To exploit a session ID based on a persistent cookie, the attacker
can log in to the application to get a session ID, close the browser to write the cookie file, edit the cookies using his or her favorite
text editor, and relaunch the browser, now using the new session ID. The browser must be closed and relaunched during this
process because persistent cookies are only written and read when the browser is closed and launched.

Figure 7.30. Editing nonpersistent cookies using Notepad.

[View full size image]

Editing persistent cookies is trivial. But how can an attacker edit nonpersistent cookies, which are stored in the browser's memory
and are not written to the local file system? Many Web application developers just assume that a user cannot view or alter
nonpersistent cookies, especially those passed via SSL, so they don't bother worrying about protecting the information stored in
such cookies. Unfortunately, bad guys use very powerful techniques for altering nonpersistent cookies.

To accomplish this feat, Web application attackers most often rely on a specialized Web proxy tool designed to manipulate Web
applications. A Web application manipulation proxy sits between the browser and the server, as shown in
HTTPS gets channeled through the proxy, which gives the attacker a window to view and alter all of the information passed in the
browsing session, including nonpersistent cookies. Thus, the bad guy has a very fine-grained level at which to modify any cookies
that are passing by. What's more, these specialized proxies let the attacker edit any raw HTTP/HTTPS fields and HTML information
including cookies, hidden form elements, URLs, frame definitions, and so on.

Figure 7.31. A Web application manipulation proxy lets the attacker alter the HTTP and HTTPS elements passing
through it, including nonpersistent cookies.

[View full size image]

It is crucial to note that these Web application manipulation attacks are not person-in-the-middle attacks where a bad guy changes
another user's data going to the application. In these Web application manipulation attacks, the bad guy controls both the browser
and the proxy. Attackers use the proxy to alter their own data going to and from the Web application, including session ID
numbers and other variables. That way, any victim Web server that trusts the information that comes from the browser will be
tricked. The attacker applies the browser and Web application manipulation proxy in tandem: The browser browses, while the
proxy lets the attacker change the elements inside the HTTP and HTML itself.

Because this proxy concept is so powerful in attacking Web applications, various security developers have released a large number
of these Web application manipulation proxies, both on a free and a commercial basis.
Web application manipulation proxies, as well as their claims to fame.

Table 7.2. Web Application Manipulation Proxies

Tool Name Licensing
Terms

Platform Claim to
Fame

Location

Achilles Free Windows

First to be
released
and easiest
to use

www.mavensecurity.com/achilles

Paros Proxy Free Java

Incredibly
feature
rich; my
favorite
among the
free tools

www.parosproxy.org

Supports

http://www.mavensecurity.com/achilles
http://www.parosproxy.org

Interactive TCP Relay Free Windows
HTTP/HTTPS
and any
other TCP
protocol

www.imperva.com/application_defense_center/tools.asp

WebScarab Free Java

Free, open
source, and
actively
updated,
with a
modular
interface for
adding new
tools and
features

www.owasp.org

SPI Dynamics
SPIProxy/WebInspect

Commercial Windows

Records
browsing
and then
automates
attacks,
integrates
with other
SPI
Dynamics
tools

www.spidynamics.com

Web Sleuth Commercial Windows
Excellent
filtering
capabilities

www.sandsprite.com/Sleuth/

To launch this kind of attack, the bad guy runs the browser and the Web application manipulation proxy, either on separate
systems or on a single machine. To get a feel for how these tools work, let's look at the one with the simplest user interface,
Achilles, which is shown in Figure 7.32. In the main Achilles window, all information from the HTTP or HTTPS session is displayed
for the attacker to view. When the browser or server sends data, Achilles intercepts it, allowing it to be edited before passing it on.

http://www.imperva.com/application_defense_center/tools.asp
http://www.owasp.org
http://www.spidynamics.com
http://www.sandsprite.com/Sleuth/

In this way, Achilles pauses the browsing session, giving the attacker a chance to alter it. The attacker can simply point to and
click any information in this session in the main window and type right over it. The attacker then clicks the Send button, which
transfers the data from Achilles to the server or browser.

Figure 7.32. The Achilles screen, one of the easiest to use Web application manipulation proxies.

[View full size image]

Most Web application manipulation proxies support HTTPS connections, which are really just HTTP connections protected using
SSL. To accomplish this, as displayed in Figure 7.33, the proxy sets up two SSL connections: one session between the browser and
the proxy, and the other between the proxy and the Web server. All data is encrypted at the browser and sent to the proxy. At the
proxy, the data is decrypted and displayed to the attacker, letting the bad guy alter it. Then, the data is encrypted across another,
separate SSL session and sent to the victim Web server. When a response is served up by the server, the same process is applied
in the opposite direction. Most of the proxies even come with a built-in digital certificate for server-side SSL to establish the
connection with the Web browser. The Web server never knows that there is a proxy in the connection. The attacker's browser
might display a warning message saying that the certificate from the server isn't signed by a trusted certificate authority, because
the proxy inserts its own certificate in place of the Web server's certificate. However, the attacker is running both the browser and
the proxy, so the warning message can be ignored by the attacker.

Figure 7.33. Handling HTTPS (that is, HTTP over SSL) with a Web application manipulation proxy.

Although Achilles is the easiest to use of the Web application manipulation proxies, it isn't the most powerful. My current favorite
Web application manipulation proxy is Paros Proxy, shown in Figure 7.34. Originally developed by the fine folks at ProofSecure,
the Paros proxy maintains an excellent history of all HTTP requests and responses as the attacker surfs a given site through the
proxy. Later, the attacker can review all of the action, with every page, variable, and other element recorded. Further, in addition
to supporting server-side SSL, like most of the Web application manipulation proxies already do, Paros also allows its user to
import a client-side SSL certificate that can be used to authenticate to a Web site that requires a client certificate. This client-side
support is a strong differentiator among the free tools. Paros also features a built-in automated Paroweb spider
every linked page on a target Web site, storing its HTML locally for later inspection, all the while harvesting URLs, cookies, and
hidden form elements for later attack.

Figure 7.34. The Paros Proxy is one of the best freely available Web application manipulation proxies.

[View full size image]

Another nice touch in Paros is a built-in point-and-click tool for calculating the SHA1, MD5, and Base64 value of any arbitrary text
typed in by its user or pasted in from the application. When attacking Web applications, the attacker sometimes has a hunch about
the encoding or hashing of a specific data element that is returned. Using this calculator, the attacker can quickly and easily test
such hunches. The tool also includes automated vulnerability scanning and detection capabilities for some of the most common
Web application attacks, including SQL injection, an issue we discuss later in this chapter. Finally, the Paros find and filter features
let an attacker focus on specific aspects of the target Web application, such as certain cookie names, HTTP request types, or other
features. What a great tool!

As we've seen, an attacker can modify session credentials using these Web application manipulation proxies, but session
credentials only scratch the surface. Many Web applications send a great deal of additional variables to the browser for temporary
or permanent storage in cookies or hidden form elements. Using a Web application manipulation proxy, the attacker can also view
or edit any of these very enticing items passed to the browser. Some applications pass back account numbers, balances, or other
critical information in cookies, expecting that they will remain unchanged and trusting them when they return from the browser.

Of particular interest are Web applications that pass back a price to the browser, such as an e-commerce shopping cart. Of course,
an e-commerce application has to pass back a price so that customers can see on the screen how much they are spending, but that
price should only be displayed on the screen. In addition to displaying the price on the screen, some applications use a cookie or a

hidden form element to pass a price back to the browser for a shopping cart.

In such applications, the server sends the price to the browser in the form of a cookie or hidden form element, and the browser
sends the price back to the server for each subsequent interaction to maintain the shopping cart or add to it. There is nothing to
say that the user can't edit the price in the cookie or hidden form element while it's at the browser or in a Web application
manipulation proxy. An attacker can watch the price go through a Web application manipulation proxy, edit it at the proxy, and
pass it back to the server. The question here is this: Does the server trust that modified price? I've seen several e-commerce
applications that trust the price that comes back from the user in the cookie or hidden form element.

For example, consider a Web application that sells shirts on the Internet. Suppose for this company, shirts should be priced at
$50.00. This price is displayed on the screen in HTML, but is also passed in a cookie in a shopping cart. The attacker can use a Web
application manipulation proxy to edit that cookie to say, "The $50.00 shirt is now changed to ten cents," or even zero. The price
will be sent to the Web application, and if the Web application is vulnerable, the attacker will get a shirt for ten cents, or even for
free. The attacker might even lower the price to a negative number, and perhaps the shirt will arrive in the mail with a check for
the attacker's troubles! Quite frankly, the Web application doesn't need to send the price in the cookie. It should only send a
product stock-keeping unit (SKU) number or some other reference to the product, but not its price. Furthermore, it shouldn't trust
the integrity of data received from the browser, as an attacker can alter any data using a Web application manipulation proxy.

Defending Against Web Application Session Tracking and Variable Alteration Attacks

To defend your Web applications from this type of attack, you must ensure the integrity of all session tracking elements and other
sensitive variables stored at the browser, whether they are implemented using URLs, hidden form elements, or cookies. To
accomplish this, use the following techniques for protecting variables sent to the browser:

Digitally sign or hash the variables using a cryptographic algorithm, such as a Hash-Based Message Authentication Code
(HMAC), as shown in Figure 7.35. When the application needs to pass a variable back to the browser, it creates a hash of the
variable using a secure hash algorithm with a secret key known only to the Web application on the Web server. The variable
and this hash are sent to the user. Evil users who try to change the data (and even the hash itself) will not be able to create a
matching hash of their changed data, because they don't know the secret key. Thus, the application can perform an integrity
check of all returned values to make sure their data and hashes match, using that secret key.

If you are passing multiple variables in a single cookie, be careful when concatenating all of them together and loading them
into a single cookie. Suppose you want to pass one variable that has a value of
just concatenate these before hashing, the value and will have the same hash as
the attacker a slightly better chance at figuring out what you are mixing together in your hashing algorithm. To minimize this
chance, you should separate the values in the cookie with a delimiter character that won't be included in the variable values
themselves. For example, include a separation character when concatenating, such as "&", as in .

Encrypt the information in the URL, hidden form element, or cookie. Don't just rely on SSL, which protects data in transit. In
addition to SSL, use some form of encryption of sensitive variables.

Make sure your session IDs are long enough to prevent accidental collision. I recommend that session credentials be at least
20 characters (that's 160 bits) or longer.

Consider making your session IDs dynamic, changing from page to page throughout your Web application. That way, an
attacker will have a harder time crafting specific session ID numbers for specific users.

Figure 7.35. Applying an integrity check to a variable passed to a browser using the HMAC algorithm.

When applying these mechanisms to secure the variables passed to the browser, you have to make sure that you cover the entire
application. Sometimes, 99.9 percent of all session tracking information in an application is securely handled, but on one screen, a
single variable is passed in the clear without being encrypted or hashed. Perhaps the Web developer got lazy on one page, or had
a raucous night before writing that particular code. Alternatively, maybe the page was deemed unimportant, so an inexperienced
summer intern wrote the code. Regardless, if a session ID is improperly protected on a single page, an attacker could find this
weakness, clone another user's session on that page, and move on to the rest of the application as that other user. With just one
piece of unprotected session tracking information, the application is very vulnerable, so you have to make sure you are protected
throughout the application.

Additionally, you need to give your users the ability to terminate their sessions by providing a logout feature in your Web
application. When a user clicks the Logout button, his or her session should be terminated and the application should invalidate
the session ID. Therefore, an attacker will not be able to steal the session ID, because it's no longer valid. Also, if a user's session
is inactive for a certain length of time (e.g., for 15 minutes), your application should automatically time out the connection and
terminate the session ID. That way, when users close their browsers without gracefully logging out of the session, an attacker will
still not be able to usurp a live session after the time-out period expires.

Additionally, defenders can use specialized Web proxy tools to help defend against these attacks. The commercial products
AppShield from Watchfire and InterDo by Kavado sit in front of a Web application and look for incoming requests in which an
attacker manipulated a cookie or other state element that is supposed to remain static for a given browsing session. They also look
for other suspicious behavior.

SQL Injection

Another weakness of many Web applications involves problems with accepting user input and interacting with back-end databases.
Most Web applications are implemented with a back-end database that uses Structured Query Language (SQL). Based on
interactions with a user, the Web application accesses the back-end database to search for information or update fields. For most
user actions, the application sends one or more SQL statements to the database that include search criteria based on information
entered by the user. By carefully crafting a statement in a user input field of a vulnerable Web application, an attacker could
extend an application's SQL statement to extract or update information that the attacker is not authorized to access. Essentially,
the attacker wants to piggyback extra information onto the end of a normal SQL statement to gain unauthorized access.

To accomplish these so-called SQL injection attacks, the bad guys first explore how the Web application interacts with the back-

end database by finding a user-supplied input string that they suspect will be part of a database query (e.g., user name, account
number, product SKU, etc.). The attacker then experiments by adding quotation characters (i.e., ', ", and ') and command
delimiters (i.e., ;) to the user data to see how the system reacts to the submitted information. In many databases, quotation
characters are used to terminate string values entered into SQL statements.

Additionally, semicolons often act as separating points between multiple SQL statements. Using a considerable amount of trial and
error, the attacker attempts to determine how the application is interacting with the SQL database. A trial-and-error process is
involved because each Web application formulates queries for a back-end database in a unique fashion. Interestingly, the Paros
Web application manipulation proxy tool we discussed in the previous section has an automated SQL injection flaw detection
capability, based on fuzzing user input. In the section on buffer overflows at the beginning of this chapter, we discussed fuzzing
input for size by continually varying the amount of data sent until the application behaves in a strange fashion. Paros fuzzes user
input not based on size, but instead focuses on altering all variables passed to a Web application, including information sent in the
URL, elements of forms (both displayed and hidden form elements), and cookies. Paros looks for SQL injection flaws by sending
quotes, semicolons, and other meaningful elements of SQL to the target application to make it generate a strange error message
that could be a sign of an SQL injection flaw.

To get a feel for how SQL injection works, let's look at a specific example from a tool called WebGoat, a free Web application
available for download from . WebGoat implements a simulated e-commerce application, where users can pretend to buy HDTV
equipment and other items. However, like the Mock Bank application we looked at earlier in this chapter, WebGoat is full of
various Web vulnerabilities. By downloading WebGoat and experimenting with it in your lab on a Windows or Linux machine, you
can improve your Web application assessment skills in a mock environment. If you can learn to find the flaws of WebGoat, you can
apply the same skills in other applications and help make the world a more secure place.

WebGoat is an ideal tool for learning, as shown in Figure 7.36. It includes complete lesson plans, a report card on the users'
progress so far, and almost two dozen different common Web application flaws (including SQL injection issues, as well as
authentication and session tracking flaws similar to those we discussed earlier). Along the way, the tool offers hints for conquering
each individual vulnerability, ranging from very ambiguous guidance to explicit directions for attacking a specific flaw. The Web-
based user interface can be tweaked to make the Web application display all HTTP parameters, HTML, cookies, and even Javascript
in-line for convenient analysis by the would-be attacker. Finally, to help apprentices make sure
material, there's even a final challenge, a hintless component of the application the users must master on their own.

Figure 7.36. WebGoat is a great environment for learning Web application security assessment techniques.

[View full size image]

One of the flaws designed into WebGoat involves SQL injection. The application lets users review their credit card numbers stored
in the application, based on their account numbers. As illustrated in Figure 7.37, the user Joe Snow has two credit card numbers
entered into the application.

Figure 7.37. In WebGoat, user Joe Snow reviews his credit card numbers via his account number.

[View full size image]

Now, suppose this Joe Snow user is evil. For SQL injection attacks, this bad guy might start out by entering quotation characters
into the application as part of an account number. Remember, many SQL environments treat quotation characters as important
terminators of strings. By sending an additional quotation character, the attacker might be able to generate an error message from
the back-end database.

In Figure 7.38, the evil Joe Snow has submitted an account number of 101". Those closed quotes at the end are going to cause
problems in the application. As a helpful hint about what's going on, WebGoat displays the SQL statement that will be used to
query the back-end WebGoat database:

SELECT * FROM user_data WHERE userid = 101

Figure 7.38. The evil user types in an account number of 101" and gets an error message.

[View full size image]

Of course, real-world applications wouldn't display the SQL itself, but WebGoat does for training purposes. Unfortunately, the
application blindly takes anything entered by the attacker in the HTML form and puts it after the
statement. If Joe Snow just enters a number, the application performs as expected, looking up the account information for that
account number. However, if the attacker enters quotation marks, the resulting SQL becomes:

SELECT * FROM user_data WHERE userid = 101"

Those quotation marks at the end are the problem. Databases don't like to see such things, because they are syntax errors in SQL.

Thus, the application indicates this error to Joe Snow by printing out that ugly ODBC Microsoft Access Driver message. Although
that error might be ugly to most users, for evil Joe Snow, it's like gold. Any time an application responds with a syntax, SQL, SQL
Syntax, ODBC, or related error message, we've got a major sign the application is vulnerable to SQL injection.

Now, to really attack this application, the bad guy injects a little SQL logic into the target application. This time, the bad guy types
an account number of 101 or 'TRUE'. The resulting SQL created by the application will be:

SELECT * FROM user_data WHERE userid = 101 or 'TRUE'

Let's consider that WHERE clause in the SQL SELECT statement. We're looking for data where the
'TRUE'. Based on the rudimentary logical operator OR, anything OR 'trUE' is true. "The sky is purple" or
statement, based on the nature of OR. So, this WHERE clause is true for everything in the
looks up all data in that table and displays it to the attacker. As shown in Figure 7.39
numbers for other users, obtained via SQL injection.

Figure 7.39. The evil user enters an account number of 101 or 'trUE' to get all account information via SQL injection.

[View full size image]

Our example from WebGoat showed injection techniques for SQL query statements (a
UPDATE commands can allow an attacker to modify data in the database. Ultimately, if attackers carefully construct commands

within SQL, they can get raw access to the back-end database.

Defenses Against SQL Injection

To defend against SQL injection and related attacks through user input, your Web application must be developed to filter user-
supplied data carefully. Remember, the application should never trust raw user input. It could contain injected commands and all
kinds of general nastiness. Wherever a user enters data into the application, the application must strongly enforce the content
type of data entered. A numerical user input should really only be an integer; all non-numerical characters must be filtered.
Furthermore, the application must remove unneeded special characters before further processing of the user input. In particular,
the application should screen out the following list of scary characters:

Quotes of all kinds (', ', ", ", and `)—String terminators

Semicolons (;)—Query terminators

Asterisks (*)—Wildcard selectors

Percent signs (%)—Matches for substrings

Underscore (_)—Matches for any character

Other shell metacharacters (&\|*?~<>^()[]{}$\n\r), which could get passed through to a command shell, allowing an
attacker to execute arbitrary commands on the machine

Your best bet is to define which characters your application requires (usually just alphanumeric) and filter out the rest of the riff-
raff users send you.

For those characters that might be dangerous but really necessary, introduce an escape sequence or substitute. One popular
method of substituting innocuous replacements involves using an & and two letters to represent an otherwise scary character. For
example, an apostrophe (') can be changed to &ap, less than (<) can become <

Furthermore, your input filtering code in the Web application can look for and remove potentially damaging SQL statements,
including such SQL-relevant words as SELECT, INNER, JOIN, UNION, UPDATE, and

These potentially damaging characters and statements should be filtered out or substituted on the server side of the Web
application. Many Web application developers filter input on the client side, using Javascript or other techniques, mistakenly
thinking that will stop SQL injection and related attacks. Yet, an attacker can bypass any client-side filtering using a Web
application manipulation proxy like Achilles or Paros to inject arbitrary data into the HTTP or HTTPS connection. Remember, the
browser is potentially enemy territory, so any filtering that occurs there can be subverted by the attacker. Even pull-down menus
can be subverted using a proxy, as an attacker adds further options to the menu via a proxy that can include SQL injection and
related attacks.

Another level of defense against SQL injection involves limiting the permissions of the Web application when accessing the
database. Don't let your Web application have database administrator capabilities on your database! That's incredibly dangerous.
Build the Web application and configure the database so that the Web application logs in with a very limited permission account,

with the ability to view and update only those fields of those tables that are absolutely required. Clamping down on these
permissions won't eliminate SQL injection attacks, but it can really limit the attacker's ability to explore the database fully.

Finally, Web application developers should consider the use of parameterized stored procedures in their applications. In the
examples we've discussed here, the Web application gathers user input and uses it to compose database query strings, which
then forwards to the database for execution. Composing these queries on the fly at the Web application results in SQL injection
when attackers provide SQL-relevant commands or operators in user input. A Web architecture that uses parameterized stored
procedures, on the other hand, doesn't feed raw SQL statements generated by the Web application into the database. Instead, this
architecture relies on stored procedures, code that runs on the database server itself, to interact with the database. By moving the
logic for interacting with the database to the database server, the Web application can provide the stored procedure a set of
discrete parameters drawn from user input that are used in queries defined within the stored procedure itself. The stored
procedure breaks down the user input into the individual parameters that need to be fed into the database search. Because the
query logic isn't created on the fly, but is instead coded into the stored procedure relying on user input merely as a set of
parameters, stored procedures help minimize the chance of SQL injection.

In this section, we've looked at three of the most common attacks against Web applications, namely account harvesting, state
manipulation, and SQL injection. These are three of the biggest Web application attacks, but there are many other vulnerabilities
that Web applications could face, including cross-site scripting (which involves bouncing a malicious browser script off of a Web
site) and command injection (which lets an attacker inject operating system commands in user input), among many others. To
learn more about such flaws, the single best source freely available on the Internet is the Open Web Application Security Project
(OWASP) at . Everything created by the team at OWASP is free and open source. They are the people behind WebGoat, as well as
numerous other tools for testing and securing Web applications.

Their is quite comprehensive, including details associated with design, architecture, implementation, event logging, and more! It
really is a must-read for any Web developer today.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Exploiting Browser Flaws

Thus far, we've focused on attacking Web applications involving bad guys
undermining the logic that lives on Web servers for nefarious purposes.
However, a significant and scary trend involves attackers coopting e-
commerce sites and using them as a delivery mechanism for malicious code
to vulnerable Web browsers.

Numerous browser vulnerabilities are discovered on a regular basis,
especially (but not exclusively) in Internet Explorer. There are several types
of browser holes, including buffer overflows, flaws that let an attacker
escape the security restrictions on scripts or other active Web content (such
as the Java runtime environment), exploits that let malicious code bypass
cryptographic signature checks, and problems that let malicious code
execute in a different security zone than it should. All of these problems
could be triggered if the victim surfs to the wrong Web site with a vulnerable
browser.

Microsoft, as well as other vendors, has historically not rated such browser
flaws as critical, because they say that the victim user must be tricked into

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

surfing to the attacker's Web site. If users surf only to trusted sites, they
should be unaffected by such problems, or so the thinking goes.

However, this assumption is false, as we saw in several major attacks, with
many more likely in the future. In these attacks, the bad guys first
undermined trusted midsized e-commerce sites. The attackers installed code
on these Web sites that would exploit browser vulnerabilities when an
unsuspecting, but trusting, user surfed to these e-commerce sites. Later,
when users surfed to the e-commerce sites, their browsers were exploited,
and malicious code was inserted on their machines.

In June 2004, this attack was pulled off using the Download.Ject flaw in
Internet Explorer that let a Javascript run arbitrary code on a vulnerable
browser that surfed to a site hosting Download.Ject exploitation software.
Attackers took over a dozen e-commerce sites using various buffer overflow
attacks, and installed browser-exploiting code there. When a user surfed to
one of the infected Web sites, the Download.Ject flaw in the user's browser
was triggered, causing the victims to download a keystroke logger program
called berbew from a Russian Web site. This keystroke logger grabbed
financial information from the browser, including account numbers and
passwords for e-commerce sites and banks, as illustrated in Figure 7.40.
Here is the flow of these increasingly common types of attacks:

1. The attacker takes over some e-commerce or other trusted site
on the Internet. The attacker installs code on this site that can
exploit browser vulnerabilities.

2. An innocent victim surfs to the infected Web site.

3. The infected Web site responds with a Web page that exploits
the browser.

4. Based on the exploitation of Step 3, the browser connects to
the attacker's site and grabs some malicious code from it, such
as a keystroke logger, a bot, or a worm.

5. The evil code on the victim's machine now runs, doing nasty
stuff to the user, such as stealing his or her keystrokes.

Figure 7.40. Compromising an e-commerce site and using it to
deliver keystroke loggers to victims with vulnerable browsers.

[View full size image]

In November 2004, we saw a similar attack, this time exploiting an at-that-
time-unpatched buffer overflow in Internet Explorer called the IFRAME flaw.
This time, the attackers took over some advertising sites that posted banner
ads on a variety of other news and e-commerce Web sites. If you viewed any
of these ads at any of these sites with a vulnerable browser, you'd get a
worm called Bofra installed on your machine. Bofra would steal sensitive
information and try to take over other nearby systems.

As users increasingly deploy personal firewalls to block the automated
propagation of malicious code to their machines, such browser-based attacks
will likely grow in prominence. By riding through a user's normal Web
surfing and exploiting browser holes, the attacker's actions bypass the
personal firewall on a machine. The vast majority of personal firewalls are
configured to allow one or more Web browsers to access the Internet, thus
poking a significant hole in the protection offered by the firewall if the
browser itself is vulnerable.

Defending Against Browser Exploits

These browser-based exploits are an increasing threat, but how do you
defend against such attacks?

First, keep your browsers patched. If there's a new hole reported in a
browser, make sure to patch it immediately. Unfortunately, both the June
and November 2004 attacks exploited holes for which there was no patch
yet released. Still, it's a good idea to keep your systems patched.

Next, utilize an up-to-date antivirus tool on all systems, especially those
machines that browse the Internet. Happily, the code used in most of these
attacks so far was detectable with antivirus tools by the time the attack was

widespread, which prevented many users from being compromised.

Furthermore, you might want to consider using a browser other than
Internet Explorer. I don't want to start a product war here. However,
Internet Explorer is a major target for these types of attacks, given its
market dominance. Other browsers have holes, too, but they are less likely
to be targeted by attackers, simply because fewer people use them. The
attackers are looking for lots of easy prey, and Internet Explorer users sure
are a large population. However, please do not underestimate the amount of
work needed to transition to another browser. For personal users, learning a
new browser might take some time. In enterprise environments, a different
browser might break some of your critical applications. Recoding those
applications could take significant resources, thus making a transition to
another browser financially impossible.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

Throughout this chapter, we've seen powerful techniques an attacker can
use to gain access to a target machine by attacking operating systems and
applications. New vulnerabilities in these areas are being discovered on a
daily basis and are widely shared within the computer underground.
Therefore, it is important that you consider the defenses highlighted in this
chapter in your own security program to protect your systems and vital
information.

Now that we understand the most common operating system and application
attacks, let's move down the protocol stack to analyze network-based
attacks.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

Using information gained from the reconnaissance and scanning phases,
attackers attempt to gain access to systems. The techniques employed
during Phase 3, gaining access, depend heavily on the skill level of the
attacker. Less experienced attackers use exploit tools developed by others,
available at a variety of Web sites. More sophisticated attackers write their
own customized attack tools and employ a good deal of pragmatism to gain
access. This chapter explores techniques for gaining access by manipulating
applications and operating systems.

Buffer overflows are among the most common and damaging attacks today.
They exploit software that is poorly written, allowing an attacker to enter
input into programs to execute arbitrary commands on a target machine.
When a program does not check the length of input supplied by a user
before entering the input into memory space on the stack or heap, a buffer
overflow could result. Without this proper bounds checking, an attacker can
send input that consists of executable code for the target system to run,
along with a new return pointer for the stack. By rewriting the return
pointer on the stack, the attacker can make the target system run the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

executable code. For heap-based buffer overflows, an attacker can
manipulate other variables in the heap, and possibly execute malicious code.

Exploitation frameworks like Metasploit help automate the production and
use of exploits, such as stack-based and heap-based buffer overflows. These
tools let attackers write modular exploits and payloads, tying the two
together in an easy-to-use interface.

Defenses against buffer overflow attacks include applying security patches in
a timely manner, filtering incoming and outgoing traffic, and configuring
systems so that their stacks cannot be used to store executable code.
Software developers can also help stop buffer overflows by utilizing
automated code-checking and compile-time stack protection tools.

Password attacks are also very common. Attackers often try to guess default
passwords for systems to gain access, by hand or through using automated
scripts. Password cracking involves taking the encrypted or hashed
passwords from a system and using an automated tool to determine the
original passwords. Password-cracking tools create password guesses,
encrypt or hash the guesses, and compare the result with the encrypted or
hashed password. The password guesses can come from a dictionary, brute-
force routine, or a hybrid technique. Cain is one of the best tools for
cracking passwords on Windows machines. On UNIX systems (as well as
Windows), John the Ripper is excellent.

To defend against password attacks, you must have a strong password policy
that requires users to have nontrivial passwords. You must make users
aware of the policy, employ password filtering software, and periodically
crack your own users' passwords (with appropriate permission from
management) to enforce the policy. You might also want to consider
authentication tools stronger than passwords, such as hardware tokens.

Attackers employ a variety of techniques to undermine Web-based
applications. Some of the most popular techniques are account harvesting,
undermining Web application session tracking and variables, and SQL
injection. Account harvesting allows an attacker to determine account
numbers based on different error messages returned by an application. To
defend against this technique, you must make sure your error messages
regarding incorrect user IDs and passwords are consistent.

Attackers can undermine Web application session tracking by manipulating
URL parameters, hidden form elements, and cookies to try to clone another
user's session. To defend against this technique, make sure your applications
use strong session tracking information that cannot easily be determined by
an attacker and protect all variables passed to a browser.

SQL injection allows attackers to extend SQL statements in an application by
appending SQL elements to user input. The technique allows attackers to
extract or update additional information in a back-end database behind a
Web server. To protect your applications from this technique, you must
carefully screen special characters from user input and make sure your Web
application logs in to a database with minimal privileges.

Numerous browser-based vulnerabilities let an attacker take over a browsing
machine that surfs to an infected Web server. By compromising trusted Web
servers, attackers can spread their browser exploits to a large population. To
defend against such attacks, keep your browsers patched, and utilize up-to-
date antivirus tools.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 8. Phase 3: Gaining Access Using
Network Attacks

As we have seen, attackers have devised some powerful techniques for
gaining access by breaking applications and operating systems. Now we turn
our attention to techniques for gaining access through network-based
attacks. As our computing infrastructures have grown more network-centric
and much of our lives revolve around networked computers, attackers have
devised very clever means for undermining computer communications. As
we wind our way through the scenarios in this chapter, it is important to
remember that these network-based attacks will work no matter if our
networks are made up of wires, switches, and hubs or if they consist of radio
waves and wireless access points. In fact, as wireless networking becomes
more widespread, many of these attacks become more sinister as an
unsecured or poorly secured wireless network could extend our internal
network outside the walls of our offices and homes. In this chapter, we
explore the techniques and tools that can be used in both wired and wireless
attacks, including sniffing, spoofing, session hijacking, and a fantastic
general-purpose network tool called Netcat.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step
Guide to Computer Attacks and Effective Defenses

Sniffing

A is a program that gathers traffic from the local network, and is useful both for
attackers looking to swipe data as well as network administrators trying to
troubleshoot problems. Using a sniffer, an attacker can read data passing by a
given machine in real time, or store the data in a file for access at a later time.
Because a sniffer gathers packets at the Data Link layer, it could potentially grab
all data passing on the LAN of the machine running the sniffer program.

What type of data can a sniffer capture? A sniffer can grab anything sent across the
LAN: user IDs and passwords for telnet sessions, DNS queries and responses,
sensitive e-mail messages, FTP passwords, files accessed using the Network File
System or Windows shares, and more. Really, the sky's the limit. As long as the
data is not encrypted and passes by the network interface of the machine running
the tool, a sniffer can pick it up. This is because attackers most often use sniffers to
gather all traffic from the LAN, putting the interface into so-called promiscuous
mode. This mode involves gathering all data, without regard to its destination MAC
address. Alternatively, when gathering data only going to or from its host system, a
sniffer leaves the interface in its normal nonpromiscuous state.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

An attacker must have an account on a machine from which to run the sniffer. The
attacker might have been given the account because he or she is an insider, such
as an employee, supplier, or contractor requiring access on the machine.
Alternatively, an attacker might have gained access to an account on the system
using one of the techniques described in Chapter 7, Phase 3: Gaining Access Using
Application and Operating System Attacks, such as a buffer overflow attack. It's
important to note that in the vast majority of operating systems, including
Windows and default installs of most Linux variations, the attacker needs an
account with administrator or root privileges to run a sniffer. This restriction is
based on the permissions associated with reading packets directly from the network
devices on a system.

Attackers often use a sniffer to gather user IDs and passwords from clear-text
protocols on the LAN and store them in a local file. At some later date, the attacker
logs back into the system to recover the juicy passwords. Quite often, however, the
attacker forgets about the sniffer or gets inundated with more password data than
expected. On several occasions, I've been involved with incidents where the file
systems on several servers mysteriously filled up. During the investigation, we
quickly realized that an abandoned sniffer was running on the servers, storing
thousands or millions of passwords for months or even years, unbeknownst to any
of the system administrators.

Sniffers are particularly useful in what is known as an island-hopping attack,
named after the Allied strategy in the Pacific theater during World War II. Island-
hopping attacks, as shown in Figure 8.1, involve an attacker taking over a single
machine through some exploit (e.g., a buffer overflow attack). After gaining access
to an account through this exploit, the attacker installs a sniffer on this first victim
machine. Then, using the sniffer on the first victim, the attacker observes users
and administrators logging on to other systems on the same LAN segment or other
segments of the network. The sniffer gathers these user IDs and passwords,
allowing the attacker to take over more machines. By installing sniffers on these
additional machines, more and more passwords can be captured, letting the
attacker hop from system to system, taking over machines.

Figure 8.1. An island-hopping attack: An attacker who has taken over one
system gathers user IDs and passwords sent in clear text to other systems,

taking them over one by one.

[View full size image]

An enormous number of sniffing tools are widely available today. The following are
some of the most interesting, widely used, and highly functional sniffers:

A freeware port of tcpdump for Windows at

A freeware sniffer and network-based IDS, available at

Freeware for UNIX/Linux and Windows, with a nice user interface and the
ability to decode a plethora of protocols, available at

Freeware running on a variety of UNIX and Linux flavors, and widely used in
the attacker community, available at

A free suite of tools built around a sniffer running on variations of UNIX and
Linux, available at

Sniffers can be used on a variety of interface types (such as wireless or Token Ring
interfaces). However, given the huge popularity of Ethernet as a LAN technology,
the vast majority of sniffer tools target Ethernet (although their use in wireless
environments is rapidly escalating). As we discussed in Chapter 2, Networking
Overview, Ethernet-based networks can be implemented using both switches and
hubs. Let's explore how the differences in hubs and switches impact the use of
sniffers.

Sniffing Through a Hub: Passive Sniffing

As described in Chapter 2, many Ethernet networks are built using hubs.
Transmitting data across a hub-based LAN is like shouting into a crowded room:
Everyone in the room can hear what you shout. In a similar manner, a hub
implements a broadcast medium shared by all systems on the LAN. Any data sent
across the LAN is actually sent to each and every machine connected to the LAN.
Therefore, if an attacker runs a sniffer on one system on the LAN, the sniffer can

gather data sent to and from any other system on the LAN, as shown in Figure 8.2

Figure 8.2. A LAN implemented with a hub.

The majority of sniffer tools are well suited to sniff data in a hub environment.
When used in this way, these tools are called because they passively wait for data
to be sent to them, and then silently gather that data from the LAN. In particular,
three of the most useful tools in this realm are Snort, Sniffit, and Ethereal.

Snort

Most people think of Snort as a powerful open source network IDS, but Snort
actually started life as a very flexible sniffer program. Available at ,

Snort is still a capable sniffer, able to gather traffic from a LAN and store it in a
variety of useful ways in the file system. However, Snort has grown far beyond its
humble "sniffer" beginnings. By adding very powerful signature-matching
capabilities and preprocessing support, Snort's development team has developed it
into a very good IDS. Remember, most network-based IDS systems sniff data from
the network and comb through it looking for attack signatures. Snort does just
that, allowing system administrators to monitor their networks for attacks using a
free IDS engine. I also use Snort a lot in my incident handling investigations, to
gather data and piece together what the bad guys might have done. What's more,
several companies have commercialized Snort, including Sourcefire, which offers
enhanced versions of Snort to organizations desiring vendor support, as well as a
variety of IPS devices based on the underlying Snort architecture.

Snort, originally developed by Martin Roesch and now maintained by Marty and his
band of merry Snort developers, also has incredible cross-platform and
multiarchitecture support, running on Linux, OpenBSD, FreeBSD, NetBSD, Solaris,
SunOS, HP-UX, AIX, IRIX, Tru64, MacOS X Server, and Windows. If your
organization is looking for a low-cost IDS solution or a cheap, fast sniffer, you

should definitely consider Snort.

Beyond its benign uses as an IDS tool and in investigations, Snort can be employed
by an attacker to grab sensitive information from the network. However, the bad
guys don't often use Snort. In truth, Snort offers far more capabilities than the
attackers need. They just want to gather sensitive data, like user IDs and
passwords, but don't need all the extra gee-whiz signature matching capabilities
Snort offers.

Sniffit

Unlike Snort, Sniffit has been used in the computer underground for many years in
a variety of attacks. Sniffit was written by Brecht Claerhout, and is available at for
Linux, Solaris, FreeBSD, SunOS, and IRIX. From an attacker's perspective, Sniffit
includes some highly useful features. Like most sniffers, it can be configured to
gather data promiscuously and store it in a local file. Furthermore, Sniffit supports
flexible filtering capabilities, so the attacker can zero in on particular hosts or even
specific protocols to sniff, like telnet or FTP, based on the port numbers used by the
protocol. Sniffit's most interesting feature, however, is its ability to handle the
interactive sniffing of sessions in real time.

Sniffit's interactive mode is incredibly useful for monitoring session-oriented
applications, like telnet, rlogin, and FTP sessions. These applications involve a login
and the constant transmission of data back and forth across the network. To
activate interactive mode, an attacker starts Sniffit with the -i option. As shown in
Figure 8.3, the attacker is then presented with a slick interface showing all TCP
sessions going across the network. The Sniffit program sorts the packets into their
individual sessions, based on IP addresses and ports numbers. In the example, you
can see a couple of telnet connections (with a destination TCP port of 23). In
interactive mode, Sniffit hides the complexity of the individual packets behind its
interface, letting an attacker view separate conversations by reassembling the TCP
streams and presenting the individual sessions in its interface. The attacker can
scroll through these sessions and zoom in on one of particular interest. When
zoomed in, the attacker can watch the keystrokes of the victim in real time,
gathering passwords or otherwise watching what's going on. Essentially, this
interactive mode lets the attacker look over the victim's shoulder (from a network
perspective, anyway), witnessing his or her every keystroke as it is transmitted
across the network.

Figure 8.3. Using Sniffit in interactive mode to sniff a user ID and
password.

[View full size image]

Ethereal

If the more "bare-bones" approach of Snort and Sniffit doesn't live up to your idea
of what a hacking tool should look like, then Ethereal will knock your socks off. We
should note that the tool's name is pronounced "eth-air'-ee-al," and not "ee'-
therreel." In addition to being a powerful and capable sniffer, Ethereal, as shown in
Figure 8.4, just plain looks good. But don't let that pretty face fool you; behind
those good looks is a packet and protocol genius. Ethereal can decode several
hundred different protocols used all across the networking spectrum and can break
them down to the various fields within the packet to explain what every bit and
byte is used for. Additionally, Ethereal provides a handy "Follow TCP Stream"
function that allows you to select a single packet and then see the entire contents
of the TCP stream from which it came. This feature is handy for following
interactive protocols that tend to be strung out among hundreds or thousands of
individual packets, such as telnet sessions, IRC, or various instant messaging
protocols. If you'd just like to get your feet wet in the sniffing world, I strongly
recommend that you download and experiment with Ethereal. With its support for
Windows, Linux, and a variety of UNIX variations, Ethereal lets you snag some
packets and start analyzing them quickly with its nice point-and-click interface. If
you do use Ethereal, however, remember to keep it patched. Although its
numerous protocol parsers are very helpful, many buffer overflow flaws are
discovered in them on a regular basis, typically every month or two. If you don't
keep Ethereal patched, a bad guy could send you some evil packets designed to
overflow a buffer in Ethereal. When your sniffer tries to decode that packet, the
attacker can crash your sniffer or even run commands on the sniffing machine.

Figure 8.4. Ethereal offers powerful sniffing functions combined with a
good looking and functional GUI.

[View full size image]

"Hey, Don't I Know You?" Passive OS Identification and
Vulnerability Identification

In Chapter 6, Phase 2: Scanning, we discussed many different methods to map a
network and look for vulnerable machines. Although all of those methods work,
they all run some risk of detection, because they all involve sending packets to the
target network and receiving a response.

What if you could perform network reconnaissance in an extremely stealthy
fashion, mapping a network or even checking for vulnerabilities without ever
sending a single packet? Well you can, to an extent, using fancied-up sniffers.
Although you won't be able to get the depth of information that you could get from,
say, an Nmap or Nessus scan, you might be surprised at the information that can
be gathered in an entirely passive mode, as illustrated in Figure 8.5. But how does
such a passive approach work?

Figure 8.5. An example of the type of information provided by the passive
OS identification tool P0f2.

xxx.xxx.58.205:3260 - Windows XP, 2000 SP2+
-> xxx.xxx.64.17:135 (distance 10, link: ethernet/modem)
xxx.xxx.235.222:3671 - Windows 2000 SP4, XP SP1
-> xxx.xxx.64.21:445 (distance 18, link: unknown-1460)
xxx.xxx.44.109:54544 - Linux 2.4/2.6 (up: 745 hrs)
-> xxx.xxx.64.17:80 (distance 12, link: ethernet/modem)
xxx.xxx.170.46:2387 - Windows 2000 SP4, XP SP1
-> xxx.xxx.64.17:80 (distance 17, link: IPv6/IPIP)

xxx.xxx.232.198:2395 - Windows 2000 SP2+, XP SP1 (seldom 98 4.10.2222)
-> xxx.xxx.64.69:80 (distance 20, link: ethernet/modem)
xxx.xxx.64.10:62364 - Windows 2000 SP2+, XP SP1 (seldom 98 4.10.2222)
-> xxx.xxx.130.144:80 (distance 1, link: ethernet/modem)
>> Masquerade at xxx.xxx.64.10: indicators at 32%.
xxx.xxx.64.68:1757 - Linux 2.5 (sometimes 2.4) (4) (up: 413 hrs)
-> xxx.xxx.158.212:443 (distance 0, link: ethernet/modem)
xxx.xxx.116.73:34929 - Linux 2.4 w/o timestamps
-> xxx.xxx.64.4:80 (distance 14, link: ethernet/modem)
xxx.xxx.64.10:62440 - Windows 2000 SP4, XP SP1
-> xxx.xxx.185.109:995 (distance 1, link: ethernet/modem)
xxx.xxx.188.90:10765 - Windows 2000 SP4, XP SP1
-> xxx.xxx.64.18:80 (distance 15, link: ethernet/modem)

Every operating system has its own peculiarities, from the number of buttons on a
mouse to the way that it displays an error message. Those peculiarities extend to
the behavior of the operating system's network software when making a
connection. If you were given samples of various packets sent from different
operating systems in the course of making standard connections, it is possible to
spot enough differences to be able to positively identify the source operating
system (and, perhaps, even the version of the operating system) based solely on
the types of packets that they send.

This is the claim to fame for the program P0f2, written by Michael Zalewski and Bill
Stearns, and available at . P0f2 (that center character is a zero, not the letter O) is
available for Linux, FreeBSD, NetBSD, OpenBSD, MacOS X, Solaris, AIX, and
Windows, and provides its users with the ability to identify the operating system of
a remote machine passively, based on the "fingerprint" of the operating system's
network stack. In addition to identifying the OS, P0f2 can identify firewall, NAT or
load-balancer usage, connection type, and even system uptime, all by simply
passively sniffing packets. In effect, P0f2 is really just a sniffer that grabs packets,
and feeds them to some intelligence that can identify what operating system sent
the packets based on their contents, especially the fields in the packet header, such
as the TTL and IP ID in the IP header. Many systems send out packets with an
initial TTL that is near a given power of two, so by rounding to the nearest power of
two, we might be able to determine which operating system sent it. Also, as we
discussed in Chapter 6, the IP ID behavior of some systems (especially Windows
machines) is very predictable, changing in an incremental fashion. As you can
imagine, a passive OS identification tool like P0f2 has uses both by the people
attacking a network and by those charged with its protection.

Hand in hand with the concept of passive OS identification is the idea behind
passive vulnerability scanning. In Chapter 6, we discussed vulnerability scanning
and introduced the Nessus vulnerability scanner. Although Nessus is a perfectly

good tool, its use does entail a certain risk of detection based on the barrage of
packets it launches across the network. But, in the same way that P0f2 lets an
attacker passively discover information about your network that would normally
require an active scan with a tool like Nmap, there are vulnerability scanners that
can enumerate the vulnerabilities in your networked applications without ever
firing a packet.

Passive vulnerability scanning is currently cutting-edge technology, with Tenable
Network Security's commercial Nevo tool (available for a price at) being the major
tool in this genre currently available.

Passive vulnerability scanners work by watching not only for the so-called banner
information (information that applications generate that identifies the type and
version of the software), but also by using special rules to identify specific
"behavioral" clues that might indicate that an application could exhibit
vulnerabilities. Again, although these tools are in active use by some network
administrators to help manage the security of their networks, they also, because of
their "stealthy" nature, present interesting possibilities to attackers.

Active Sniffing: Sniffing Through a Switch and Other Cool Goodies

Unlike hubs, switched Ethernet does not broadcast all information to all machines
on the LAN. Instead, the switch is more intelligent than the hub. It looks at the
MAC address associated with each frame passing through it, sending data only to
the required connection on the switch. Therefore, as shown in Figure 8.6, a LAN
built on switched Ethernet is not really a broadcast medium. A switch limits the
data that a passive sniffer can gather.

Figure 8.6. A LAN implemented with a switch.

If an attacker activates Snort, Sniffit, Ethereal, tcpdump, or any other passive

sniffer on a switched LAN, the sniffer will only be able to see data going to and
from one machine—the system with the sniffer installed. All of the other interesting
information flowing on the LAN will be unavailable to the sniffer, because the
switch won't send it to the attacker's machine.

To overcome this difficulty of sniffing a switched LAN, attackers have created a
variety of tools that actively inject traffic into the LAN to support sniffing in a
switched environment. To better understand how these more sophisticated sniffing
attacks work, let's spend some time analyzing two incredibly powerful sniffing tools,
Dsniff and Ettercap.

Dsniff: A Sniffing Cornucopia

Dsniff, written by Dug Song (of FragRouter fame, as discussed in Chapter 6), is a
collection of several tools used to capture information from a LAN in a huge
number of flexible ways. Available at , Dsniff runs on OpenBSD, Linux, Solaris, AIX,
and HP-UX. Some components have even been ported to Windows, but they are,
quite frankly, the less interesting piece-parts of the Dsniff suite. The centerpiece of
the Dsniff suite is the sniffer program itself, called, appropriately enough, Dsniff.
Like most other sniffers, this tool can be used to capture information passing in
clear text across the network.

Parsing Packets for a Bunch of Applications

The big advantage of the Dsniff centerpiece sniffer, however, is the amazing
number of protocols that it can interpret. Nearly every sniffer can dump raw bits
grabbed off of the network. However, these raw bits are pretty much useless unless
the attacker can interpret what they mean by accurately parsing the information to
see the various fields being utilized by the application. For example, the raw output
from an FTP session is pretty useless, unless you can separate out the user ID,
password, individual commands, and the files themselves.

Dsniff really shines at decoding a large number of application-level protocols,
sucking out user IDs and passwords from clear-text protocols, including FTP, Telnet,
SMTP, HTTP, POP, poppass, NNTP, IMAP, SNMP, LDAP, Rlogin, RIP, OSPF, NFS,
YP/NIS, SOCKS, X11, CVS, IRC, AIM, ICQ, Napster, PostgreSQL, Meeting Maker,
Citrix ICA, Symantec pcAnywhere, NAI Sniffer, Microsoft SMB, Oracle SQL*Net,
Sybase SQL, and Microsoft SQL auth info. The ability to detect and interpret
properly and automatically this enormous list of application-level protocols is highly
useful to both attackers and security professionals. If you need to look inside any of
these supported protocols, Dsniff can be a big help.

Beyond its ability to decode all of these application-level formats, the Dsniff suite's
major differentiating feature is its ability to actively manipulate traffic. All of the
other sniffers we've discussed so far (such as Snort, Sniffit, Ethereal, tcpdump,
etc.) passively monitor traffic on the network. The Dsniff suite includes a variety of

tools that let an attacker interact with traffic to conduct advanced sniffing attacks,
such as sniffing through a switch, remapping DNS names to redirect network
connections, and even sniffing SSL and SSH connections.

Foiling Switches with Floods

Dsniff offers two methods for sniffing data from a switched LAN (and we'll learn a
third method later when we discuss Ettercap). The first technique is based on MAC
flooding using a Dsniff program called Macof. You remember MAC addresses, right?
As we discussed in Chapter 2, MAC addresses are the physical hardware addresses
unique to every Ethernet card. To switch traffic, a switch must remember which
MAC addresses are connected to which of its physical ports. As it runs, a switch
observes the Ethernet frames flowing through it, and dutifully stores the source
MAC addresses of arriving frames associated with each physical port on the switch
in a table. This table, called a Content Addressable Memory (CAM) table by some
vendors, stores a mapping of MAC address (the Data Link-layer address) to the
switch's physical port (the Physical layer itself). When new Ethernet frames arrive,
the switch consults the CAM table to determine where the given destination MAC
address for that frame is connected physically, and directs the given packet to the
appropriate physical interface.

Dsniff's Macof program works by sending out a flood of traffic with random spoofed
source MAC addresses on the LAN. As the number of apparent different MAC
addresses in use on the network increases, eventually the switch's memory
associated with the CAM table is exhausted, filled with bogus MAC addresses. At
this point, things get interesting. When their memory resources are exhausted,
some switch implementations start forwarding data onto all other physical ports of
the switch. That way, by reverting to a hub-like mode, the switch can maintain
connectivity, and even let more systems with new MAC addresses join the LAN. An
attacker can take advantage of this behavior by firing up Macof, flooding the switch
to the point where it forwards traffic to other links, and running any sniffer tool
(such as the Dsniff sniffer program or any passive sniffing tool) to grab all of the
desired traffic. Bingo! The attacker is now sniffing a switched LAN.

Foiling Switches with Spoofed ARP Messages

Some switches are not subject to this MAC flooding attack because they stop
storing new MAC addresses when the remaining capacity of their memory reaches a
given limit. With those switches, once the memory is filled, no other MAC addresses
can be admitted to the LAN until some existing MAC addresses in the CAM table
time out, a period that depends on the switch but typically involves several
minutes. For switches that are immune to MAC flooding, Dsniff comes to the rescue
(for attackers) by including another method for sniffing through a switch. Before
we analyze how this technique works, consider the switch-based LAN shown in
Figure 8.7. Under normal circumstances, traffic destined for the outside world is

sent from a client machine, through the switch, to the default router for the LAN.
The default router is the connection to the outside world, which could consist of
other networks or the Internet itself. Note in the figure, however, that an attacker
has taken over a machine connected to the LAN (the computer with the black hat).
This attacker cannot monitor the victim's traffic using passive sniffing techniques,
because the switch sends the traffic only to the physical switch port connected to
the default router for the LAN.

Figure 8.7. A switched LAN prevents an attacker from passively sniffing
traffic.

[View full size image]

To sniff in a switched environment where MAC flooding doesn't work, Dsniff
includes a tool called arpspoof. As its name implies, arpspoof allows an attacker to
manipulate ARP traffic on the LAN. In Chapter 2, we discussed how machines use
ARP to determine a destination system's MAC address based on the IP address, so
traffic can be delivered across a LAN. Essentially, ARP is used to map Layer 3 (IP)
addresses to Layer 2 (MAC) addresses (unlike the CAM table, which lives in a
switch and maps Layer 2 to Layer 1). Arpspoof lets an attacker mess up these ARP
mappings in a way that can enable the attacker to intercept data in a switched
environment. Figure 8.8 shows a step-by-step analysis of arpspoof in action.

Figure 8.8. Arpspoof redirects traffic, allowing the attacker to sniff a
switched LAN.

[View full size image]

In Figure 8.8, we assume that the attacker has taken over one system on the LAN
and desires to sniff traffic from another system on the same LAN, but is faced with
an unfloodable switch. To use arpspoof, the attacker first consults a map of the
network, likely generated during the scanning phase of the attack. Looking at the
network topology, the attacker observes the IP address of the default router for the
LAN. In Step 1 from Figure 8.8, the attacker sets up the attack by configuring the
IP layer of the attacker's machine to forward any traffic it receives from the LAN to
the IP address of the default router. The attacker does this by activating an option
available in many operating system kernels called IP forwarding. With this
configuration, any traffic sent through the switch to the attacker's machine that is
destined for any other IP address will be forwarded to the default router for the
LAN. Instead of turning on IP forwarding in the system's kernel, the attacker could
alternatively forward packets by running a user program to do the trick, such as
the UNIX routed program or even the FragRouter tool we covered in Chapter 6, set
to its "no fragment" option. Why does the attacker set up IP forwarding in one of
these ways? We will see shortly.

After completing this setup phase, in Step 2, the attacker activates the Dsniff
arpspoof program, which sends fake ARP replies to the victim's machine.
Remember, a system delivers packets to a specific IP address by sending them to
the associated MAC address using the entry in its ARP cache. The attacker's fake
ARP message changes the victim's ARP cache by remapping the default router's
Layer 3 (IP) address to the attacker's own Layer 2 (MAC) address. Essentially, the
attacker tells the victim that to access the default router, it must use the attacker's
MAC address, thereby poisoning the ARP cache of the victim. Once the poisoned
ARP message takes effect, all traffic from the victim machine to the outside world
will be sent to the attacker's machine first. Because of this evil information loaded
into the victim's ARP cache, this attack is sometimes referred to as ARP cache
poisoning.

In Step 3, the victim sends the data, consulting its ARP cache to see what MAC
address is associated with the default gateway's IP address. It then forwards the
data to what it thinks is the default router, but using the attacker's MAC address.

The attacker sniffs the information from the line in Step 4, using any kind of
sniffing tool, such as Sniffit or Ethereal. Finally, in Step 5, the attacker's machine
forwards the victim's traffic to the actual default router on the LAN, because we
configured the attacker's machine for IP forwarding in Step 1. On reaching the
actual default router on the LAN, the traffic is transmitted to the outside world. In
essence, the arpspoof program redirects the traffic so that it bounces through the
attacker's machine on its way to the outside world. The attacker is now sniffing in a
switched environment.

Now we can see why the IP forwarding setup is crucial. If IP forwarding were not
enabled on the attacker's machine, the victim machine would not be able to send
any traffic to the outside world, resulting in an inadvertent DoS attack. It is also
interesting to note that this arpspoof technique doesn't target the switch itself.
Instead, arpspoof manipulates the mapping of IP address to MAC address in the
victim machine's ARP cache to allow sniffing in a switched environment.

An interesting anomaly introduced by this IP forwarding is associated with the TTL
field of the packet. IP forwarding is just a fancy way of saying, "Really simple
routing." As we discussed in Chapter 2, the process of routing a packet typically
decrements the TTL of the packet. Thus, if an attacker merely configures IP
forwarding, an investigator located in the outside world might notice that the TTL
packets from the victim machine is one hop lower than is expected, because the
attacker's own machine decremented the value. What's more, if an investigator
performed a traceroute to the victim machine, the investigator might see the
attacker's machine as one of the hops on the way to the victim! That's bad news for
the attackers, but it is one of the anomalies introduced by IP forwarding. To avoid
this problem, the attacker can use the FragRouter tool to forward packets, with a
subtle alteration to the FragRouter code to prevent the TTL decrement.

Foiling Switches with Port Stealing

DSniff isn't the only game in town when it comes to clever tactics for getting
around the difficulties that switches represent to an attacker who wants to sniff
traffic from a LAN. Ettercap, written by Alberto Ornaghi and Marco Valleri and
available at , is a powerful, flexible tool that offers the same active sniffing
techniques pioneered by DSniff's arpspoof tool and manages to add a few
techniques of its own.

One method for defending against the ARP spoofing techniques used by DSniff is to
hard-code specific MAC addresses in the ARP tables of potential target machines on
a high-value LAN. That way, these systems will send data to only specific other
system MAC addresses, foiling ARP cache poisoning. Faced with this situation, what
is a would-be attacker to do? Turn to Ettercap, of course! Ettercap offers a
technique of active sniffing with the rather evocative name "port stealing."

To understand how port stealing works, you need to recall that a switch builds an

internal representation of which MAC addresses are attached to each of its physical
ports in its CAM table and uses that representation to switch frames on the LAN.
This representation is created by passively examining the packets seen on each
physical port of the switch. To port steal, Ettercap begins by flooding the LAN with
bogus Ethernet frames that have the attacker's MAC address listed as the
destination (which will keep the switch from forwarding them to any other port)
and with the packet's source set to the MAC address of the victim machine (which
could be, for example, the network's default gateway router), as illustrated in Step
1 of Figure 8.9. In Step 2, these packets cause the switch to associate the MAC
address of the gateway machine with the physical port where the attacker's
machine resides. The ARP cache on the end systems remains intact. All end
systems (the victim, the attacker, and the default gateway) still keep their
"normal" IP addresses and MAC addresses. However, the switch gets confused,
thinking that the gateway's MAC address is on the physical interface where the
attacker is located. In a sense, the attacker has polluted the CAM table in the
switch.

Figure 8.9. Port stealing with Ettercap.

[View full size image]

Later, in Step 3, when any system on the LAN transmits packets to the network's
default gateway, the switch examines the destination MAC address found on each
of the packets and forwards them to the physical port where the switch's internal
"map" says the router is located. The end result is that these packets are dumped
out onto the wire where the attacker is located. The attacker can now sniff these
packets using any old sniffer.

Do you remember the requirement that the attacker's system must be configured
to forward packets when running Dsniff's arpspoof program? Do you remember
why? It was so that when the redirected packets reached the attacker's machine,
they would be forwarded to the correct destination. Port stealing presents even
more hurdles for getting packets where they're really supposed to go, because the
attacker has essentially thrashed the Layer 2 to Layer 1 map inside the switch.

Although the packets themselves are being dumped out onto the switch port where
the attacker is connected, configuring IP forwarding on the attacker's machine
won't help get them where they need to go. Why not? When running arpspoof, the
packets actually reached the attacker's machine because they had the attacker's
MAC address listed as the destination. In a port stealing attack, the packets carry
the MAC address of the victim machine (in this case, the gateway router) as their
destination. Worse still, the packets can't simply be forwarded back through the
switch to the gateway, because the attacker went to a great deal of trouble to
convince the switch that the MAC address of the gateway was located on the same
physical switch port as the attacker.

How Ettercap gets the packets where they're supposed to go is nothing short of
genius. The packets that should be going to the gateway router are sniffed from the
wire and buffered by Ettercap in Step 4. To send the packets to the gateway router,
Ettercap stops the flood of bogus MAC packets, and begins sending out real ARP
requests for the IP address of the gateway router at the end of Step 4. Ettercap
then listens for an ARP response from the gateway. When it sees an ARP response,
Ettercap knows that the switch has seen it as well and that the victim's MAC
address has been remapped to the correct physical port in the switch's memory.
Having accomplished that, in Step 5, Ettercap dumps the traffic back onto the wire
and resumes sending bogus MAC packets, starting the whole process over again.
Using this technique, the attacker can alternate between grabbing and transmitting
packets, again and again, in an automated fashion using Ettercap.

We'll describe more of Ettercap's capabilities when we discuss monkey-in-the-
middle attacks later in this chapter.

Sniffing and Spoofing DNS

In addition to ARP spoofing, Dsniff also supports redirecting traffic based on sending
false DNS information. As you no doubt recall from Chapter 5, Phase 1:
Reconnaissance, DNS maps domain names (like) to IP addresses (like
10.22.12.41). Dsniff includes a program called dnsspoof that lets an attacker send
a false DNS response to a victim, which will make victim's access the attacker's
machine when they intended to access another (valid) machine. Suppose is an
online bank. If a user wants to surf to , the attacker can trick the client into
connecting to the attacker's Web server, where the attacker could display a fake
bank login screen, gathering the victim's user ID and password. Figure 8.10 shows
how Dsniff's DNS spoofing works.

Figure 8.10. A DNS spoofing attack using Dsniff.

[View full size image]

In Step 1, the attacker fires up the dnsspoof program from the Dsniff suite. The
program sniffs the LAN, looking for DNS queries about specific hostnames, such as .

If the LAN is constructed with a hub, the attackers grab DNS queries right off of the
LAN using passive sniffing. If the LAN is switched, the arpspoof program can be
used to capture them from the target as we saw in the previous section. At some
later time, in Step 2, the victim tries to resolve the name using DNS, perhaps by
trying to surf to the bank's Web site. In Step 3, the attacker sniffs the DNS query
from the line, and immediately sends a fake DNS response in Step 4. This response
will be a lie, claiming that should resolve to 10.1.1.56 (which is the IP address of a
machine belonging to the attacker in the outside world), instead of 10.22.12.41
(which is the real bank's Web site). The victim machine then caches this incorrect
DNS entry. At some later time, the real response from the real DNS server will
arrive, but be ignored by the victim machine. After all, it's already cached the DNS
mapping for ; why does it need it again? Finally, in Step 5, the victim's browser
makes a connection with the system at 10.1.1.56, which it thinks is .
Unfortunately, in actuality, this is the attacker's system, pretending to be the bank.

For this attack to work, the attacker doesn't even have to be on the same LAN as
the victim machine. Instead, the attacker can be located anywhere between the
victim and the victim's DNS server. The attacker must be somewhere on this path,
such as the victim's LAN, the DNS server's LAN, or any LAN in between where the
traffic is carried, so that dnsspoof can see the DNS request and formulate its evil
response.

So, as we've seen, Dsniff lets an attacker inject traffic into a network to remap
critical information, such as MAC to IP address mappings, or domain names to IP
address mappings. In that way, Dsniff performs traffic manipulation to redirect data
and implement an active sniffer.

Sniffing HTTPS and SSH

If you think sniffing through a switch and spoofing DNS are powerful, wait until you
hear about the HTTPS and SSH sniffing capabilities of Dsniff. As we discussed in
Chapter 2, HTTPS (which is HTTP running over SSL) is a widely used tool for
encrypting Web traffic. Likewise, SSH is a fantastic tool for encrypting sessions as a
secure replacement for telnet, rlogin, and FTP.

"Wait a second," you might be thinking. "How can you attack these protocols? Don't
some of the Ss in HTTPS, SSL, and SSH stand for 'secure'?" Well, yes, they do.
However, this security is built on a trust model of underlying public keys. For
example, when you establish an HTTPS connection, the server sends you a
certificate, which your browser verifies. This certificate is like a digital driver's
license, identifying the Web server. Normally, this certificate is digitally signed by
some trusted Certificate Authority, as we discussed in Chapter 2. Your browser
verifies the signature on the certificate to ensure that it is authentic and to verify
the server's identity. If a trusted Certificate Authority signed the certificate, the
browser will establish an SSL connection. The SSL connection uses a session key to
encrypt all data sent from the client to the server and vice versa. This session key
is randomly generated at the establishment of the SSL connection and securely
exchanged by the client and server using the public key built into the certificate
itself. Only the client and server know the session key, and they will use it to
encrypt all traffic in the session. SSH is based on the same public key encryption
ideas. With SSH, a session key is encrypted using a server's public key stored on
the client and transmitted at session initiation to the server. All data for the
session is then encrypted using this session key. Everything works beautifully,
provided we can trust those darned public keys.

Whereas the SSL and SSH protocols are sound from a security perspective, the
problem exploited by Dsniff lies in the trust of the certificates and public keys. For
SSL, if a Web server (or some evil interloper sitting in the middle of a connection)
sends a browser a certificate that is signed by a Certificate Authority that the
browser does not recognize, the browser prompts the user asking whether to
accept this untrusted certificate. Trust decisions are left in the hands of the (often
clueless) user. Sure, the browser warns the user that something is amiss, given
that the certificate isn't signed by a trusted party, but it still lets the user establish
the connection. For SSH, the user will be warned that the server's public key has
changed, but will still be permitted to establish the connection.

How does Dsniff exploit this problem? To understand how the attack works,
consider the names of the tools in the Dsniff suite for attacking HTTPS and SSH:
webmitm and sshmitm. According to their author, Dug Song, mitm stands for
Monkey in the Middle, a reference to a classic monkey-in-the-middle attack, where
attackers position themselves between two systems on the network and actively
participate in the connection to gather data or otherwise monkey with things. A

general monkey-in-the-middle attack is shown in Figure 8.11.

Figure 8.11. In a monkey-in-the-middle attack, the attacker can grab or
alter traffic between Alice and Bob.

Let's look at a concrete example of how the Dsniff tool webmitm works against
HTTPS connections to set up a monkey-in-the-middle attack, as shown in Figure
8.12. In this example, we focus on HTTPS, although attacks against SSH are quite
similar. In this case, the attacker plans to steal the victim's credit card information
when she purchases several copies of the book from the Web site (they make great
holiday gifts). To conduct a monkey-in-the-middle attack against HTTPS, in Step 1,
the attacker first runs the dnsspoof program, configured to send false DNS
information so that a DNS query for will resolve to the attacker's IP address
(10.1.2.3 in our example). Additionally, the attacker activates the webmitm
program, which transparently proxies all HTTP and HTTPS traffic it receives. In Step
2, the dnsspoof program detects a DNS request for and sends a DNS reply directing
the client to the attacker's machine (10.1.2.3). In Step 3, the victim's browser
starts to establish an SSL connection. All messages for establishing the SSL
connection are sent to the webmitm program on the attacker's machine. In Step 4,
webmitm then acts as an SSL proxy, establishing two separate SSL connections:
one from the victim to the attacker's machine, and the other from the attacker's
system to the actual Web server. As far as the Web server is concerned, it has
established a valid SSL connection with the client, not knowing that it is actually
communicating with the attacker's machine in the middle. The Web server is
blissfully ignorant of these events.

Figure 8.12. Sniffing an HTTPS connection using Dsniff's monkey-in-the-
middle attack.

[View full size image]

In Steps 3 and 4, when establishing the SSL session between the victim machine
and the attacker's machine, webmitm sends the victim machine a bogus certificate
that the attacker has created. Webmitm must send the attacker's certificate to the
victim so it can establish its own SSL connection with the victim to decrypt the data
passed from the browser. The victim-to-attacker SSL session will use a session key
exchanged with the attacker's own SSL certificate. Dsniff has built-in capabilities
for generating and signing a certificate to use in these attacks.

When the victim's browser is redirected and establishes an SSL session with the
attacker's machine, it will notice that the certificate is not signed by a trusted
Certificate Authority (because the certificate was generated and signed by the
attacker). Furthermore, if the attacker is not careful, the browser will notice that
the DNS name in the certificate does not match the name of the Web site that the
user is trying to access. Of course, a careful attacker can make sure the name on
the certificate matches the domain name of the Web server, but a legitimate,
trustworthy Certificate Authority should never sign such a bogus certificate of
someone impersonating a bank. What does the victim see during Step 4, when a
bogus certificate is sent to her machine during the establishment of the SSL
connection? It depends on the browser that she's using.

Mozilla Firefox displays the rather confusing message shown in Figure 8.13. It
states that it is unable to verify that the site she is visiting can be trusted, and
goes on to list several possible causes with a default action to accept the certificate
for the active session. It encourages the victim to examine the certificate presented
and make a determination as to whether the site and certificate are to be trusted.
The default certificate view shows the victim much of the information she would
need to make an informed decision. If the victim decides to press ahead and
connect with the site, an additional warning box informs her that the site name and
the name on the certificate don't match.

Figure 8.13. Firefox displays several warning messages for SSL
connections using certificates that aren't trusted.

[View full size image]

Figure 8.14 shows Internet Explorer's simpler, but still rather confusing, message.
Internet Explorer also encourages the victim to examine the site's certificate, but
its default view of the certificate details requires the victim to dig through several
layers of menus to find much useful information. Note that both browsers have
rather esoteric messages, and give the option of continuing the connection entirely
to the user. The vast majority of users will ignore these messages and choose to
establish the connection.

Figure 8.14. Internet Explorer's warning messages are better, but not by
much.

[View full size image]

Under normal circumstances, users should encounter these messages only if the

target Web server is misconfigured using an unrecognized certificate or domain
name or if the Web browser is not properly configured to recognize the Certificate
Authority. There are no other reasons for these messages to be displayed, other
than this type of eavesdropping monkey-in-the-middle attack. If the victim
continues to establish the SSL connection, simply by clicking to proceed, Step 4 will
be completed. In Step 5, the victim uses the Web site, possibly entering sensitive
information such as a user ID and password into an HTML form. All information
sent between the browser and the server will pass through the attacker's webmitm
proxy, which will decrypt the data and display it to the attacker.

Webmitm displays the entire contents of the SSL session on the attacker's screen,
as shown in Figure 8.15. Note that the output contains all HTTP information sent
across the SSL connection. The user ID and password sent across the session are of
particular interest to most attackers.

Figure 8.15. Webmitm's output shows the user ID and password sent
across the SSL-encrypted session.

[View full size image]

So, we have seen how Dsniff can be used to sniff SSL sessions by conducting a
monkey-in-the-middle attack. In a similar fashion, an attacker can use Dsniff's
sshmitm tool to view data sent across an SSH session. Just like Web browsers, the
SSH client will complain that it doesn't recognize the public key inserted by the
attacker. Different SSH clients have different warning messages, but the OpenSSH
client displays the following warning:

@@
@ WARNING: HOST IDENTIFICATION HAS CHANGED! @
@@

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)! It is also possible that
the host-key has just been changed. Please contact
your system administrator.

Again, most users will pause for a second, scratch their heads, and proceed with
the connection. This warning message is only displayed when the public key on the
server changes, an event that should only occur when the server is initially created
or when the system administrator forces the system to create a new key, both of
which are infrequent events. If the system administrator changes the SSH key, all
SSH users should be informed, and possibly handed new SSH public keys from the
servers on a CD-ROM to import into their SSH clients. If users get the warning
message just shown without a prior notice regarding a key change from the
administrator, they should report the situation to the system administrator or an
incident response team.

Ettercap uses a slightly different tactic when performing a monkey-in-the-middle
attack against SSH connections. Like Dsniff, Ettercap substitutes its own SSH
certificate for that of the server when a connection is initiated, generating the
warning messages at the client previously described. However, when the encrypted
session keys are exchanged, Ettercap grabs the session key (because it is
encrypted with its own, substituted public key), and then patches the connection
back together by passing the same session key (generated by the SSH client) to
the server, encrypted with the real server's certificate. With the connection now
established, Ettercap doesn't need to remain in the middle to proxy the connection,
but because it has the session key, it can decrypt all traffic passed between the
client and the server. So, whereas Dsniff makes two, totally independent SSH
connections (one from victim to attacker, the other from attacker to server),
Ettercap creates one SSH connection, but steals the session key by playing bait-
and-switch with the public key passed to the client.

Both Dsniff and Ettercap support attacks against SSH protocol version 1 only.
Although neither tool currently supports SSH protocol version 2, someone likely
will implement similar attacks against that protocol. SSH protocol version 2 is a far
more complex protocol, however, supporting many more crypto algorithms and
options. Thus, a tool implementing such attacks against the later protocol would be
more difficult, but not completely impossible, to create.

Additional Dsniff Odds and Ends

In addition to its amazing sniffing, redirection, and interception tricks, Dsniff also
includes a variety of other tools that can help capture and manipulate traffic on a

LAN. Table 8.1 presents the remaining members of the Dsniff family.

Table 8.1. Additional Tools Included with
Dsniff

Tool
Name

Function

Tcpkill

Kills active TCP connections. If a
user has an active connection,
the attacker might want to tear
down the connection to force the
user to establish a new one. For
example, if the victim has an
established telnet session, the
attacker can tear it down using
tcpkill. The user will notice the
telnet session has gone down,
blame the network, and likely
telnet right back in. The attacker
can then sniff the user ID and
password from this subsequent
telnet session. Likewise, if the
victim has an established SSH
session, the attacker can kill it,
forcing the user to establish a
new session. The subsequent
session, however, will be
redirected through the attacker's
machine using a monkey-in-the-
middle attack with sshmitm.

Tcpnice

Actively shapes traffic to slow it
down by injecting tiny TCP
window advertisements and ICMP
source quench packets. Tcpnice
is a very interesting idea,
particularly for an attacker

needing to sniff high-speed
connections. It lets the attacker
slow such connections down so a
sniffing tool can more easily keep
up with the data.

Filesnarf

Grabs files transmitted using the
Network File System. Filesnarf,
as well as the other application-
specific sniffers described later in
this table, determines which
packets are associated with
particular applications based on
the port number used and the
data formats exchanged on the
network.

Mailsnarf Grabs e-mail sent using SMTP
and POP.

Msgsnarf

Grabs messages sent using AOL
Instant Messenger, ICQ, Internet
Relay Chat, and Yahoo!
Messenger.

Urlsnarf Grabs a list of all URLs from HTTP
traffic.

Webspy

Using the URLs captured from the
network, displays the pages
viewed by the victim on the
attacker's browser. Essentially,
Webspy lets the attacker look
over the victim's shoulder as the
victim surfs the Web. Webspy is

quite useful for demos to
management. You can show how
an attacker can view all of their
surfing habits on the network
trivially using a sniffer.

Sniffing Defenses

Now that we've seen how an attacker can grab all kinds of useful information from
your network using sniffing tools, how can you defend against these attacks? First,
whenever possible, encrypt data that gets transmitted across the network. Use
secure protocols, like HTTPS for Web traffic, SSH for encrypted login sessions and
file transfer, Secure Multipurpose Internet Mail Extensions (S/MIME) or Pretty
Good Privacy (PGP) for encrypted e-mail, and IPSec for Network-layer encryption.
Users must be equipped to apply these tools to protect sensitive information, both
from a technology and awareness perspective.

It is especially important that system administrators, network managers, and
security personnel understand and use secure protocols to conduct their job
activities. Never telnet to your firewall, routers, sensitive servers, or Public Key
Infrastructure (PKI) systems! It's just too easy for an attacker to intercept your
password. Additionally, pay attention to those warning messages from your
browsers and SSH clients. Don't send any sensitive information across the network
using an SSL session created with an untrusted public key. If your SSH client
warns you that the server public key mysteriously changed, you need to
investigate immediately.

Additionally, you really should consider getting rid of hubs, because they make
sniffing just too easy. Switches improve performance and give a marginal increase
in security. Although switches alone do not prevent network eavesdropping, as we
have seen, they do add one layer of defense. Most organizations have transitioned
to switched infrastructures already, mostly because of the performance
improvements they offer and the fact that most vendors have pushed this
transition.

Next, for networks containing very sensitive systems and data, enable port-level
security on your switches by configuring each switch port with the specific MAC
address of the machine using that port to prevent MAC flooding problems and port
stealing. The switch won't allow such shenanigans as it checks and verifies the
source MAC addresses of inbound Ethernet frames to make sure they match the
MAC address of the machine that should be connected to each physical port.

Furthermore, for extremely sensitive networks like Internet DMZs, use static ARP
tables on the end machines, hard-coding the MAC address to IP address mapping
for all systems on the LAN. Port security on a switch and hard-coded ARP tables can
be somewhat more difficult to manage, because swapping components such as
Ethernet cards requires updating the MAC addresses stored in several systems.
Still, for very sensitive networks like Internet DMZs, this level of security is
required and should be implemented.

If an attacker manages to squeeze by the preventative measures we just described,
there are various tools you can use to detect a sniffer installed on a machine. As
we described earlier, if an attacker is grabbing all packets on a LAN, it puts the
network interface into promiscuous mode, a very common scenario for sniffer
usage. You can detect promiscuous mode in two ways: locally or across the
network. To detect promiscuous mode by running a local command on the system
that you suspect has a sniffer, you could use the ifconfig command on UNIX
machines other than Solaris and Linux kernel 2.4 and later. If the ifconfig
command has the word PROMISC in its output, that interface is in promiscuous
mode. On many Linux variations with kernel 2.4 and later, the command ip link
will likewise display promiscuous mode. On Solaris, a free tool called ifstatus,
available at does the same thing.

Finally, for detecting promiscuous mode locally on a Windows machine, you could
use PromiscDetect, another free tool at . Any of these local tools must be run from
a local root or administrator account on the suspect machine.

Alternatively, you can remotely detect promiscuous mode across a LAN using a tool
to measure for anomalies in a system's behavior consistent with promiscuous-mode
sniffing. A tool called Sentinel (available for free at) uses several tests, including
the EtherARP, Etherping, and DNS tests. The EtherARP test sends an ARP request
for the IP address of the machine to be tested, but with a bogus destination MAC
address. If the machine responds with an ARP response, it is likely sniffing, because
it shouldn't have seen this packet in the first place. Likewise, the Etherping test
sends a ping packet to the tested machine's IP address, but with a bogus MAC
address. Again, if it responds, it's sniffing. Finally, the DNS test sends certain IP
packets on the network, and then sniffs to see if other machines are trying to do
reverse DNS lookups on that address. Because Sentinel uses various tricks
associated with the MAC address (the EtherARP and Etherping tests) and
measuring DNS traffic, it only works if the machine testing for promiscuous mode is
on the same LAN as those machines that it is measuring. Its techniques do not
work across routers.

There's another remote promiscuous testing approach that will work across routed
networks, but only measures Windows machines managed in a domain. Microsoft
has released two tools, Promqry (a command-line program) and PromqryUI (a GUI-
based tool), at . Both of these tools formulate WMI requests using domain

credentials for managed systems in the domain to determine if an interface is in
promiscuous mode.

WMI is an environment Microsoft created for the widespread administration of
Windows systems. Using WMI requests formulated by Promqry or PromqryUI, a
user with domain administrator privileges can scan large numbers of machines by
entering ranges of IP addresses to determine if any Windows machines in the
domain have an interface in promiscuous mode.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

IP Address Spoofing

Like sniffing, another fundamental component of numerous attacks involves
changing or disguising the source IP address of a system, a technique
commonly referred to as IP address spoofing. Spoofing is helpful for
attackers who don't want to have their actions traced back, because the
packets will appear to be coming from the system whose address the
attacker is using. Additionally, IP address spoofing helps attackers
undermine various applications, particularly those that dangerously rely only
on IP addresses for authentication or filtering.

We've already encountered a couple of examples of IP address spoofing in
earlier chapters of this book. First, in Chapter 6, during our discussion of
Nmap, we addressed this port-scanning tool's ability to use decoys and
conduct Idle scans. For both types of scans, Nmap supports spoofing by
sending packets that appear to come from another system's source address.
Additionally, Dsniff supports spoofing in its dnsspoof attack. The DNS
response packets sent by the Dsniff dnsspoof program contain the source
address of the DNS server.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

These basic examples of spoofing begin to indicate its usefulness in attacks.
Let's explore spoofing techniques in more detail by focusing on three
different flavors of IP address spoofing used in a variety of attack scenarios:
simply changing the IP address, guessing TCP sequence numbers, and
spoofing with source routing.

IP Address Spoofing Flavor 1: Simple Spoofing—Simply
Changing the IP Address

This technique is by far the simplest way of spoofing another system's IP
address: Just change your IP address to the other system's address.
Attackers can reconfigure their systems to have a different IP address quite
trivially. Using the UNIX ifconfig command, or the Windows network
Control Panel, attackers can pick any other IP address they want.
Alternatively, rather than resetting the IP address for the whole system, the
attacker could even use a single tool that generates packets with the desired
IP address. Indeed, Nmap and Dsniff do this by creating specific packets
appearing to come from another system without altering the network
configuration of the source machine. Finally, the attacker could employ any
one of a number of custom packet crafting tools to create packets with
arbitrary header fields of the attacker's choosing, including source IP
address. These tools let an attacker specify, at the command prompt or by
filling in blanks in a GUI, each field of the resulting packet the attacker
needs to generate. Some of the best packet crafting tools available today
include the following:

Hping2, for UNIX/Linux, available at

Nemesis, for UNIX/Linux and Windows, at

NetDude, for UNIX/Linux, at

This simple flavor of IP address spoofing is remarkably effective in achieving
limited goals. If the attacker just wants to send packets that look like they
come from somewhere else (like the decoy packets we saw with Nmap in
Chapter 6), simply changing the source IP address of generated packets
works well. Also, if the attacker wants to obscure the source of a packet
flood or other DoS attack, simple spoofing works great. However, the
technique has a couple of major limitations.

The examples in which simple spoofing works involve sending traffic to the
target, but not receiving any responses. Because of the way routing works,
all responses to spoofed packets will be sent to the real system that the
attacker is pretending to be. Therefore, simply generating packets with a
spoofed IP address will not let an attacker have interactive sessions with a
target, because all of the response packets will be sent to another system.

Furthermore, simple spoofing against any TCP-based service will result in
the TCP three-way handshake making things especially challenging for the
attacker. Consider the scenario shown in Figure 8.16. Eve, the attacker,
wants to pretend to be Alice, using Alice's address in a spoofing attack. Bob
is the ultimate target, and Eve wants to interact with Bob pretending to be
Alice. Eve starts the attack by opening a connection with Bob by sending the
first part of the three-way handshake, a TCP SYN packet, to Bob, with a
source address of Alice. Figure 8.16 uses the notation SYN(A, ISNA) to
indicate that a packet with the SYN control bit set is transmitted with Alice's
source address (A) and an initial sequence number of ISNA. Bob sends the
second part of the three-way handshake, ACK(A, ISNA+1) SYN(B, ISNB),
acknowledging ISNA to Alice, and trying to synchronize with a sequence
number of ISNB. This packet is sent to the apparent source of the original
SYN packet, Alice. When Alice receives this message, she will send a RESET
message. The RESET message essentially says, "Hey Bob! We never started
having a conversation.... Leave me alone! Love, Alice." This RESET packet
tears down the connection, foiling Eve's chance at having a meaningful
interaction with Bob while posing as Alice.

Figure 8.16. The TCP three-way handshake inhibits simple spoofing.

Although simple spoofing is quite limited for interactive connections, it
should be noted that if both Eve and Bob are on the same LAN, simple
spoofing can work in interactive mode. When Eve is on the same LAN as
Bob, Eve can sniff the responses from Bob directly off of the LAN, and use
ARP cache poisoning to prevent Alice's reset from tearing down the
connection.

IP Address Spoofing Flavor 2: Predicting TCP Sequence

Numbers to Attack UNIX r-Commands

If Eve and Bob are not on the same LAN, simple address spoofing is useless
in establishing a TCP connection and interacting with the target. Our next
spoofing technique gets around these difficulties by targeting weaknesses in
predictable TCP sequence numbers, and using them to attack UNIX trust
relationships, especially the UNIX r-commands.

Consider a scenario where both Bob and Alice are UNIX systems, and Bob
trusts Alice. As described in Chapter 3, Linux and UNIX Overview, when one
UNIX system trusts another, a user can log in to the trusted machine, and
then access the trusting machine without reauthenticating. By using the
UNIX r-commands such as rlogin (remote login), rsh (remote shell), and
rcp (remote copy), the user can jump from one trusted system to a trusting
machine without providing a password the second time. When Bob trusts
Alice, Bob says, "If you've authenticated the user, Alice, that's good enough
for me!"

As shown in Figure 8.17, a trust relationship between Bob and Alice can be
created by entering Alice's name in h file, or into a user's .rhosts file on
the Bob system. The r-commands, when used with trust relationships,
essentially rely on the source system's IP addresses to substitute for
authentication.

Figure 8.17. Bob trusts Alice.

Despite their security risks, we still do periodically see UNIX trust
relationships employed in enterprise environments, especially on older
legacy systems that do not support SSH. On most modern systems, SSH can
be used to replace not only telnet and FTP, but also rlogin, rsh, and rcp.
Yet, I frequently see legacy environments where a single administrator is
responsible for maintaining dozens of old systems. To move from system to
system, these heavily burdened system administrators sometimes use trust
relationships and UNIX r-commands for access so that they do not have to
retype their passwords again and again to manage every system. Instead, by
establishing a hub-and-spoke trust model, as depicted in Figure 8.18, the

administrator can log in to one system (Alice) and easily send commands to
all of the managed systems without typing a password when using the rsh
tool. Alternatively, an old application sometimes requires the use of trust
relationships and rlogin, rsh, or rcp, and can't be upgraded to SSH.

Figure 8.18. Everyone trusts Alice, the administrator's main
management system.

As can be readily discerned from Figure 8.18, an attacker would really like
to be able to pretend to be Alice. Because Alice is trusted by all the other
systems, an attacker successfully using Alice's address in a spoofing attack
could issue commands to be executed on all of the Bob systems without
providing a password.

This spoofing attack against UNIX trust relationships and r-commands is
commonly associated with Kevin Mitnick, who used a variation of the attack
against Tsutomu Shimomura on Christmas Day in 1994. In the computer
industry, that seems like a thousand years ago. Unfortunately, this basic
attack is still usable (mostly on internal networks, not across the Internet)
given the pervasive persistence of trust relationships and r-commands on
some legacy systems on internal networks. Mitnick didn't invent this attack,
but he certainly made it famous. Tools such as Rbone by Michael R. Widner
and Mendex by Olphart, which are available at , can be used to conduct the
attack. The steps of the attack are pictured in Figure 8.19.

Figure 8.19. Spoofing attack against UNIX trust relationships.

The steps involved in this spoofing attack against UNIX trust relationships
and r-commands are as follows:

1.

Eve interacts with Bob by sending TCP SYN packets to one or
more of his open ports again and again without spoofing. These
connection initiations allow Eve to determine the approximate
rate at which the initial TCP sequence numbers in Bob's SYN-
ACK response are changing with time. As discussed in Chapter
6, the Nmap scanning tool includes an automated feature to
determine the predictability of Bob's initial sequence numbers
for TCP connections. By harvesting hundreds or thousands of
initial sequence numbers and carefully analyzing how they
change with time, Eve is attempting to predict future initial
sequence numbers that will be used in Step 5.

2.

Eve launches a DoS attack against Alice, such as a SYN flood or
smurf attack, described in more detail in Chapter 9, Phase 3:
Denial-of-Service Attacks. Alice is dead for a period of time.
This prevents Alice from sending a RESET packet and dropping
the spoofed TCP connection.

3.

Eve initiates a connection to Bob, using Alice's IP address (Eve
will likely try to utilize a command like rsh). The first part of
the three-way handshake is completed.

4.

Bob dutifully responds with the second part of the three-way
handshake. This packet is routed to Alice, who is dead because
of the DoS attack and cannot respond with a RESET.

5.

Using the information gathered in Step 1, Eve sends the ACK to
Bob, including a guess at the sequence number, ISNB+1, again
spoofing Alice's IP address. Remember, Eve and Bob are on
different LANs, so Eve doesn't see Bob's SYNACK to Alice in
Step 4. Therefore, Eve has to guess the sequence number to
include in the final part of the three-way handshake. If Eve's
sequence number guess is incorrect, the attacker will not be
able to establish the connection. If the sequence number is
correct, Eve will open a TCP connection with Bob, pretending to
be Alice. It all depends on how easily Eve can predict the initial
sequence number sent by Bob in the SYN-ACK. Eve might cycle
through Steps 1 through 5 hundreds of times, trying to guess
appropriately. After finally guessing the right sequence number,
though, Eve will hit pay dirt.

Once Eve completes these steps successfully, Bob is satisfied that he has an
open TCP connection with Alice, using one of the r-commands. At this point,
Eve can pretend to be Alice and send commands to Bob. Bob will execute
these commands, thinking that they came from Alice. All of Bob's responses
will be routed to the real Alice, so Eve really doesn't have an interactive
connection with Bob. Eve can just feed in commands, which Bob will run and
send the response to the (still dead) Alice.

What will Eve do, given this one-way pipe to send commands to Bob? Most
likely, Eve will reconfigure Bob so that Eve has full, interactive access to
Bob. For example, Eve might issue a command to concatenate "+ +" to Bob's
/etc/hosts.equiv file. These two plus symbols in the
/etc/hosts.equiv file make Bob trust any system and any user on the
network, including Eve. When Bob's /etc/hosts.equiv file is altered to
trust everyone, Eve can directly log in to Bob using r-commands without
any spoofing required. Or Eve could simply add the IP address of the single
Eve machine to the /etc/hosts.equiv file, extending Bob's trust to only
Eve.

Of course, any change in the /etc/hosts.equiv file should be quickly

noticed if Bob's system administrator is alert and monitoring the system for
any changes to sensitive system configuration files. A file integrity checking
tool, such as Tripwire (available on a commercial basis at or for free at), can
be used to monitor automatically any changes to given files like
/etc/hosts.equiv. We'll look at these file integrity checkers in more
detail in Chapter 10, Phase 4: Maintaining Access. However, on many
networks, even blatantly obvious system modifications to Bob would never
be noticed by busy system administrators without the time or inclination to
monitor the integrity of sensitive configuration files.

IP Address Spoofing Flavor 3: Spoofing with Source Routing

A far easier method for IP address spoofing is based on source routing. This
technique lets the attacker get responses in interactive sessions, and even
avoid predicting TCP sequence numbers or launching a DoS attack. As we
discussed in Chapter 2, source routing allows the source machine sending a
packet to specify the path it will take on the network. An option called loose
source routing allows the attacker to specify just some of the hops that must
be taken as the packet traverses the network. These hops are included in
the packet's IP header, directing the packet's path from its source through
various routers to the ultimate destination. With loose source routing, the
routers on the network direct the packet between the systems listed in the
source-routed packet's header, with the source route consisting of mileposts
of routers the attacker wants to make sure the packet traverses.
Alternatively, strict source routing specifies the entire route in the packet
header, with each and every router hop explicitly included. Most spoofing
involves loose source routing, because the attacker doesn't have to include
all of the router hops in the header, making the source-routed packet
header smaller and the job somewhat simpler.

If the network elements between the attacker and the victim system support
source routing, spoofing can be quite trivial, as shown in Figure 8.20. Eve
generates packets with a fake source route. The packets claim to come from
Alice, their apparent source IP address. That's a lie. The source route also
includes Eve's address, making Eve look like a router between Alice and Bob
that handled the packets. Finally, the route includes the destination, Bob.
Eve generates spoofed packets that include this source route and injects
them onto the network.

Figure 8.20. Spoofing attack using source routing.

Any routers between Eve and Bob will read the source route and deliver the
packets to Bob. Bob will take action on the packets (establishing a TCP
connection, or any other interaction) and send the response. All responses
to source-routed packets inverse the route of the originating packet.
Therefore, Bob will generate packets with a source route starting at Bob,
going through Eve, and ending at Alice. When Bob sends the response
packets on the network, they will get transmitted back to Eve, who is part of
the source route. Eve will intercept the packets, and not forward them to
any other systems. If Eve forwarded them on to Alice, a TCP RESET would
result, tearing down Eve's attempt at a spoofed connection. Of course, the
TCP RESET from Alice would be source routed itself, as it would be a reply to
the SYN-ACK packets Eve forwarded. But because Eve doesn't forward the
packets but instead absorbs them, the RESET never happens and a DoS
attack is not required.

Using source routing, Eve has sent packets to Bob, pretending to be Alice,
and has received responses back. In this way, Eve can easily pretend to be
Alice and have interactive sessions with Bob. No fuss, no muss. If there is a
UNIX trust relationship or any other application that uses IP addresses for
access control, Eve can access Bob posing as Alice.

This source routing attack seldom works across the Internet, as most
organizations block source-routed packets at their Internet gateway.
However, a large number of organizations still allow source-routed packets
to roam free on their internal networks. Therefore, an insider can launch
some very interesting spoofing attacks using this technique. It's worth
noting that for source-routed spoofing attacks to work, only the network
path between Eve and Bob needs to support source-routed packets. The Eve-
to-Alice and Alice-to-Bob paths can drop source-routed packets, and this

attack will still work just fine.

IP Spoofing Defenses

There are several good practices to follow in avoiding the IP address spoofing
attacks we've discussed in this section, as well as other types of IP spoofing
activity. The defenses discussed here do not represent an "either–or" or
"choose one" scenario. All of the following spoofing defenses should be
followed to secure your network.

First, you should make sure that the initial sequence numbers generated by
your TCP stacks are difficult to predict. To do this, apply the latest set of
security patches from your operating system vendor. You can test the
predictability of your sequence numbers by scanning your system using the
Nmap scanning tool described in Chapter 6. If Nmap indicates that your
sequence numbers are easily predicted, you should definitely consider
upgrading your system. If the upgrade does not fix sequence number
predictability, take the matter up with your operating system vendor. Most
vendors today have relatively difficult-to-predict TCP sequence numbers, but
occasionally a researcher releases a method for simplifying the predictions
for a given target operating system.

Furthermore, for Linux and UNIX systems in particular, avoid using the very
weak r-commands altogether. Instead, use secure replacements for
r-commands, like SSH or even an encrypting VPN for secure access.

Similarly, when evaluating vendor applications or building your own
programs in-house, you must make sure to avoid applications that use IP
addresses for authentication purposes. Authentication should be based on
passwords, cryptographic techniques (such as PKIs or Kerberos), or other
techniques that can tie a session back to an individual user.

Also, you should implement so-called antispoof packet filters at your border
routers and firewalls connecting your organization to the Internet and
business partners. An antispoof filter is an extremely simple idea, as
pictured in Figure 8.21. The filtering device simply drops all packets coming
in on one interface that have a source address of a network on another
interface. These packets indicate, at a minimum, a misconfiguration, and
possibly a spoofing attack. A simple antispoof filter just checks the source
address and interface on which the packet arrived to make sure they make
sense. This approach requires the administrator to configure each set of
addresses expected on each interface, a task that can take a lot of work on a
network with a large number of disjointed addresses. Another antispoof
variation that some routers support today is called Reverse-Path Forwarding
Checks. With this feature enabled, a router checks each incoming packet
against its routing tables to see if the packet's source address is coming from

an interface that the router would normally use to route packets to that
destination. If not, the packet is dropped, because it is coming from a place
where the router doesn't think that source is located.

Figure 8.21. Antispoof filters.

When establishing antispoof filters at your Internet gateway, you should
implement both incoming (so called) and outgoing () antispoof filters.

Ingress filters are an obvious necessity because you don't want anyone to
send spoofed packets into your network. Egress filters are far less commonly
implemented, but are critically important for Internet DMZ networks. If an
attacker takes over a system on your DMZ, such as your Internet Web
server or DNS server, you don't want the attacker to be able to launch an
outgoing attack using spoofed addresses against other organizations, such as
a SYN flood DoS attack. To avoid this, configure the router or firewall that is
filtering traffic for the DMZ to drop outgoing packets that do not come from
addresses on the DMZ. Sure, you aren't improving the security of your own
site, but you are helping to prevent attacks against others, thereby being a
good citizen and lowering your potential liability.

Additionally, do not allow source-routed packets through network gateways.
They are a vestige of the olden days of the Internet, when systems were
much more trusting and attacks were somewhat less common. You can
easily configure your routers using a command like no ip sourceroute
(which works for Cisco routers) to drop all source-routed packets at the
gateway. But where should you apply these source route filters? You should
definitely implement them at your Internet gateways (firewalls and border
routers). That's a nobrainer! Additionally, I recommend implementing them
at business partner connections. Your network management personnel might
want to source route to business partners for diagnostic reasons, but you
should definitely try to stop such source routing. Finally, you might want to
filter all source-routed packets on your internal network by blocking them at
every router. You very well could face an uphill struggle with network
management personnel who rely on source routing for some of their network
troubleshooting tools that use source-routed packets to get around network

problems. However, given the ease of spoofing attacks with source routing,
it is certainly worth considering filtering source routes on your internal
network.

Finally, you must be careful with trust relationships throughout your
environment. Although the attacks we've seen focus on r-commands and
source routing, a variety of other network attacks are possible against trust
relationships between systems. You should avoid extending UNIX and
Windows trust relationships to systems across an unprotected network, such
as through your Internet firewall. Even trust relationships across business
partner links should be avoided. Trust between systems should only be
extended with discretion across a secure internal network, where a defined
business need exists. If you must extend trust relationships across networks
that could be trouble, consider using an encrypted session between the
systems, such as an SSH tunnel or encrypted VPN. That way, you'll have the
peace of mind associated with the rock-solid encrypted communication over
the untrustworthy network.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Session Hijacking

We've seen how sniffing allows an attacker to observe traffic on a network,
and how IP address spoofing supports an attacker in pretending to be
another machine. Now, we'll explore attacks based on a marriage of sniffing
and spoofing, known as session hijacking attacks. Session hijacking tools can
be particularly nasty. When a user has an established interactive login
session with a machine, using telnet, rlogin, FTP, SSH, and so on, an
attacker can use a session hijacking tool to steal the session from the user.
When most hijack victims notice that their login session disappears, they
often just assume that it's network trouble. The users will likely just try to
log in again, unaware that their session wasn't dropped; it was stolen.

Consider the session hijacking example highlighted in Figure 8.22. Alice has
an established telnet session across the network to Bob (although any other
application can be used that supports interactive logins, such as FTP, rlogin,
tn3270, etc.). Eve sits on a segment in the network where traffic is passing
from Alice to Bob (i.e., Eve could be on the originating LAN, an intermediate
point on the path, or on the destination LAN.) With this strategic location,
Eve can see the session traffic using sniffing techniques. Eve not only sees

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

all packets going from Alice to Bob, but also can carefully monitor the TCP
sequence numbers of these packets while observing the session. Most
session hijacking tools include an integrated sniffing capability for observing
this traffic, as well as a spoofing function to steal the connection.

Figure 8.22. A session hijacking scenario.

At some point in the communication between Alice and Bob, Eve will decide
to hijack the connection. Eve starts injecting spoofed traffic with a source IP
address of Alice into the network, using the proper TCP sequence numbers
on all packets. If the hijack is successful, Bob will obey the commands sent
by Eve, thinking they came from Alice. Eve has effectively stolen the session
from Alice. Because the session is stolen as it is transmitted across the
network, this technique is called network-based session hijacking.

An attacker can hijack a session even if strong authentication is used,
assuming the conversation following the initial authentication is not
cryptographically protected. For example, Alice might use a time-based
token to authenticate her telnet session to Bob, typing in a one-time
password at session initiation. Unfortunately, after this initial authentication,
the session is still sent in clear text, and Eve can easily hijack it at any point
after Alice authenticates. I've seen several cases where an organization uses
a token-based one-time password for telnetting to a DMZ across the
Internet. These organizations thought they were safe, because they utilized
one-time password authentication and were only allowing access to a
machine on the DMZ. However, the telnet sessions were not encrypted, so
attackers were able to hijack them from legitimate users after they
authenticated. From the vantage point on the DMZ, the attackers began
scanning and exploring the internal network.

Another Way: Host-Based Session Hijacking

Although we have focused on hijacking a session across the network,
another simpler technique can be used to steal a session. If the attacker has
super-user-level access on the source or destination machine, the attacker
can employ a host-based session hijacking tool to grab the session on the
local machine itself, without intercepting any data from the network. On a
UNIX system, for an attacker with root on Alice or Bob, these tools let an
attacker interact with the local terminal devices (the ttys of the UNIX
machine) that are used in telnet and rlogin sessions. A tty is just a
software tool used by various command-line programs (like telnet and
rlogin) to get information from a user through the keyboard and display
information in ASCII on the screen. With root, the attacker can read all
session information right from the victim's tty and even inject keystrokes
into the tty, thereby gaining complete control over the session.

Network-based session hijacking tools are useful if the attacker doesn't have
an account on the Alice or Bob machines. However, if the attacker has
already compromised the Alice or Bob machines to gain root access, the
easiest way to grab a session is to use a host-based session hijacker.

There are a large number of network-based and host-based session-hijacking
tools available on the Internet today, including the following:

Hunt, written by Kra, my favorite older network-based session hijacking
tool, available at .

Dsniff's sshmitm tool, described earlier in this chapter, by Dug Song,
allows an attacker who has set up a monkey-in-the-middle attack against
an SSH session to sniff the SSH traffic. When sniffing the session, the
tool also lets the attacker type keystrokes into the SSH connection, by
using the –I (for interactive) flag.

Ettercap, also described earlier in this chapter, has the ability to inject
characters into an active connection. We'll look at Ettercap's session
hijacking capabilities in more detail shortly.

Juggernaut, a network-based session hijacking tool by Daemon9,
available at .

IP Watcher, a commercial network-based session hijacking tool by
Engarde Systems, at .

TTYWatcher, a freeware host-based session hijacking tool, also by
Engarde Systems, at .

TTYSnoop, a freeware host-based session hijacking tool, by Carl Declerk,
at .

One limitation of many network-based session hijacking tools deals with how
TCP sequence numbers are handled. Normally, when a system receives a
packet with a TCP sequence number that is out of order, it resends its last
ACK packet, making the assumption that the ACK was lost in transmission
last time. This retransmission of the last ACK packet is supposed to help the
systems resynchronize their sequence numbers. But what happens when an
attacker injects traffic into a TCP connection? In our example, as Eve injects
packets into the network, the sequence numbers of packets going back and
forth from Eve to Bob will increase. As traffic gets routed back to Alice, she
will see these sequence numbers increasing, even though she has not sent
any packets. The TCP stacks of Alice and Bob will get very confused as Eve
sends spoofed traffic to Bob, increasing the sequence numbers, and Alice
receives an ACK for the injected traffic from Bob. In an effort to try to
resynchronize the connection, Alice will continue to resend ACK messages to
Bob again and again for a second or two. Bob responds to each of these ACKs
with his own ACK, trying to convince Alice that he received the later packets
she sent. These back-and-forth ACK arguments soon consume a good deal of
bandwidth in what is known as an ACK storm, as shown in Figure 8.23.

Figure 8.23. An ACK storm triggered by session hijacking.

During an ACK storm, performance starts to suffer as Alice and Bob thrash
over the sequence number issue. Typically, Eve will be able to get one or two
commands executed on Bob before the ACK storm causes the connection to
be dropped as Alice and Bob give up on the hopelessly out-of-synch

connection. Still, getting one or two commands executed on a target
machine might be all that Eve needs. The Juggernaut and IPWatcher tools
both suffer from the ACK storm problem (TTYWatcher and TTYSnoop, on the
other hand, are host-based session hijacking tools, so they don't have to
deal with these network issues).

How can Eve prevent an ACK storm? We've already seen one technique for
getting rid of pesky packets from Alice—DoS. Eve could flood Alice or
otherwise take Alice offline to prevent the ACK storm. Although this
technique is effective, there are better ways to prevent an ACK storm, as
implemented in Ettercap, one of the best tools in the realm of network-based
session hijacking.

Session Hijacking with Ettercap

Like most network-based session hijacking tools, Ettercap, which runs on
Linux, FreeBSD, OpenBSD, Mac OS X, Solaris, and Windows, allows an
attacker to view a bunch of sessions going across the network, and select a
particular one to hijack. After selecting a connection, Ettercap allows the
attacker to inject characters and commands into the session stream, but
Ettercap can pull off a special trick: It avoids ACK storms. To understand how
Ettercap accomplishes this, we need to recall how it enabled us to sniff
packets through a switch.

To allow Eve to inject packets into Alice's interactive session with Bob while
avoiding an ACK storm, Ettercap must prevent Alice from seeing packets
with what Alice would consider to be "wrong" sequence numbers. To
accomplish this, Ettercap uses the same ARP cache poisoning or port stealing
setup that it uses for sniffing through a switch, and sets Eve's machine up to
act as a relay for all traffic going between Alice and Bob, as illustrated in
Figure 8.24.

Figure 8.24. Avoiding the ACK storm by ARP spoofing.

[View full size image]

This attack is conducted much like the attack used by arpspoof. Ettercap
sends an unsolicited ARP reply to Alice mapping Bob's IP address to the MAC
address of Eve's machine. Likewise, Ettercap also sends an ARP reply to Bob
mapping Alice's IP address to Eve's MAC address. These unsolicited ARP
packets are known as gratuitous ARPs, because an ARP response is being
sent without there ever having been an ARP query. Most systems will
greedily devour gratuitous ARP information, overwriting the MAC-to-IP
address mapping in their ARP caches. After this ARP cache poisoning is
completed, Alice and Bob will not be able to send packets directly to each
other. Instead, they will forward packets to Eve who can selectively alter the
packets before forwarding them.

Ettercap, running on Eve's machine, now selectively bridges this gap,
grabbing, altering, and forwarding the packets between Alice and Bob. If Eve
does not want to hijack a particular session, Ettercap will simply bridge the
packets to the other side, effectively acting as a relay for that session. If Eve
does want to "participate" in a particular session, Ettercap will let her enter
keystrokes, forwarding them to either Bob or Alice, while keeping track of
the offset it is creating in the sequence number stream. Whenever packets
actually travel between Alice and Bob, Ettercap will "fix" the sequence
number on those packets before forwarding them on. Alice and Bob don't
notice any discontinuity in the sequence number stream, so no ACK storm
results.

Another of the network session hijacking tools, Hunt, offers much the same
functionality as Ettercap but adds another interesting feature. Hunt can
attempt to resynchronize the connection, so that Eve can return the session
back to Alice after she has accomplished whatever evil she had up her
sleeve. Using Hunt, Eve issues the command to resynchronize the
connection. Hunt then displays a message on Alice's screen, saying:

msg from root: power failure – try to type 88 characters

For each key pressed by Alice, Alice's TCP stack will increment the sequence
number of packets sent across the on-hold session to Bob. The particular
number of keystrokes that Alice has to type and the bogus message from
root depend on how many keystrokes Eve typed when the session was
stolen, because each keystroke by Eve causes a packet to be sent,
incrementing the sequence number. After Alice types these characters, Hunt
automatically sends two new gratuitous ARP messages, restoring the real
MAC information to Alice and Bob's ARP caches. Alice can then resume the
connection, possibly none the wiser that her session was temporarily
hijacked and given back. Now, some users might not type in all 88
characters, instead opting to close the connection. Either way, the attacker's
work is done.

Note that the techniques used by Ettercap and Hunt work even if Alice, Bob,
and Eve are on different LANs, so long as Eve is on a network connection
that carries traffic between Alice and Bob. Eve simply has to do the ARP
cache poisoning against the routers on the path between Alice and Bob,
instead of using ARP cache poisoning against Alice and Bob directly. Eve can
send gratuitous ARP messages to each router redirecting traffic for the other
router to Eve, as shown in Figure 8.25. Of course, then Eve has to relay all
traffic between the routers, which could easily overwhelm Eve. This ARP
cache poisoning technique is quite effective, but it could become like
drinking from a fire hose for Eve. Therefore, Eve must take care to hijack
sessions using ARP cache poisoning only when network conditions between
Alice and Bob have a reasonable amount of traffic, such as a few
simultaneous connections.

Figure 8.25. By ARP cache poisoning two routers between Alice and
Bob, all traffic between the routers (including the traffic between

Alice and Bob) will be directed through Eve.

[View full size image]

Attacking Wireless Access Points

As we noted at the beginning of this chapter, all of the network-based
attacks that we have outlined (namely spoofing, ARP cache poisoning, and
monkey-in-the-middle attacks) work on both wired and wireless networks.
However, before we leave the topics of monkey-in-the-middle attacks and
session hijacking, let's talk about a special type of attack that is specific to
wireless networks: access point hijacking.

The reason that this attack is specific to wireless networks is that it works,
essentially, because the attacker is able to get the attention of the victim by
"talking" louder than anyone else, something that isn't possible on a wired
network.

As we discussed in Chapter 2, wireless access points have identifiers, known
as SSIDs, associated with them, to identify the network to potential users.
This information is quite "public" and can easily be sniffed using any of the
wireless-specific sniffers we discussed in Chapter 6. An attacker can use this
information to configure a computer to act as a duplicate of the real access
point. If the wireless network is unsecured, this is all the information that an
attacker needs. If the network is weakly secured, say with WEP encryption,
the attacker will need to crack the WEP keys using a WEP key-cracking tool
like the AirSnort tool we mentioned in Chapter 6.

In either case, armed with the information needed, the attacker's fake access
point is configured to correctly act as a substitute for the real access point.
Now, the attacker needs some way to ensure that the victim computer will
associate with the fake access point rather than the real one.

There are several ways for the attacker to accomplish this. First, and easiest,
is to simply overpower the real access point. If the victim computer is near
the edge of the real access point's range, sometimes it's enough to simply be

closer to the victim so the fake access point will provide a more powerful
wireless signal. Sometimes it might require using a directional antenna
configuration to provide the needed signal boost. It is also possible to use
jamming equipment to impair the signal from the real access point, while
providing the fake access point on another wireless channel. The wireless
client software unwittingly jumps on a connection with the attacker's bogus
access point, not even flinching at the fact that it's on a different channel. As
long as the access point's SSID and MAC address are the same (which the
attacker sets them to be based on sniffed data), the client will resume
communication through the attacker's access point, sitting in the middle of
the connection. Finally, some attackers send a stream of faked wireless
"disassociate" management frames, claiming to be sourced from the real
access point and causing the victim to disconnect from the real access point
so it will then simply "find" the fake. A Linux tool to help an attacker perform
this sort of attack, as well as many other feats of Wi-Fi mischief is AirJack,
which can be found at .

Regardless of which method an attacker uses to accomplish it, hijacking an
access point places an attacker into position to sniff traffic and to play all of
the monkey-in-the-middle games described earlier in this chapter. So, in
addition to being able to perform sniffing, spoofing, and ARP cache poisoning
on WLANs (just like on wireline LANs), an attacker has an additional option
due to the nature of the underlying wireless medium.

Session Hijacking Defenses

To defend yourself against session hijacking attacks, you must utilize all of
the defensive techniques we discussed for spoofing and sniffing attacks.
When moving sensitive data across a network, just assume malicious parties
control that network, and then carefully protect your communications in light
of this worst-case scenario. In particular, you should consider using
encryption tools like SSH or VPNs for securing sessions. These tools are
critical for sessions passing across external networks, like the Internet, a
business partner network, or WLANs. Additionally, for very sensitive
systems, like firewalls, routers, and security systems, you should use
encrypted sessions even across internal networks. Encrypted sessions
prevent session hijacking because the attackers will not have the keys to
encrypt or decrypt information. Therefore, an attacker cannot inject
meaningful traffic into a session.

Also, keep in mind that Dsniff and Ettercap can be used to hijack SSH
connections, but that these tools are currently limited to attacking only SSH
protocol version 1. Therefore, when implementing SSH, configure all SSH
clients and servers so that they will only communicate using SSH protocol
version 2. Furthermore, pay close attention to any warning messages in your

SSH clients about changed public keys on the server. If the server's public
key inexplicably changes, do not make the connection, but instead
investigate why the key changed. Have someone else at a different location
connect to the machine and see if anything has gone awry.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Netcat: A General-Purpose Network Tool

Sniffing, spoofing, and session hijacking are all very useful techniques for an
attacker in gaining and expanding access into a network. However, no
discussion of network-level attacks would be complete without addressing
Netcat, perhaps the single most useful tool available for interacting with
systems across a network. Netcat, which is often referred to as the Swiss
Army knife of network tools, can be used by attackers and system
administrators alike to accomplish a myriad of tasks. In fact, Netcat is so
useful that if you were stranded on a desert island and had to choose only
one computer attack tool to use for your entire stay on the island, you
probably should opt for Netcat. (Well, maybe you'd want a computer first,
and then a high-speed Internet connection. But clearly Netcat would be a
close third when stranded on an island.)

The idea behind Netcat is deceptively simple: It (merely) allows a user to
move data across a network, while functioning much like the Linux and UNIX
cat command. However, instead of just dumping data on the local system
like the cat command, Netcat moves arbitrary data over any TCP or UDP
port.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Netcat was originally written by Hobbit for various UNIX platforms (including
Linux, Ultrix, SunOS, Solaris, AIX, and IRIX) and released in early 1996.
Hobbit's Netcat is available at and a more portable version of Hobbit's
Netcat, GNU Netcat, is available at . In early 1998, Weld Pond created a
Windows version of Netcat, which is available at . There's even an
encrypting version of Netcat called, appropriately enough, Cryptcat, freely
available at . Don't be fooled by Netcat's age. Although it is an older tool, it
is still very widely used, making up one of the most functional tools in attack
arsenals even today.

For Netcat, the UNIX and Windows versions interoperate wonderfully,
allowing an attacker to ship data between the platforms quickly and easily.
In 1999, I attended a presentation at the DefCon 7 hacker conference in Las
Vegas. One of the conference presenters was describing methods for probing
firewall appliances, and exclaimed, "Netcat is your friend!" The room erupted
with applause for this very useful tool.

Netcat is like a generic network widget, used to transmit or receive data
from any TCP or UDP port to any TCP or UDP port. As pictured in Figure
8.26, a single Netcat executable operates in one of two modes chosen by its
user: client mode and listen mode. In client mode, Netcat can be used to
initiate a connection to any TCP or UDP port on another machine. Netcat
takes its data from standard input (such as the keystrokes of the user, the
contents of a file, or data from a program piped into it) and sends the data
across the network. In listen mode (which is invoked with the –l option),
Netcat opens any TCP or UDP port on the local system, waiting for data to
come in through that port. Netcat listeners send all data gathered from the
network to standard output, which could be displayed on the screen, written
to a file, or piped through another program. Also, Netcat clients support
source routing, so an attacker can utilize the source routing IP address
spoofing attack we discussed earlier in this chapter.

Figure 8.26. Netcat in client mode and listen mode.

Really, that's about it for Netcat features. However, using these basic
building blocks, clever people have devised many different attack scenarios
based on Netcat. Let's take a closer look at some of these attacks. For our
examples, keep in mind that the Netcat executable program is called nc.

Netcat for File Transfer

One of the simplest uses for Netcat is to transfer a file between two
machines. Many networks block incoming or outgoing FTP, so an attacker
will usually not be able to transfer files that way. However if the attacker
has a Netcat listener installed on a system inside the network, a file can be
transferred to the internal system using any port, TCP or UDP, allowed into
the network. The attacker might be able to install Netcat using a buffer
overflow or related attack as we discussed in Chapter 7.

An attacker can transfer a file using Netcat by either pushing it from client
to listener or pulling it from listener back to client. When pushing a file, as
illustrated in Figure 8.27, an attacker sets up a Netcat listener on the
destination system, listening on a specific port and dumping its output to a
file. On the source system, the attacker then uses Netcat in client mode to
make a connection to the destination machine on the given port, directing
the file to be transferred as input. The commands to transfer a file using TCP
port 1234 are as follows:

Destination machine receiving file:

Source machine sending the file:

Figure 8.27. Pushing a file across the network using Netcat.

[View full size image]

Alternatively, an attacker can pull a file from a machine by setting up Netcat
in listener mode on the machine, redirecting the file to Netcat's input. When
the Netcat client on the destination machine connects, the file will be
dumped from source to destination, as shown in Figure 8.28. Alternatively,
the destination machine can even pull the file by using a Web browser
pointed to the appropriate port number. Pulling a file can be implemented
using the following commands in Netcat:

Source machine, offering file for transfer:

Destination machine, pulling file:

Figure 8.28. Pulling a file across the network using Netcat.

[View full size image]

Netcat for Port Scanning

In addition to file transfer, Netcat can also be used for port scanning. Nmap,
the tool we encountered in Chapter 6, supports numerous types of elaborate
port-scanning techniques. Netcat, on the other hand, supports only
standard, "vanilla" port scans, which complete the TCP three-way handshake
with every port checked. Although not as full-featured or stealthy in doing
port scans as Nmap, Netcat is still a very effective basic port-scanning tool.
To conduct a TCP port scan using Netcat, an attacker would type the
following:

This command will connect to every port in the range between startport and
endport, and enter the characters QUIT at each port. We limit the wait for a
response from the target to a maximum of three seconds. If no traffic is
received within three seconds, Netcat will give up. You have to do that for a
Netcat port scan, or else Netcat will get hung up on a single port that leaves
its connection open. The verbose option (–v) causes Netcat to display a list
of each successfully made connection (which indicates an open port) on the
attacker's screen. This is not fancy, but it works very well.

Netcat for Making Connections to Open Ports

When an attacker discovers open ports on a system through port scanning,
the next step is to connect to each open port to try to determine and
possibly undermine the service listening at the port. An attacker's port scan
might indicate a dozen or more open ports on the target. An attacker can
quickly and easily use Netcat in client mode to connect to these ports and
start entering raw data to see what the listening service sends back. The
listening service might indicate a particular application and version number,
or the attacker might even be able to crash the target by entering large
amounts of junk data on the open port.

Sending data to an open port on a target system is trivial, and can be

accomplished using the following command:

You might be thinking, "Well, I could just use telnet to connect to open
ports," and you'd be right. Although a telnet client normally sends data to a
destination TCP port of 23, telnet can be easily directed to send data to any
TCP port. However, Netcat is much more powerful for making such
connections, for the following reasons:

The output from Netcat can be more easily redirected to a file. Using the
simple redirection character > in UNIX and Windows causes any output
from Netcat to be dumped to a file.

It is far easier to force Netcat to drop a connection than it is to force a
telnet client to let go of a connection. After interacting with an open port
by sending and receiving data, a simple CTRL+C will cause Netcat to
drop the connection, stopping any network communication and quitting
the program cleanly. When a telnet client is used to connect to a port
and gets unfamiliar characters from a target system, it often hangs
without responding to any keystrokes at all. When a telnet client
becomes unresponsive, the attacker must manually kill the telnet client
process to reset the connection, a tedious process.

Telnet inserts some control data and environment variables across the
connection to the open port when it tries to do a terminal negotiation
with the other side, thinking it is a telnet server. This extra input could
pollute the communication stream that the attacker is using. The
attacker wants all data sent to the target to come from the attacker,
without any extra stuff from the program used to send the data. Netcat
focuses on sending pure, raw data without any extra junk inserted into
the stream.

Telnet puts its own error messages in the standard output stream, such
as "Connection closed by foreign host." The only output from Netcat is
the data that comes back from the open port. Netcat does not insert
anything else into the output stream, unlike telnet.

Telnet cannot make UDP connections. Netcat handles them like a pro! If
an attacker finds an open UDP port on the target system and wants to
interact with it, telnet cannot be used. Netcat can interact with any open

port, TCP or UDP.

Netcat for Vulnerability Scanning

In addition to scanning for open ports, Netcat can be used as a limited
vulnerability-scanning tool. An attacker can write various scripts that
implement vulnerability checks, and interact with the target systems using
Netcat to transmit the data across the network. Essentially, Netcat functions
as the scanning engine. The Linux and UNIX version of Netcat ships with
several shell scripts that look for various weaknesses, including the
following:

RPCs, with known vulnerabilities

Network File System exports that allow anyone on the network to look
at the target's local file system

Weak trust relationships

Bad passwords (such as "root," "administrator," etc.)

Buggy FTP servers

This handful of checks is very limited compared to what a full-blown Nessus
scan can accomplish. Still, Netcat is very useful for quickly writing up a new
vulnerability check in shell scripts and testing for holes.

Using Netcat to Create a Passive Backdoor Command Shell

One of the simplest and most powerful uses of Netcat is to provide
command-shell access on a specific port. When attackers connect to this
listening port, they can simply enter commands to be executed on the target
machine, giving them a fully interactive remote command shell. To create a
backdoor shell on a machine, the attacker uses the –e option of Netcat,
which tells Netcat to invoke a given program, in this case a command shell,
when a connection is made. To accomplish this, the attacker first gains
access to the victim machine, installs Netcat, and launches it using the
following command:

Victim's machine:

The phrase "first gains access to the victim machine" might sound like it
glosses over a great deal of information and, well ... it does. It isn't,
however, as difficult as it might sound. "Gaining access" can be accomplished
in many ways: exploiting a buffer overflow in a networked application,
tricking someone into running a Trojaned application, or any of the types of
techniques described in Chapter 7. Using a passive command-shell backdoor
is described in more detail in Chapter 10.

An attacker can use Netcat in client mode to connect with this backdoor
listener by typing the following command on the attacking machine:

Attacker's machine:

In this way, Netcat can be used to create a passive, waiting listener, which
will send the attacker a command shell when the attacker makes a
connection using Netcat in client mode. The attacker must be able to send
packets to the destination port where Netcat is listening. If there is a router
with packet filters or a firewall in the way, the attacker will not be able to
reach the listener. Happily (for the attackers), Netcat allows them to use any
port, TCP or UDP, for the connection. However, if all incoming traffic is
blocked by a filter, the attacker cannot access a passive listener. But all is
not lost ...

Using Netcat to Actively Push a Backdoor Command Shell

Another powerful technique using Netcat for accessing a command shell gets
attackers around the problems created when a filter blocks external access.
Using Netcat, an attacker can make incoming connections unnecessary by
actively pushing a command shell from one machine to another, rather than
passively listening for an inbound connection. In this scenario, the attacker
first creates a passive listener on his or her own machine, waiting for a
command shell to be pushed to it from the victim system, using the following
command:

Attacker's machine:

Then, the attacker interacts with the victim machine, possibly using a buffer
overflow, to force it to use Netcat in client mode to run a command shell and
push it out to the attacker's machine. The following command executed on
the victim machine accomplishes this:

Victim's machine:

This technique, which pushes the shell access across an outbound
connection, is sometimes called a reverse shell or shell shoveling. The major
benefit of actively pushing the command shell from the victim to the
attacker is associated with getting through firewalls. If incoming access from
the attacker to the victim machine is blocked, this technique still allows the
attacker to get an interactive command shell on the victim machine. In
essence, this technique makes an outgoing connection from the victim to the
attacker, while allowing the attacker to type commands to be executed on
the victim. It's an incoming shell implemented on an outgoing connection, as
illustrated in Figure 8.29. As long as outgoing connections are allowed from
the victim machine to the outside world, this technique will work.

Figure 8.29. Shoveling shell with Netcat.

Relaying Traffic with Netcat

Although a backdoor command shell (either passive or reverse) is the most
common use of Netcat by the bad guys, one of its most pernicious uses
involves setting up a relay to obscure the attacker's location on the network.
Traffic relaying is another powerful attacking technique that can be

implemented using Netcat. An attacker can configure Netcat clients and
listeners to bounce an attack across a bunch of machines controlled by the
attacker. The attacker's connection moves from relay to relay to relay.

Consider the relay example shown in Figure 8.30. The attacker controls the
machines labeled Relay A and Relay B (these can be systems anywhere on
the Internet conquered by the attacker exploiting security vulnerabilities).
On each of the relay machines, the attacker sets up a Netcat listener to
catch the traffic from a specific port on the network. The Netcat listener is
then configured to direct its input to a Netcat client on the same system.
This Netcat client, in turn, forwards the traffic out across the network to the
next system in the chain.

Figure 8.30. Setting up relays using Netcat.

[View full size image]

I've seen attackers string up 5, 10, or even 15 relays end to end. When the
target investigates the attack, they trace back the packets to the nearest
relay, where the attack appears to be coming from. However, the attacker
isn't at that relay machine, so the investigators have to trace the attack
back to the previous relay. Again, the attacker isn't there, slowing down the
investigation tremendously as the detectives move back relay by relay.

I've witnessed Internet Relay Chat sessions between attackers discussing the
finer points of setting up relays to confound an investigation team. In these
discussions, the more experienced attackers were teaching junior attackers
to make sure that there are major language and political transitions between
each relay. For example, the attacker might bounce an attack from the
United States to a relay in China to a system in India to a system in Pakistan
to a system in Israel to a system in Syria to a victim machine back in the
United States. At each step of the path, the investigators will have to battle
against language and cultural differences, as well as law enforcement
jurisdictional issues between countries that, unfortunately, don't always get
along.

Additionally, a Netcat relay can be used to direct packets around packet
filtering rules, as shown in Figure 8.31. In this example, no traffic is allowed
from the outside network through the packet filter to the inside network.
The packet filter does allow DNS traffic (UDP port 53) from the outside
network to the DMZ, and e-mail traffic (SMTP on TCP port 25) from the DMZ
to the inside. If the attackers take over a DMZ system and an internal
machine, they can send data around the packet filtering device by setting up
a Netcat relay on the DMZ system. This handy technique is frequently used
to bypass packet filters.

Figure 8.31. Directing traffic around a packet filter using a Netcat
relay.

Now that we've seen the power of a Netcat relay, how does an attacker
create one? There are three popular techniques for establishing a Netcat
relay: modifying inetd on UNIX/Linux, setting up a backpipe on
UNIX/Linux, and creating a relay bat file on Windows.

As discussed in Chapter 3, inetd is a UNIX daemon that listens for
connections for services indicated in the /etc/inetd.conf file. To create
a relay using inetd and Netcat, the attacker can add a line to
/etc/inetd.conf that causes inetd to listen on a specific port and
launch Netcat in client mode to forward traffic. The format of the
/etc/inetd.conf file is described in more detail in Chapter 3. The
following line in /etc/inetd.conf will make inetd listen on TCP port
11111, spawning off a Netcat client, which will forward all traffic to TCP port
54321 on the machine named next_hop:

[View full size image]

Most good system administrators will quickly notice a change in the
/etc/inetd.conf file by using a file system integrity checker like
Tripwire to look for changes in sensitive configuration files (like
/etc/inetd.conf) on at least a daily basis. Tripwire can be used to
implement a warning whenever sensitive files are altered.

Another method for setting up a relay that is more difficult to detect than
modifying /etc/inetd.conf uses the mknod command to create a special
file that will be used to transfer data back and forth between a Netcat client
and server. The Linux and UNIX mknod command can be used to create
special files with First-In/First-Out (FIFO) properties. The first data written
to the file will be the first data that will be pulled out of the file. These
special files are sometimes called named pipes, because, well, they have
names, and they carry data in a FIFO fashion like a pipe carries water. An
attacker can set up a Netcat listener on a given port, such as TCP port
11111. The output of this server is piped to a Netcat client that forwards
data to the next hop on a given port, like 54321. Additionally, any data
received by the Netcat client back from the next hop is directed into the
FIFO file (using the redirection tool >). This FIFO file is likewise redirected
back into the Netcat listener, which will transmit the data back to the
previous hop. This technique all comes together in the following commands:

[View full size image]

This command sets up Netcat to listen on TCP port 11111, forwarding data to
the next_hop machine on TCP port 54321. The backpipe file is used to
direct response traffic back from the destination to the source, as shown in
Figure 8.32. Trace through the connection from the attacker all the way
through the relay to the victim listener and back with your finger to get a
feel for how the data moves across the network through the relay.

Figure 8.32. A Netcat relay built using a FIFO.

[View full size image]

A third way to create a Netcat relay involves using a batch file, a technique
that is well-suited to Windows machines and can be easily adapted to Linux
and UNIX systems by just substituting the proper shell (/bin/sh in place of
cmd.exe). The batch file approach involves creating a file that contains a
single command to start a Netcat client. The batch file is, in effect, a really
simple script that contains the following text:

C:\nc.exe [next_hop] 54321

Of course, the attacker must include the full path to the nc.exe executable
in the file. I'm assuming here that Netcat is located at the top of the
directory structure, in C:\. An attacker can choose any name whatsoever for
this script file, but, for clarity's sake, let's just call it ncrelay.bat. Then,
the attacker creates the relay by running this command:

C:\> nc –l –p 11111 –e ncrelay.bat

When someone connects to TCP port 11111 on the relay machine, this
command will execute the ncrelay.bat file, attaching its input and output
to the Netcat listener. The ncrelay.bat script then invokes the Netcat
client, which makes the connection to the next_hop on TCP port 54321. All
data received by the Netcat listener on TCP 11111 is sent to the Netcat
client invoked by the ncrelay.bat file, which transfers it to the
destination machine on the other side.

You might be wondering why this approach invokes Netcat using a bat file
instead of just configuring the –e option to kick off the entire command

c:\nc.exe [next_hop] 54321. Unfortunately, that won't work,
because the –e option of Netcat takes only a single command-line argument,
the name of an executable or script to invoke. In this case, we invoke a
script (the ncrelay.bat), which in turn runs a Netcat client. This ability of
Netcat's –e option to invoke scripts is very useful.

Additionally, there are several other tools beyond Netcat that can be used to
create relays. One of the most interesting is the Redir program, by Sam
Creasey, available at . Redir supports only TCP, and cannot redirect traffic to
or from UDP ports. This is a major limitation for the attacker if the firewalls
and routers of the target network allow only UDP traffic. However, Redir
does include the nifty ability to actively shape the traffic it is relaying. This
feature allows Redir to slow down a fast connection by modifying the traffic
passing through the relay. Therefore, a relay running on a slow machine can
slow down the data rate of the connection it is relaying, improving reliability
of the relay for the attacker.

Persistent Netcat Listeners and Netcat Honeypots

It's important to note that all of the Netcat listeners we've discussed so far,
including the file transfer, backdoor command shell, and relay setups are
nonpersistent listeners. That is, once an attacker connects to the listener
and drops the connection, the Netcat listener goes away, closing the port.
The attacker cannot then connect again, because the listener has shut down.
To alleviate this problem, the Windows version of Netcat includes another
command option, the –L flag (that's a capital L, as opposed to the
nonpersistent listener's –l lowercase l). This option tells Netcat to "listen
harder." On Windows, an attacker can invoke a command-shell listener that
will continue listening after a client drops the connection using this syntax:

The attacker can then connect to this shell using a Netcat client as before.
However, when the attacker drops the connection from the client, typically
by pressing the CTRL+C keys, the listener starts listening again, making it a
persistent listener. The attacker can then reconnect at a later time, with the
backdoor still in place.

Unfortunately for the attackers, this "listen harder" feature is only built in to
the Windows version of Netcat, and is not included in most Linux and UNIX

Netcat versions. We should note that some hardy individuals have altered a
few specialized versions of Netcat to make the UNIX/Linux version support
the –L option. Such versions aren't all that popular as of this writing. So,
without the –L option, is the attacker out of luck in creating a persistent
listener on UNIX and Linux? Nope.

An attacker can make a Netcat listener persistent on UNIX and Linux by
using a while loop, invoking the following command:

[View full size image]

When executed, this command will print out "Started", listen on a given TCP
port, and then invoke a command shell (/bin/sh) when someone connects.
Then, once the command shell is exited, the while loop cycles around,
printing "Started" again, and then listens anew on the port for a connection.
In this way, the attacker has created a persistent listener using the
UNIX/Linux version of Netcat, along with a little shell scripting with a while
loop. There's still a little problem, however. If the attacker logs out of the
system, the Netcat listener will go away because the user who invoked it has
disappeared.

To eliminate the problem, and to make a totally persistent listener that will
let the attacker log out, the bad guy could dump the while loop syntax we
just described into a file, called listener.sh, for example. The attacker
can then change the permissions on this file to readable and executable, so
that it can run as a script, using this command:

$ chmod 555 listener.sh

Then, the attacker can invoke this loop in the background by using the
nohup command, as follows:

$ nohup ./listener.sh &

On UNIX and Linux, the nohup command makes a process keep running
even if the user who invoked it logs out. Thus, this listener will keep on

listening, giving the attacker far more reliable backdoor access to the
machine.

Now, with this persistent listener idea, along with the idea of receiving a file
via a Netcat listener, the good guys can use Netcat to create a little
honeypot, a tool used to capture information from the bad guys. Consider
this while loop, which can be dumped into a file called honeypot.sh:

[View full size image]

This loop invokes a Netcat listener on the given port number. When
someone connects and sends data, the listener will append all received data
in a file called capture.txt. Then, when the connection is dropped, the
listener will start again. All data from each new connection will be added to
that capture.txt file. This resulting command is, in effect, a little
honeypot, used to capture the bad guys' actions for analysis by
investigators. We frequently use this very technique to capture new worms
as they spread in the wild, as well as to gather new exploit attempts by the
bad guys looking to break into systems. Using the nohup technique, an
investigator can even make this persistent listener continue running after
logging out. To kill this honeypot, the investigator would need to use the kill
command to send the –9 signal (forcing it to shut down) to the process
running Netcat, as in:

$ kill –9 [pid_of_nc]

Netcat Defenses

Because Netcat can be used for so many different types of attacks, there is
no single way to defend against it. To adequately secure your systems
against the techniques we've discussed, you need to implement a variety of
defenses, including these:

You need to configure your firewalls to limit traffic going into and out of
your network. Only traffic with a defined business need should be
allowed. Furthermore, for publicly accessible systems, such as Internet,
Web, mail, DNS, and FTP servers, the system administrator should be
familiar with common processes running on the system. If a specific
process suddenly starts running, listening on a given port, with no

defined business purpose, you should investigate how the process was
activated.

Your systems should be configured with a minimal number of listening
ports, used by services that are actually required on the system, as we
discussed in Chapter 6.

Again, close all unused ports on your machines.

You must have an active program to apply system patches, keeping your
machines up to date.

Just as with preventing file transfers, you need to know what processes
are commonly running on your publicly available and sensitive systems
so that you can detect when a rogue process starts listening.

You must carefully architect your network with layered security so that
an attacker cannot relay around your critical filtering capabilities. If the
attacker can relay through your Internet gateway at a single point on
your DMZ, you should consider adding extra layers of filtering at routers
or firewalls.

In addition to knowing which processes are running on your systems,
make sure you conduct periodic port scans to look for strange,
unexpected listening ports.

By applying each of these techniques in your network, you can help avoid
numerous attacks based on Netcat and other tools.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

The number and power of tools used to gain access through a network has
risen rapidly over the past several years. Attackers are armed with a variety
of potent sniffers, spoofing tools, session hijackers, and general-purpose
network widgets. These tools really expose the fundamental weaknesses of
our network infrastructures by undermining transport, network, and data
link capabilities, as well as the occasional application flaw. Because of the
power of these network-based attack tools, you must carefully protect your
infrastructure.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

In addition to the application and operating system techniques described in
the previous chapter, attackers also try to gain access by manipulating
networks and the methods applications use to interact with networks.

Sniffing is a common attack technique that gathers information from the
LAN, which could include user IDs and passwords transmitted in clear text or
sensitive files or e-mail sent to or from a local system. There are an
enormous number of sniffing tools available today. Passive sniffers gather
traffic from the LAN without trying to manipulate the flow of data on the
network. Snort, Sniffit, and Ethereal are three of the best passive sniffers
available.

Active sniffing involves injecting traffic into the network to redirect packets
to the sniffing machine. Active sniffing techniques allow an attacker to sniff
in a switched environment, by overwhelming switches with a large number
of MAC addresses, through ARP spoofing, or via port stealing techniques.
Additionally, by injecting spurious DNS responses into a network, an
attacker can redirect the flow of traffic from its intended source to an

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

attacker's system. Finally, using active sniffing techniques, an attacker can
set up a monkey-in-the-middle attack to read traffic from SSL and SSH
encrypted sessions. Dsniff and Ettercap are two of the most powerful active
sniffing tools, supporting all of these capabilities.

To defend against sniffing attacks, you should use secure protocols that
include strong authentication and encryption. If your browser or SSH client
warns you that the certificate or key is not valid or has changed, you should
investigate. Also, get rid of hubs on sensitive networks and use switches,
which support stronger security. Finally, for networks handling highly
sensitive information, activate port-level security on your switches to lock
down MAC addresses to particular physical ports on the switch.

IP address spoofing allows attackers to send traffic that appears to come
from a machine with another IP address. This type of attack is useful in
creating decoys, bypassing filtering, and gaining access to systems that use
IP addresses for authentication. A variety of techniques support IP address
spoofing, including just changing the IP address, manipulating UNIX
r-commands, and using IP source routing capabilities. Defenses against IP
address spoofing include keeping TCP stacks patched, avoiding the weak
UNIX r-commands, building applications that do not rely on IP addresses for
authentication, and deploying antispoof filters. Furthermore, you should
drop all source-routed packets at your network borders.

Session hijacking techniques allow an attacker to grab an active session,
such as telnet or FTP, from a legitimate user. The attacker steals the
session, and can enter commands and view the results. Session hijacking
techniques can be employed across the network or at an individual host.
Network-based session hijacking techniques can result in an ACK storm as
systems try to resynchronize their connection. Ettercap and Hunt use ARP
cache poisoning to avoid ACK storms. To defend against session hijacking
techniques, you should utilize encryption tools, such as SSH with protocol
version 2 or VPNs.

Netcat is a general-purpose tool that moves data across a network. It can be
used in a variety of attack scenarios, limited only by the attacker's creativity
and knowledge of Netcat. Netcat can be used to transfer files or scan for
open ports. It makes connections to open ports and conducts rudimentary
vulnerability scans. Two of the most powerful techniques supported by
Netcat are its ability to create backdoors and to establish relays. Using a
while loop, a UNIX or Linux Netcat listener can be made persistent,
whereas the –L option does this for Windows. These persistent listeners can
be made into simple little honeypots. Defenses against Netcat attacks
depend on the particular technique it is used to implement. Some of the
most important defenses are to keep systems patched and carefully filter

incoming traffic.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 9. Phase 3: Denial-of-Service Attacks

As we've seen in Chapter 7, Phase 3: Gaining Access Using Application and
Operating System Attacks, and Chapter 8, Phase 3: Gaining Access Using
Network Attacks, some attackers want to gain access to systems, using a
variety of ingenious techniques to achieve their goal. Other attackers aren't
looking to gain access; they want to prevent access by legitimate users or
stop critical system processes. To accomplish this objective, they utilize a
variety of attack techniques to deny service. In a DoS attack, the bad guy
might launch a massive flood against a victim machine, rendering it
completely inaccessible to all legitimate users. Some DoS attacks are mere
annoyances, as when a less-than-critical server is tied up with bogus
requests, whereas others might involve life-threatening situations for very
critical servers associated with health care or related computers.

Generally speaking, most DoS attacks are not technically elegant. The
attacker just wants to break things, so finesse is not paramount. Most DoS
attacks are merely bothersome. In many instances, the attacker causes a
system to crash, annoying the system administrator or user who is forced to
restart a service or reboot the machine.

However, some DoS attacks go far beyond mere annoyance. As we saw in
the spoofing and hijacking attacks described in Chapter 8, some DoS
techniques are elements of more elaborate attacks. Also, even by
themselves, DoS attacks could cause major damage to vital systems. A
company that relies on electronic transactions for its livelihood could suffer
serious financial damage if its systems are taken offline for even a short
duration. I've been involved with a case in which an e-commerce company's
competitor launched a DoS attack against the company's Web site, hoping
that customers would abandon the target's nonresponsive servers and take
their business to the attacker's own e-commerce site. Beyond these
commercial interests, in industrial, aviation, and health care operations, a
DoS attack could have life-threatening impacts. Because of these
possibilities, it is critical that system, network, and security personnel
understand DoS attacks and how to defend against them.

As shown in Figure 9.1, DoS attacks generally fall into two categories:
stopping a service and resource exhaustion. Stopping a service means
crashing or shutting off a specific program or machine that users want to
access. With resource exhaustion attacks, the service itself is still running,
but the attacker consumes computer or network resources to prevent
legitimate users from reaching the service. Furthermore, as pictured in
Figure 9.1, these two categories of DoS attacks can be launched locally from
an attacker-owned account on the machine or against a target across a
network. The resulting categories of attack therefore make a matrix of DoS

attack possibilities for the bad guys.

Figure 9.1. Denial-of-service attack categories.

To understand these different categories of DoS attacks, let's analyze the
techniques highlighted in each of the four quadrants of Figure 9.1.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Locally Stopping Services

Using a local account on a machine, an attacker has a great deal of access to
create a DoS attack by stopping valuable processes that make up services.
For example, on a UNIX system, an attacker with root privileges might shut
down the xinetd process. As discussed in Chapter 3, Linux and UNIX
Overview, xinetd is responsible for listening for network connections and
running particular services such as the telnet and FTP daemons when traffic
arrives for them. Shutting down xinetd prevents remote users from
accessing the system through any services started with xinetd, including
telnet and FTP services. In this kind of attack, the bad guy isn't consuming
resources, just shutting off a crucial component of the services.

Because attackers can run local programs and supply input directly into
processes on the machine through a local account, they can often wreak
havoc by having an account on a system. The attacker might have gotten
access to the account as an insider, such as an employee or contractor, or
through some of the methods discussed in Chapters 7 and 8. An attacker
with local account access to a machine has a variety of methods for stopping
local services, including the following:

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

An attacker with sufficient privileges (such as root on a UNIX system or
administrator on a Windows machine) can simply kill local processes in a
DoS attack.

Attackers with sufficient privilege can reconfigure a system so that it
doesn't offer the service any more or filters specific users from the
machine. For example, on a Windows file server, an attacker could
reconfigure the machine, simply stopping the sharing of files across the
network. This change would prevent legitimate users from remotely
accessing their valuable data on the file server. Alternatively, the
attacker could reconfigure a UNIX system so that an HTTP daemon
doesn't start up, effectively preventing Web access to the system.

Even if the attackers don't have super-user privileges on a machine,
they might be able to crash processes by exploiting vulnerabilities in the
system. For example, an attacker could exploit a buffer overflow
vulnerability by inputting arbitrarily large amounts of random data into a
local process. As we discussed in Chapter 7, if the attacker fills a vital
return pointer with garbage, the target process will most likely crash,
denying user access.

A particularly nasty example in this realm of DoS attacks that locally stop
services is the logic bomb. Using an account on the target machine, an
attacker plants a logic bomb program, which could be triggered based on a
number of factors, such as elapsed time, the activation of certain other
programs, the logging in of specific users, and so on. Once the logic bomb
trigger is activated, the program will stop or crash a local process, denying
service on the machine. Several organizations have been faced with logic
bomb extortion threats. In these cases, the attacker places a logic bomb on
the target system, and anonymously telephones the organization. The
attacker then explains that the system will cease operation unless a specific
action is performed by the target organization, such as the transfer of
money to an anonymous offshore bank account. Consider the trade-off: you
either pay $500,000 or your machine that processes $10 million in customer
transactions per hour might be crashed. Do you want to cut a deal with such
cyber-extortionists? What happens after they spend their money? Will they
come back for more? Such situations are difficult indeed, and you should
certainly involve senior management and possibly even law enforcement
immediately if you face an extortion attempt.

Defenses from Locally Stopping Services

To prevent an attacker from stopping services locally, you must keep your
systems patched, applying the relevant security bug fixes, so that the
attacker cannot exploit and crash vulnerable local programs. Patching your
systems in a timely manner also helps prevent an outside attacker from

gaining an account on the machine in the first place.

Furthermore, make sure to dole out privileges carefully to users on your
system. Most users do not require super-user privileges to get their jobs
done. When assigning privileges to users, you should follow the principle of
least privilege: Users should only be given the access that they require to
get their jobs done and no more. Proper implementation of such a
philosophy will prevent renegade users from stopping services or conducting
other attacks.

Finally, to detect changes quickly to the configuration of the system, you
need to run file-integrity-checking programs, such as Tripwire (). These
programs check to make sure that critical system files (such as configuration
files and sensitive executables on the machine) are not altered. If they are
changed, the file-integrity-checking program will warn the system
administrators, using periodic reports, e-mail, pager, SNMP trap, or other
alarming mechanism.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Locally Exhausting Resources

Another common type of DoS attack involves running a program from an
account on the target machine that grabs system resources on the target
itself. When all system resources are exhausted, the system will grind to a
halt, preventing legitimate access. Most operating systems do attempt to
isolate users and processes so that actions by a rogue process do not suck up
all system resources. However, a determined attacker can find ways around
such isolation tactics, perhaps by using an exploit to gain super-user
privileges, and then hogging resources on the target machine. Some
common methods for exhausting local resources include the following:

An attacker could write a simple program that simply forks another
process to run a copy of itself. That's it. Of course, this forked copy of
the program would run, forking off another process to run the same
program again, with the cycle repeating itself recursively again and
again. Such attacks are sometimes called fork bombs, and they can be
really annoying. Using a fork bomb, an attacker could create processes
as fast as the system could fork them. Eventually, the process table on
the machine could become filled, preventing other users from running

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

processes and denying them access. Also, it's even possible that the
operating system itself might not be able to create a vital system
process, causing the machine to crash completely.

By continuously writing an enormous amount of data to the file system,
an attacker could fill up every available byte on the disk partition,
preventing other users from being able to write files, and potentially just
crashing the system. Alternatively, instead of writing really big files to
fill up all data blocks on the drive, the attacker could just create huge
numbers of new files, in an attempt to exhaust the file system
identification resources.

The attacker could write a program that sends bogus network traffic
from the target system, consuming the processor and link bandwidth. If
the attacker's program generates enough outbound packets from the
victim machine, legitimate users will not be able to send traffic to or get
responses from the system.

Defenses from Locally Exhausting Resources

To defend yourself from local resource exhaustion attacks, apply the
principle of least privilege when creating and maintaining user accounts. If
your critical operating system supports such restrictions, implement per-user
limits on the consumption of file system space, memory, and CPU usage.
That way, no single user will be able to hog all of your resources.
Additionally, make sure that your sensitive systems have adequate
resources, including memory, processor speed, and communication link
bandwidth. Finally, you might want to consider deploying host-based IDSs or
other system monitoring tools that can warn you when your system
resources are getting low, possibly indicating this type of resource
exhaustion attack.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Remotely Stopping Services

Although local DoS attacks are often very simple and quite effective, remote
DoS attacks are much more prevalent. DoS attacks across the network are
more popular because they do not require the attacker to have a local
account on the machine.

One of the most common methods of remotely stopping a service is a
malformed packet attack. Such attacks exploit an error in the TCP/IP stack
or a running service on the target machine by sending one or more
unusually formatted packets to the target. If the target machine is
vulnerable to the particular malformed packet, it will crash, possibly shutting
down a specific process, all network communication, or even causing the
target's operating system to halt. An enormous number of malformed packet
attacks have been devised, with bizarre and exotic names, as described in
Table 9.1.

Table 9.1. A Variety of Malformed Packet
Denial-of-Service Attacks

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Exploit
Name

How It Works Susceptible
Platforms

Land

Sends a spoofed
packet with the
source IP address
set to the same
value as the
destination IP
address, and the
source port set to
the same value as
the destination port.
The target receives
a packet that
appears to be
leaving the same
port that it is
arriving on, at the
same time on the
same machine.
Older TCP/IP stacks
get confused at this
unexpected event
and crash.

A large
number of
platforms,
including
Windows
systems,
various
UNIX types,
routers,
printers,
and so on.
Although
this problem
was
originally
identified
and fixed in
1997, the
vulnerability
cropped up
again
against
Windows
machines in
2005.

Latierra

A relative of Land,
which sends multiple
Land-type packets
to multiple ports
simultaneously.

A large
number of
platforms,
including
Windows
systems,
various
UNIX types,
routers,

printers,
and so on.

Ping of
Death

Sends oversized
ping packets. Older
TCP/IP stacks
cannot properly
handle a fragmented
ping packet with a
total size greater
than 64 kilobytes,
and crash when
trying to reassemble
such a big ICMP
Echo Request.

Numerous
systems,
including
Windows,
many UNIX
variants,
printers,
and so on.

Jolt2

Sends a stream of
packet fragments,
none of which have
a fragment offset of
zero. Therefore,
none of the
fragments looks like
the first one in the
series. As long as
the stream of
fragments is being
sent, rebuilding
these bogus
fragments consumes
all processor
capacity on the
target machine.

Windows

Sends a stream of
packet fragments,
but keeps

Rose

but keeps
retransmitting the
last fragment again
and again over short
durations. The
target system's CPU
usage jumps to
between 60 percent
and 100 percent,
depending on the
machine type.

Windows,
Linux, Mac
OS X, some
firewalls.

Teardrop,
Newtear,
Bonk,
Syndrop

Various tools that
send overlapping IP
packet fragments.
The fragment offset
values in the packet
headers are set to
incorrect values, so
that the fragments
do not align properly
when reassembled.
Some TCP/IP stacks
crash when they
receive such
overlapping
fragments.

Windows
and Linux
machines

Winnuke

Sends garbage data
to an open file
sharing port (TCP
port 139) on a
Windows machine.
When data arrives
on the port that is
not formatted in
legitimate Server
Message Block
(SMB) protocol, the

Windows

(SMB) protocol, the

system crashes.

Many items in this exploit zoo rely on a variety of techniques to create
packets with a structure that the developers of many TCP/IP stacks did not
anticipate. Each one of these exploits sends one or, at most, a few packets to
the target, causing it to crash. Some of the attacks create unusual or illegal
packet fragmentation conditions (like Teardrop and Bonk), whereas others
send unexpectedly large packets (such as Ping of Death). Some send spoofed
packets with unanticipated port numbers (Land), and others just plain send
unexpected garbage data to an open port (Winnuke). Some of these attacks
are quite old, such as Ping of Death, which was vintage 1996, and Land,
discovered in 1997. Despite their age, attackers do, on occasion, stumble
across systems that were not properly patched to prevent even these old
attacks. Other attacks are more recent discoveries, such as Rose, which
originated in 2004. Some old attacks, like Land, were fixed years ago (in
1997), yet the same mistakes are made again at a later time, as when the
Land vulnerability reappeared in Windows machines in 2005. Today, new
similar malformed packet vulnerabilities are constantly being discovered and
shared in the computer underground.

There are even malformed packet attack suites that roll together a bunch of
these exploits into one single executable. If attackers are not certain
whether their target is vulnerable to Rose, Land, or anything else, they can
use a malformed packet attack suite. These tools launch dozens of different
varieties of DoS attacks using one convenient script. The attacker points the
tool at a target, and fires away. Some of the more powerful suites of
malformed packet attacks are Mixter's Targa, Spikeman's Spike, and
Gridmark's Toast. Toast, the most prolific of the bunch, includes 49 different
individual malformed packet attacks that it spews at a target. Each of these
malformed packet attack suites and a variety of other DoS attack tools are
available at These suites tend not to be super-elegant, and usually consist of
a bunch of individual malformed packet attack code pasted together into one
convenient package.

Another way to stop a service remotely is to prevent it from communicating
across the network. ARP cache poisoning, a technique discussed in Chapter
8, is a particularly effective technique for manipulating communication on a
LAN to create a DoS attack. An attacker with an account on a machine on
the same LAN as the target system could use Dug Song's arpspoof program
included with Dsniff. Sending out a single spoofed ARP packet to the router
on the LAN, the attacker can poison the router's ARP cache so that it will
send packets destined for the target machine's IP address to a nonexistent

MAC address on the LAN. Even though all packets will be sent to the
destination LAN, the victim machine will not receive any of the traffic,
resulting in a DoS attack by stopping the services on the victim from
communicating. By using ARP spoofing, the target machine is effectively
taken off the network. As described in Chapter 2, Networking Overview, ARP
messages travel only across a LAN, and cannot be transmitted through
routers. Therefore, to employ this technique, the attacker must take over a
machine on the same LAN as the target system to be able to send ARP
messages to the target.

Another variation of DoS attacks that render a service inaccessible involves
resetting vital communication streams. These types of attacks don't shut a
service down, but instead focus on taking existing communications sessions
and tearing them down so the two parties on either end are rudely
interrupted. TCP connections are torn down when one of the communicating
machines sends a FIN or a RESET packet to the other side. An attacker could
reset a connection between two systems by sending a spoofed RESET packet,
pretending to be one side of a connection. To pull this action off, the
attacker would have to know the source and destination IP addresses, as
well as the source and destination TCP port numbers associated with a
particular active session.

The only other thing the attacker would need to know to pull off this RESET
is the proper sequence number that the communicating parties are currently
on for one direction of their session. If the RESET doesn't contain an
appropriate sequence number, the target will reject the packet and ignore it.
With 32-bit sequence numbers, the attacker's chance of guessing the proper
sequence number is pretty slim, something like one in 4 billion, right?

Wrong. Here's the big worry. Most operating systems and network
equipment accept a FIN or RESET packet as long as its sequence number is
located somewhere within the TCP window size that the machine expects.
Remember, the TCP window size is a field in the header of a TCP packet that
specifies the number of outstanding data octets a system will accept in a
single session before the sender has to wait for an acknowledgment to
reinitialize the window size. So, if a given TCP connection has a window size
of, say, 65,535 (that's 216 – 1), the attacker's one in 4 billion odds just came
down to about one in 65,000. The attacker could just send a barrage of
packets to the destination machine, sliding the sequence number up in
increments of 65,535, waiting until one falls into the window, which would
reset the connection. A smaller window size would require more packets, of
course. This attack is called TCP RESET spoofing, and it is a big concern. Of
course, however, the attacker still needs to know the source and destination
IP addresses and port numbers. So, the attack still seems unlikely, right?

Wrong again. A particularly chilling example was widely publicized in April
2004, when researcher Paul Watson announced how this attack could be
used to reset the Border Gateway Protocol (BGP) communications of
backbone routers on the Internet. If routers cannot communicate route
updates to each other, the network itself would gradually degrade and stop
routing packets. Because the IP addresses of the major backbone routers are
public information, the attackers already have the source and destination IP
addresses for such an attack. Also, the destination port number for BGP
updates is widely known, TCP port 179. For the source port, the attacker can
make a reasonable assumption that it will be a number above 1024, but not
too high, because it is allocated by the source operating system, a router,
which doesn't open a lot of outbound connections.

So, the bad guy could pick a hundred or so crucial backbone routers, launch
a few million RESET packets, and ... wham! The Internet would have a very
bad day. In April 2004, major ISPs fixed this particular problem a week or
two before tools were widely released to exploit it by requiring an MD5 hash
ensuring the integrity of all BGP-related packets, including session initiation
and teardown. Of course, for TCP communication streams other than BGP,
such as ssh, telnet, or ftp, this handy little RESET-within-the-window trick
still works great on most operating systems.

Defenses from Remotely Stopping Services

As we've seen throughout this chapter, the best defense against many DoS
attacks is to apply system patches in a quick, methodical manner. This is
especially true for malformed packet DoS attacks, which rely on sloppily
written programs like TCP/IP stacks and services. Vendors frequently release
patches to their TCP/IP stacks to fix such problems.

Additionally, some of these attacks, such as Land and TCP RESET spoofing,
rely on IP address spoofing. The antispoof filters we discussed in Chapter 8
can help thwart such attacks.

To defend against ARP spoofing attacks, you can create static ARP tables on
your most sensitive networks to make sure no one can alter IP-to-MAC
address mappings on your LANs. Although this technique will make
management of the network more difficult, it is a very good idea to use
static ARP tables on sensitive networks, such as your Internet DMZ.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Remotely Exhausting Resources

Of all the DoS attacks available today, by far the most popular technique
involves remotely tying up all of the resources of the target, particularly the
bandwidth of the communications link. In this type of attack, the bad guys
try to suck up all available network capacity using a flood of packets. As we
saw with logic bombs, extortionists are also using packet floods to force
victims into paying money to head off a DoS attack. A growing trend
involves threatening a massive packet flood against a Web site unless the
target pays a "protection fee" to stay in business. So far, these threats have
focused on offshore gambling and pornography sites, but we are starting to
see them move toward e-commerce and financial institutions. In these
scams, the bad guys ask for fees ranging from $1,000 all the way up to
$100,000 or more! If the victim doesn't pay, the attack ensues, possibly
costing the victim far more than the extortionist's asking price. Let's look at
the technology behind these attacks by exploring several of the most
popular techniques for launching packet floods, including SYN floods, Smurf
attacks, and distributed DoS attacks.

SYN Flood

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

As we saw in Chapter 2, all TCP connections begin with a three-way
handshake, which starts with a packet with the SYN control bit set being
transmitted to an open port. When the destination machine receives the SYN
packet, it remembers the initial sequence number from the source, and
generates a SYNACK response. To remember the initial sequence number
from the source, the TCP/IP stack on the destination machine typically
allocates a small piece of state to track the status of this new half-open
connection. A SYN flood attack attempts to undermine this mechanism by
sending a large number of SYN packets to the target system, as shown in
Figure 9.2.

Figure 9.2. A SYN flood.

During a SYN flood, the attacker's goal is to overwhelm the destination
machine with SYN packets. When the target receives more SYN packets than
it can handle, other legitimate traffic will not be able to reach the victim.
There are two ways that a SYN flood can exhaust the communications
resources of the target. The attacker really doesn't care which of these two
impacts happens first, as long as the target is unreachable by legitimate
users.

The first way a SYN flood can impact the target involves filling a data
structure on the target called the connection queue, a memory structure
used by the end system to remember where it stands in the three-way
handshakes of various connection attempts. The attacker, generating a
bunch of SYNs, forces the target to allocate slots on its connection queue
with bogus half-open connections. Once the target system receives the SYN
packet and sends its SYN-ACK response, it waits patiently for the third part
of the three-way handshake, using a timeout value that is often set to over
a minute by default. Most systems have a connection queue of finite size,
with typical operating system ranges from 128 to 1,024 simultaneous half-
open connections. The attacker can completely fill up this connection queue
while the target system dutifully waits for the completion of the three-way
handshake for each outstanding half-open connection. By sending SYN
packets to exhaust all slots allocated in the connection queue, no new
connections can be initiated by legitimate users.

To help ensure that the connection queue gets filled, many SYN flood tools
send SYN packets using spoofed source addresses that are unresponsive on
the Internet. As illustrated in Figure 9.2, the attacker will choose some set
of IP addresses, shown as X1, X2, and X3, that no machine connected
directly to the Internet is currently using. Such addresses are used as the
spoofed source because the SYN-ACK responses from the target machine will
never get an answer. If the SYN flood tool spoofed using an active source
address assigned to a real machine on the Internet, as shown in Figure 9.3,
each SYN sent by the attacker would trigger a SYN-ACK response sent to
this legitimate machine whose source address was spoofed. This legitimate,
innocent machine would receive a SYN-ACK packet from the target, known
as the "backscatter" from the SYN flood. The innocent machine would
respond to the unexpected SYN-ACK with a RESET, because no connection
was started. This RESET packet would tear down the connection on the
target machine, freeing up the connection queue resources that the attacker
is trying to consume. The attacker can burn up the connection queue much
more easily using spoofed, unresponsive source addresses in the SYN
packets.

Figure 9.3. Attackers often spoof using unresponsive addresses to
prevent the RESET from freeing up the target's connection queue

resources.

A second way that SYN floods can exhaust the resources of the target goes
beyond the connection queue. If the connection queue is enormous and can
handle a very large number (hundreds of thousands or millions) of
outstanding SYN packets, the SYN flood could just fill the entire
communications link, squeezing out any legitimate traffic. To accomplish
this, the attacker must have more total bandwidth than the victim machine,
and the ability to generate packets to fill that bandwidth. For example, if the

target has a T1 connection, which operates at 1.544 Mb per second, the
attacker must be able to consume at least 1.544 Mb per second (plus a little
bit extra just to make sure) to fill the whole link with traffic. Also, using the
Distributed DoS (DDoS) attacks we discuss later in this chapter, consuming
this amount of bandwidth is trivial.

Now that we've seen the two ways a SYN flood can impact a target, let's
quickly revisit the spoofed source address the attacker might use. If the
attacker chooses an address assigned to a legitimate, responsive machine,
that machine will receive the SYN-ACK backscatter, freeing up the
connection queue, as we discussed. However, think about the impact on
bandwidth. For every SYN the attacker sends, the target will send out a
SYN-ACK packet, and the innocent backscatter receiver will send a RESET.
Thus, by sending one packet to the target, the attacker actually forces three
packets to be sent (the SYN itself, the SYN-ACK, and the RESET), consuming
bandwidth faster. If the attacker chooses a nonresponsive address to spoof,
the connection queue is consumed faster. If the attacker chooses a
responsive address, the pipe's bandwidth will be exhausted more quickly.
Although the attacker can choose the desired effect by selecting an
appropriate set of spoofed source addresses, many bad guys simply opt for
nonresponsive source addresses, without understanding the reason for this
choice. These attackers use nonresponsive source addresses simply because
someone once told them it would work better that way. Of course, most SYN
flood tools don't use a single spoofed source address, but instead select from
a pool of dozens, hundreds, or even thousands of addresses.

SYN Flood Defenses

An important first defense against a SYN flood attack is to ensure that you
have adequate bandwidth and redundant paths for all of your critical
systems. You don't want a script kiddie attacker to be able to suck up all of
your bandwidth easily with a simple SYN flood. If a flood attack does occur,
you need to be able to redirect critical traffic quickly through another path,
so redundant communications links are required. For particularly sensitive
systems that must be constantly available on the Internet, you must also
consider using two or more different ISPs for connectivity.

Different operating system vendors have developed a variety of techniques
for handling SYN floods. Some increase the size of the connection queue,
whereas others lower the amount of time the system will wait on a half-open
connection. A list of different vendor approaches and patches enabling these
defenses for UNIX machines can be found at Windows TCP stack tuning to
lower the SYN flood threat is described in detail at

Another technique for defending against a SYN flood attack relies on a
concept called SYN cookies, which focuses on eliminating the connection

queue as a bottleneck in the face of a flood of SYN packets. If the connection
queue is a problem, why not just get rid of it? That's what SYN cookies do,
by modifying a machine's TCP/IP stack behavior to eliminate the need for
the connection queue to remember all half-open connections. Although they
modify the way sequence numbers are assigned by a machine, SYN cookies
require changes in only the destination TCP/IP stack. SYN cookies function
by carefully constructing the sequence numbers included in the SYN-ACK
packet sent from the target machine, as depicted in Figure 9.4.

Figure 9.4. SYN cookies.

[View full size image]

When a SYN packet comes to a machine that is using SYN cookies, it applies
a cryptographic one-way hash function to the source and destination IP
addresses, port numbers, time rounded to the nearest minute, and a secret
number to create a single value, which is called the SYN cookie. The
calculated SYN cookie is loaded into the initial sequence number (ISNB) of
the SYN-ACK response and transmitted across the network. The secret
number used to formulate the SYN cookie is just a pseudo-random integer
value stored on the server that an attacker would not know. Because the
one-way hash includes a secret number in its input, the attacker shouldn't
be able to predict valid SYN cookies, thereby avoiding the TCP-sequence-
number-guessing spoofing attacks we covered in Chapter 8. Remember, we
certainly want ISNB values to be unpredictable.

After transmitting the SYN-ACK response with the SYN cookie loaded into
ISNB, the machine does not remember the initial sequence number from the
initiating system (ISNA), or even this cookie value (ISNB). In fact, the
machine doesn't remember anything about the connection at all, blissfully
dropping all information associated with the now half-open connection. No
space on the machine's connection queue is allocated, because a connection
queue is no longer required. In essence, the destination machine is storing a
representation of the connection using a slot in the network
communications, knowing that this ISNB information will be returned in a

later ACK packet if the connection is legitimate. If the SYN packet was part
of a SYN flood, no ACK response will ever come back, but that's OK. We
haven't tied up any state remembering this fake connection. In a way, SYN
cookies let us exchange memory resources (a connection queue) for
processor resources (the CPU capacity required to calculate the hash for
ISNB).

If the SYN packet was part of a legitimate connection, an ACK packet will be
returned by the initiating system to complete the three-way handshake. The
receiving machine will compute the same function based on the source and
destination IP addresses, port numbers found in the ACK packet, the
receiving system's secret number, as well as recent values of time. If this
calculation matches the acknowledgment number in the ACK packet minus
one (remember the ISNB is incremented in the ACK response of the third
part of the handshake), the cookie is validated. The system knows that the
ACK is really part of a connection that was generated using the three-way
handshake. Using this SYN cookie technique, a legitimate connection has
been initiated, without the need to remember half-open connections on the
connection queue. Therefore, this technique limits the ability of SYN floods
to fill up the connection queue by eliminating the connection queue. Of
course, the attacker could launch an ACK flood to tie up the target's
processor, as it busily hashes data from each incoming ACK packet. But
that's the trade-off: no connection queue to exhaust but higher CPU usage.

SYN cookies are built into the Linux kernel. To activate SYN cookies on a
Linux machine, the following line should be added to the boot sequence for
the machine:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

Beyond SYN cookies, there are other SYN flood defenses. For critical systems
on the Internet, you might want to employ active traffic shaping tools. These
tools, which are available as extra feature sets (at an additional cost) for
some firewalls and load balancers, sit on the path connecting the sensitive
host to the Internet, such as in front of your DMZ. In addition to having
enormous connection queues themselves, traffic shapers can throttle the
number of incoming SYN packets going to a protected machine, limiting the
number of incoming SYN packets to a level of traffic the protected machine
can handle. By slowing down the rate of connection initiations, traffic
shaping tools can help avoid damaging SYN floods. Cisco IOS 11.1 and later
includes a standard built-in feature called TCP Intercept that, in effect, is a
very simple traffic shaper. A router administrator can configure the router to
allow only a certain load of SYN packets through in a given time interval.

Smurf Attacks

Smurf attacks, also known as directed broadcast attacks, are another
popular form of DoS packet floods. Named after a very popular tool that
implements the technique, Smurf attacks rely on a directed broadcast to
create a flood of traffic for a victim. Remember, as we discussed in Chapter
2, every IP address is made up of two components: a network address and a
host address. If the host part of the IP address is set to a binary value of all
1s, the packet is destined for the broadcast IP address of the network. For
example, if the network IP address is 10.1.0.0 with a netmask of
255.255.0.0, the broadcast IP address for the network would be
10.1.255.255. The two 255 numbers indicate that the host part of the
address consists of 16 consecutive 1s, thereby indicating a message for the
network's broadcast IP address. When a packet destined for a network's
broadcast IP address is sent to a LAN, the router connecting this LAN to the
outside world receives it first. The router can convert the IP (Layer 3)
broadcast message to a MAC (Layer 2) broadcast message, by sending the
packet to every system on the LAN using a destination MAC address of
FF:FF:FF:FF:FF:FF, which is a MAC address made up of all 1s. An Ethernet
message to a MAC address of all 1s sent across a LAN will cause every
machine on the destination LAN to read the message and send a response.

Let's consider the common ping, an ICMP Echo Request packet. A user can
send a ping to the IP network broadcast address of a network. If the router
on the destination network allows directed broadcasts, it will convert the IP-
layer broadcast ping packet to a MAC-layer broadcast so all systems on the
destination LAN will receive it. On receiving this message, all active
machines on the destination LAN will send a ping response. By sending a
single packet, we are able to get many response packets (one from each
host on the destination network, which could have dozens, hundreds, or,
theoretically, thousands of machines). Now, suppose that the initial ping
request to the network broadcast address had a spoofed source IP address.
All ping responses from all machines on the network would be directed to
the apparent source of the packet, that is, the spoofed address. As the
number of machines on the network allowing directed broadcasts increases,
the number of packets that can be generated increases.

As shown in Figure 9.5, an attacker can use this amplification behavior to
conduct a Smurf attack. The attacker sends a ping packet to the broadcast
address of some network on the Internet that will accept and respond to
directed broadcast messages, known as the Smurf amplifier. The Smurf
amplifier is usually just a misconfigured network belonging to an innocent
third party on the Internet. The attacker uses a spoofed source address of
the victim that the attacker wants to flood. All of the ping responses are
routed to the victim. If there are 30 hosts connected to the Smurf amplifier

network, the attacker can send 30 packets to the victim by sending a single
packet to the Smurf amplifier.

Figure 9.5. A Smurf attack results in a flood of the victim.

[View full size image]

An attacker sends packet after packet to the Smurf amplifier, typically
saturating the attacker's link entirely to get the maximum benefit from the
amplification action. If the attacker can initiate packets using a 56-kbps dial-
up line, the Smurf amplifier could generate approximately 30 times that
amount, or 1.68 Mbps, enough to fill up a T1 connecting the victim to the
Internet. Any script kiddie attacker can exhaust a T1 without breaking a
sweat simply by using a Smurf attack from a dial-up line. No cable modem,
Digital Subscriber Line (DSL), or group of bot-controlled systems are even
required, as long as the bad guy can find a Smurf amplifier network with a
factor of 30 or so for amplification. Unlike SYN floods, no connection queue
is associated with ICMP, so the flood prevents legitimate access by
consuming all of the target's communication bandwidth. Of course, the
Smurf amplifier itself has a fixed maximum bandwidth connection to the
Internet, so it will only be able to generate this maximum amount of traffic.
Still, using this Smurf technique, the attacker can quickly and easily create a
flood of ICMP packets at the target machine, all of which would be traced
back to the Smurf amplifier, and not the victim.

There are several tools that let an attacker conduct a directed broadcast
attack available at including the following:

Smurf, one of the earliest directed broadcast attack tools, which gave
the technique its name.

Fraggle, a cousin of Smurf that focuses on UDP instead of ICMP. Fraggle

sends packets to an IP broadcast address with a destination UDP port set
to a service that will send a response, such as the UDP echo service
(port 7). When the echo service receives a packet, it simply sends back a
response containing exactly the same data that it receives. That's why
it's called echo. By using Fraggle to send a stream of packets to an IP
broadcast address on UDP port 7, all machines on the network will echo
the UDP traffic, resulting in the amplifying effect and flood.
Alternatively, Fraggle can work by sending UDP packets to closed ports
on systems on the Smurf amplifier network. Many systems respond with
an ICMP Port Unreachable message when a UDP packet arrives for a
closed port. Thus, for every UDP packet the attacker sends, an amplified
number of ICMP Port Unreachable messages will be reflected back at the
target.

Papasmurf, a combination of the Smurf and Fraggle attacks, allowing the
attacker to use multiple amplifier networks.

So how does an attacker find a broadcast amplifier to use? Some attackers
share good broadcast amplifiers, whereas others hoard them. The folks
behind Norway's Powertech Web site periodically scan the Internet looking
for incorrectly configured networks that can be used as Smurf amplifiers,
and publish a list of them at Although most of these poorly configured
networks offer a couple dozen hosts for amplification, every once in a while
a network with a hundred or so amplifying machines is discovered.
Additionally, the Nmap scanning tool can easily be configured to look for
broadcast amplifiers by having it do a ping sweep of various target broadcast
addresses, as described by Nmap's author, Fyodor, at

Smurf Attack Defenses

There are a variety of Smurf defensive techniques available, as described in
Craig A. Huegen's fantastic paper on Smurf defenses, located at As with
most packet flood attacks, the first defense is to make sure that your critical
systems have adequate bandwidth and redundant paths. Additionally, if you
find that your network is a frequent Smurf victim, you might even want to
filter ICMP messages at your border router, but keep in mind that this tactic
will impair your users' ability to ping your systems.

You also want to make sure that no one can use your network as a Smurf
amplifier. You can do so by surfing to and using their form to test your
network. But be careful. If your network is subject to such a flood, you might
be added to their list of Smurf amplifiers! If your network is indeed
vulnerable to being used as a Smurf amplifier, you must stop directed
broadcast packets at your border router or firewall. In Cisco parlance, the
simple command no ip directed-broadcast applied to each interface

at your external router will prevent your publicly exposed network from
accepting packets sent to the network's broadcast address. This command
prevents your router from converting packets sent to the network's IP
broadcast address into MAC-layer broadcasts, thereby dropping all such
requests as they come into your network. With all such packets being
dropped, your network cannot be used as a Smurf amplifier. Whereas this
configuration is the default in IOS 12.0 and later, Cisco routers with earlier
operating systems and routers manufactured by other vendors must
explicitly deactivate directed broadcasts in their configurations for each
interface on the router. Also, even if you are using IOS 12.0 or later, make
sure you verify that this syntax hasn't been inadvertently dropped by a
router administrator who was trying to clean out the router configuration.

Distributed Denial-of-Service Attacks

A simple SYN flood allowed an attacker to generate traffic from one machine.
A Smurf attack raised the ante, but was still limited to the amount of traffic
that could be consumed by the Smurf amplifier network. In a DDoS attack,
there are no inherent limitations on the number of machines that can be
used to launch the attack and how much bandwidth the attacker can
consume. By allowing an attacker to coordinate the activities of arbitrarily
large numbers of hosts, in a DDoS attack, the sky's the limit. DDoS
represents a nasty turn in the evolution of DoS attacks, and it also is a
harbinger of a whole new class of attacks beyond DoS.

DDoS attacks first appeared publicly in 1999 and have gained popularity
ever since. Indeed, in early February 2000, the profile of these attacks was
raised significantly when they were used in several massive floods of high-
profile Web sites, including such Internet luminaries as Amazon.com, eBay,
E*Trade, and ZDNet. Despite the massive publicity surrounding these
attacks, the Internet as a whole is still very much vulnerable to this type of
attack. Throughout the mid-2000s these capabilities were integrated into the
most popular and prolific bot tools, including variations of phatbot and
agobot, which we discuss in more detail in Chapter 10, Phase 4: Maintaining
Access.

DDoS Architecture

A DDoS attack harnesses the distributed nature of the Internet, with hosts
run by disparate entities around the world, to create a massive flood of
packets against one or more victims. To conduct a DDoS flood, the attacker
first takes over a large number of victim machines, often referred to as
zombies. Other terms applied to these systems controlled by the attacker to
launch a flood include the more general-purpose agents and bots, but the
zombie terminology seems to be the most popular in the context of DDoS

attack agents. Potential zombie systems are located anywhere on the
Internet and have a variety of simple vulnerabilities that the attacker can
quickly exploit to take over the system and install the zombie code. In the
common DDoS attacks observed to date, zombies have been installed on
vulnerable servers at universities, systems at small and large companies,
service provider machines, and home users' systems connected to always-on
DSL or cable-modem services. The attacker will scan large swaths of the
Internet looking for vulnerable machines, exploit them, and install the
zombie software on the systems. Alternatively, a worm can spread DDoS
zombies to hundreds of thousands of machines. Or, an attacker could send a
spam e-mail with an attachment that includes a zombie to trick a victim user
into installing it on a machine. Attackers establish groups of hundreds,
thousands, or even tens of thousands of zombies. One of the biggest cases
I've handled involved over 150,000 zombie machines launching a flood.

The zombie software is the component of the DDoS tool that waits for a
command from the attacker, who uses a client tool to interact with the
zombies. With bot-based zombies, the client software is often an Internet
Relay Chat (IRC) client injecting commands into a shared IRC channel used
by all of that attacker's bots. Alternatively, the client might be a specialized
piece of software designed just to communicate with those zombies. Figure
9.6 depicts this communication for one of the most fully featured DDoS-
specific tools, called the Tribe Flood Network 2000 (TFN2K), written by
Mixter. If the attacker creates a DDoS network using more general-purpose
bot software instead of DDoS-specific zombies, the exact same architecture
is involved. The attacker uses one or more client machines to tell all of the
zombies to execute a command simultaneously, usually to conduct a DoS
attack against the target. All zombies dutifully respond, flooding the victim
in a bloodbath of packets. So, the client communicates with the zombies, but
the attacker usually accesses the client from a separate system. This
technique adds another level of indirection to the architecture, making it
more difficult for investigators to find the attacker. After finding zombies and
locating client programs, the investigators still do not have the attacker, who
is sitting at another machine, perhaps halfway around the world. Attackers
might even use the Netcat relay technique described in Chapter 8 to add
further levels of indirection, making capturing the attacker more difficult.

Figure 9.6. A DDoS attack using Tribe Flood Network 2000.

TFN2K: A Powerful DDoS Tool

Let's spend more time analyzing the features of TFN2K, one of the most fully
functional tools in this genre. It also includes features that have been ported
into most of today's DDoS-enabled bots, so, by analyzing TFN2K, we'll
understand the capabilities of both single-purpose zombies and get a feel for
the DDoS functions of bots. Attackers using TFN2K can direct all of their
zombies to launch several different attack types, including Targa, the
malformed packet DoS attack suite also written by Mixter, as well as the
following:

UDP floods

SYN floods

ICMP floods

Smurf attacks

"Mix" attacks, which include UDP, SYN, and ICMP floods

If the victim doesn't seem particularly vulnerable to ICMP floods, the

attacker can switch to SYN floods. Also, if the attackers have located several
Smurf amplifiers, but have a relatively small number of zombies, they can
amplify their DDoS using a Smurf attack. Perhaps a really lame attacker can
install only ten zombies. By configuring each zombie to bounce off of a
different Smurf amplifier, each yielding a 30-fold increase in traffic, even
this lame attacker can generate 300 systems worth of traffic to hurl at the
target.

One of the most interesting feature sets of TFN2K involves the
communication between client and zombies. To prevent other attackers or
the zombie machine's administrator from accessing the zombie, the client
must authenticate to the zombies using an encrypted password. Also, all
packets from the client to the zombies are sent using an ICMP Echo Reply
packet. TFN2K communicates using a ping response, without ever sending a
ping. Why does TFN2K use such a strange method of communicating? First,
ICMP Echo Replies are allowed into many networks, because the network
administrator configures routers and firewalls to allow inside users to ping
the outside world. Their ping responses have to get back in, so ICMP Echo
Reply packets are allowed. Another reason for using ICMP is to make the
connection stealthier. There is no port number associated with ICMP; the
system just listens for ICMP packets and passes them to the TFN2K
application. Therefore, if the administrator runs Nmap to conduct a port scan
of the zombie machine or runs the netstat –na or lsof –i commands
locally to get a list of open ports (as we discussed in Chapter 6, Phase 2:
Scanning), no new ports will be listed as open for TFN2K. Ports are a TCP
and UDP concept, and are not associated with ICMP.

TFN2K communication supports a variety of other stealthy mechanisms.
First, the source address of all traffic from the client to the zombies can be
spoofed. Further, the zombies themselves spoof the traffic sent to the victim
machines. With this spoofing, when investigating a DDoS attack, the end
victim has to trace the attack back, router by router, ISP by ISP, to one or
more of the zombies. From that point, the attack must be traced back, again,
router by router, ISP by ISP to the client. Even then, we haven't yet found
the attacker, who just connected to the client using Netcat, possibly
forwarded along a Netcat relay network. In other words, finding the attacker
with a truly robust DDoS deployment is very difficult indeed.

In earlier DDoS tools, the client machine included a clear-text file indicating
the IP addresses of all of the zombies under its control. When discovered by
an investigator, this file was very helpful in locating all of the zombies to
eradicate them. However, in TFN2K and most bots, the attackers upped the
ante by encrypting this file at the client, so that if a client is discovered, it
does not tell the investigators where all of the zombies are located.
Furthermore, if the attacker uses IRC to communicate with DDoS-related

bots, the client doesn't need to know the addresses of the clients. It just
injects commands into a chat channel monitored by each bot.

A final interesting TFN2K capability is a function that allows the attacker to
run a single arbitrary command simultaneously on all zombies. In addition to
selecting a particular DoS attack to launch, the attacker can tell all of the
zombies to run one command at the same time, rather like an encrypted
remote shell (rsh) tool built into TFN2K. Using this capability, the attacker
could tell all zombies to FTP and install a new version of TFN2K, to delete all
information on their hard drives simultaneously to throw off an
investigation, or to alter the zombie environment at the attacker's whim.
With this feature, the DDoS-centric TFN2K starts to approach the
functionality of a general-purpose bot, a topic we return to in the next
chapter.

Obscuring the Source with Reflected DDoS Attacks

In some DDoS tools, attackers have further refined their craft by
implementing reflected DDoS attacks. As shown in Figure 9.7, these
reflected attacks take advantage of the TCP three-way handshake, bouncing
an attack off of innocent servers using a spoofed source address, resulting in
a SYN-ACK flood of the victim. In a reflected DDoS attack, the bad guy first
chooses a half-dozen or more high-profile Internet servers, typically Web
sites and mail servers that have a lot of bandwidth. The attacker might
choose popular e-commerce sites, software vendors, or open source software
repositories. The attacker then configures the DDoS zombie to send SYN
packets to these servers, spoofing the source address to appear to come
from the intended flood victim. When these servers receive the incoming
SYN packet, they'll respond with a SYN-ACK directed to the flood victim.
When the victims look at where the torrent of SYN-ACK packets is coming
from, they'll think the high-bandwidth bounce sites are attacking them.
However, they are merely responding to spoofed incoming SYN packets. No
attack software is installed on the bounce sites, but the attackers now have
an extra layer of protection obscuring their true location.

Figure 9.7. Reflected DDoS attacks bouncing off of high-bandwidth
sites.

Of course, the attackers must choose big sites with lots of load-balanced
servers as a reflection point to make sure that their SYN packets don't
exhaust the connection queues of the bounce servers. The RESET packets
sent from the flood victim certainly help alleviate the problem of connection
queue exhaustion on the bounce machines. However, if the bounce servers
do get exhausted by a SYN flood tying up their connection queues, the
attacker's desired SYN-ACKs won't be sent to the ultimate target. Therefore,
bigger is definitely better as far as bounce servers for reflected DDoS attacks
are concerned.

Pulsing Zombies: What a Headache

When investigators analyze a DDoS attack, they often try to trace back from
the victim machines to one or more zombies. After all, the zombies are one
step closer to the attacker, and locating these machines sure helps in getting
their zombies shut off. But remember, most zombies shoot out packets with
a spoofed source IP address. To discover where the packet is really coming
from, investigators must first contact the victim machine's ISP. Of course,
that ISP is just looking at spoofed packets entering its network, so it will
have to look, router by router, to find the ingress point of the packets from
another upstream ISP. Then, the investigative team can contact the
upstream ISP, trace it through their network, and so on. This iterative
process takes time. However, tracing back zombies is far easier if they are
actively sending traffic, because an ISP can quickly identify the flow of traffic
through their network in real time, rather than having to consult (perhaps
nonexistent) logs. DDoS tool developers realized investigators were tracing
active attacks, so they introduced another twist, called pulsing zombies, a
name that sounds like it might better apply to a punk rock-and-roll band (or
a horror flick).

A pulsing zombie floods the target with traffic for a brief period of time,
bursting on for an interval like ten minutes. Then, it goes dormant for
another period of time (perhaps another 30 minutes or so). After dormancy,
it awakens and starts the flooding again for another interval. All of the
attacker's zombies pulse on and off asynchronously, so the average amount
of traffic load is still significant, flooding the victim. This pulsing action
confounds investigators, who cannot rely on the fact that the traffic is
actively being sent as they investigate. As the investigators work with the
ISP, they'll track the packets router by router when suddenly the trail goes
silent. Then, they'll try tracing back to another zombie for a few minutes,
when, suddenly it goes silent. Again and again, each trail goes silent, only to
resume firing later. If the attacker has 10,000 zombies launching the flood,
and each pulses on about 25 percent of the time, the attacker can still
generate traffic from effectively 2,500 machines, while giving the
investigators trying to trace the attack severe headaches.

From SYN Floods to HTTP Floods

Although SYN floods are still the most common form of DDoS attack, we're
starting to see some attackers and their tools opting for HTTP floods instead
of the traditional SYN attack. Because HTTP is a TCP-based service and thus
relies on SYN packets for session initiation, you might wonder what the
difference is between plain old SYN floods and HTTP floods. SYN floods never
complete the three-way handshake, and are therefore fairly easy to detect
by targets and their ISPs. A barrage of SYNs with no follow-up packets is a
highly unusual traffic pattern. When it detects a SYN flood, the upstream ISP
might start filtering these packets when they arrive at the ISP's own

network.

To dodge this type of defense, some attackers use HTTP floods, which send a
legitimate HTTP request from the zombies to a target Web server. These
requests involve completing the three-way handshake with the target
server, followed by retrieval of various Web pages on the target. Therefore,
the traffic pattern associated with an HTTP flood looks like typical users
accessing the Web site. Filtering out bogus requests is much harder than
with a SYN flood.

To perform an HTTP flood, most zombies do not spoof the source IP address.
As we discussed in Chapter 8, completing the three-way handshake using a
spoofed source address involves predicting the ISNB of the target machine's
SYN-ACK response, a process that could be quite difficult for large numbers
of packets. Therefore, most HTTP-flooding zombies simply make the HTTP
connection without any spoofing whatsoever. As you might expect, this
makes tracing such attacks from the target back to the zombie simpler,
because an investigator knows the real IP address of the zombie. However,
some attackers are willing to trade off difficult tracing if they can get harder-
to-differentiate flood traffic.

DDoS: A Look at the Future?

Attackers trying to launch a DoS attack certainly benefit from the massive
scale afforded by DDoS flooding zombies, but things get really interesting
when we apply similar distributed attack concepts beyond DoS attacks. By
harnessing the distributed power of the Internet, an attacker can increase
the amount of damage a single type of attack can accomplish, at the same
time making locating the attacker even more difficult. Currently, a great
deal of work is being done in the computer underground to extend the
concept of distributed attacks beyond DoS. Indeed, many of the attacks
discussed in this book can be mapped into a distributed model.

For example, an attacker can set up a group of zombies or bots to conduct a
more stealthy port scan or network mapping exercise. Each zombie would
send only a few innocuous-looking packets, so detecting the attack would be
more difficult. The attacker still gets the same result—a list of open ports—
but it is received from a bunch of zombies. Similarly, an attacker could
distribute the work of password cracking among a number of machines,
thereby exploiting more processing capacity to crack passwords more quickly
on a virtual supercomputer made up of zombie-infected machines. Be on the
lookout for many more tools using a distributed model in the near future.
We'll look at such capabilities in the bot section in the next chapter.

Distributed Denial-of-Service Defenses

There are two areas of defense against DDoS attacks: keeping zombies off of
your systems and defending against the packet flood itself. First of all, you
definitely don't want your systems to be a friendly home for zombies!
Because attackers deploy most zombies using standard exploits against
unpatched systems or tricking users into installing a bot via spoofed e-mail,
you must keep your systems patched and exercise safe Internet usage. As
we've discussed throughout this book, vigorously apply patches in a timely
manner after testing them carefully. Also, don't run untrusted e-mail
attachments, and educate your users to avoid them as well. User education,
along with solid antivirus and attachment filtering at mail servers can help
stem a lot of these e-mail-borne zombies and bots.

However, because some attacker might still break into your systems and
install a zombie, you must employ egress antispoof filters on your external
router or firewall. Such filters drop all outgoing traffic from your network
that does not have a source IP address found on your network. Such packets
are indicative of a misconfigured host or a spoofing attack. Because DDoS
attacks almost always involve spoofed packets, egress antispoof filters go a
long way in protecting the outside world from a DDoS zombie running on
one of your machines.

Additionally, if you suspect one of your systems has been compromised and
is running a zombie, most antivirus tools have signatures to detect,
quarantine, and uninstall the flooding agent. Make sure you have up-to-date
antivirus signatures because the bad guys release several new zombie and
bot variants every day!

You work very hard to keep zombies off of your own system so that your
machines cannot be used to attack others, yet a few hundred thousand fools
halfway around the planet haven't patched their systems. An attacker
compromises their machines, setting up scads of zombies to launch an attack
against you. How can you defend yourself against the resulting DDoS flood?
As with other flooding techniques we've discussed in this chapter, adequate
bandwidth, redundant paths through multiple ISPs, and traffic shaping tools
are a must for your critical Internet connections. Still, even with all of the
bandwidth that your organization can likely afford, a large enough grouping
of zombies can overwhelm any network. Think about it: Amazon.com was
briefly taken offline in February 2000 in a DDoS flood. Can you afford more
bandwidth than Amazon.com surely has? Most organizations simply cannot.
You can't win this arms race by just buying bigger pipes. You must have
adequate bandwidth to prevent a simple script kiddie flood, but trying to buy
up enough bandwidth to handle a massive DDoS attack will bankrupt most
organizations.

The best defense against a massive DDoS attack involves rapid detection and
the ability to muster the incident response forces of your ISP. You need to

employ IDS tools that can quickly alert you when a DDoS attack starts.
Based on this warning, if you have critical systems on the Internet (like e-
commerce servers that your organization's livelihood depends on or critical
health care systems), you should be able to pick up the phone and speak
with a member of the incident response team at your ISP. Your ISP should
be able to rapidly deploy filters upstream to block the flood traffic at the
points where it enters their network. Although this is a very reactive
defensive strategy, it really is the best way to prepare for a massive DDoS
onslaught and quickly stop one when it comes.

In fact, your ISP can really help improve this kind of defense using a variety
of DDoS detection and throttling tools on their own network. These tools,
which include Arbor Networks' Peakflow, Mazu Networks' Enforcer, and Cisco
Guard DDoS Mitigation Tool, involve deploying sensors on very large-scale
networks, such as an ISP or a big enterprise WAN. When these sensors
discover huge bursts of traffic with patterns that match a DDoS attack, they
can start throttling it by reconfiguring routers before the DDoS victim even
notices the attack. Check with your ISP to see if they are employing such
solutions, and if they aren't, ask them why not. Emphasize to your ISP the
importance of solid DDoS defenses. Gradually, with many people asking for
them, we'll likely see more widespread detection and throttling capabilities
at the majority of ISPs to help control the DDoS menace.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

In this chapter, we have discussed a variety of the most common DoS
attacks in use today. Attackers' motivations for using these tools vary,
including petty revenge, overly zealous competition, or extortion. Regardless
of their reasons, attackers want to bring a target system to its knees and will
use a variety of attacks, ranging from locally stopping services through full-
blown DDoS floods. Given the damage that can be inflicted through a DoS
attack by a determined attacker, you must defend your critical system
against such attacks.

At this stage of the siege, the attacker has completed Phase 3, having
gained (or denied) access to the target systems. With access to the targets,
the attacker now moves on to Phase 4, maintaining access, employing a
variety of fascinating tools and techniques for keeping control of the target
machines.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

DoS attacks do not let an attacker gain access to a system; they let an
attacker prevent legitimate users from accessing the system. Although they
often aren't technically elegant, DoS attacks can severely impact an
organization, making defenses quite important. These attacks fall into two
main categories: stopping a service and resource exhaustion. Each of these
categories of attack can be launched locally or across the network.

Stopping services locally prevents users from accessing them. An attacker
could kill a process that provides the service, reconfigure the system to stop
the service, or even cause the service to crash. A logic bomb is a particularly
nasty method for launching a local DoS attack. To defend against local DoS
attacks, you must keep your systems patched in a timely manner and be
careful when allocating super-user privileges.

Another DoS technique involves locally exhausting resources. Attacks in this
realm include filling up the process table, consuming the entire file system,
or exhausting communications links. To defend against such attacks, make
sure users have the minimum level of privilege required for their job

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

function. Also, you must equip systems with adequate memory, disk storage,
and communications capacity.

An attacker could launch a DoS attack by remotely stopping services. A
common technique for accomplishing this is to send a malformed packet that
exploits a bug in the target operating system or application, causing it to
crash. A large number of malformed packet attack tools are available. To
defend against such attacks, you must keep your system patches up to date
and apply antispoof filters.

The final category of DoS attacks is the most popular: remotely exhausting
resources. Within this realm, packet-flooding tools dominate. To defend
against most of these techniques, you must make sure you have adequate
bandwidth and redundant communications paths.

SYN flooding involves initiating a large number of connections to a target
without finishing the TCP three-way handshake. SYN cookies can help to
defend against such attacks.

Smurf attacks are based on sending packets to the broadcast address of a
network. If the destination network supports directed broadcasts, all
machines on the network will send a response. By spoofing the address of
the original packet, an attacker can flood a victim, using the network
supporting directed broadcasts as an amplifier. To defend against Smurf
attacks, make sure you do not allow directed broadcast messages from the
Internet.

DDoS attacks are particularly damaging. An attacker takes over a large
number of systems on the Internet, installs zombie or bot software on each
of them, and uses them in a coordinated attack to flood a victim. DDoS
attacks allow an attacker to consume enormous amounts of bandwidth. The
more zombies an attacker has, the more bandwidth the attacker can
consume. Attackers launch reflected DDoS attacks to obscure their zombies'
location, and utilize pulsing zombies to make tracing attacks even harder.
HTTP floods look more like normal traffic than SYN floods, letting the
attacker fool some detection systems. To defend against DDoS attacks, you
should utilize IDSs to provide an early warning, and be prepared to activate
the incident response team of your ISP.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 10. Phase 4: Maintaining Access:
Trojans, Backdoors, and Rootkits ... Oh My!

After completing Phase 3, the attacker has gained access to the target
systems. So, the camel's nose is under the tent. Now what? After gaining
their much-coveted access, attackers want to maintain that access. This
chapter discusses the tools and techniques they use to keep access and
control systems. To achieve these goals, attackers utilize techniques based
on malicious software such as Trojan horses, backdoors, bots, and rootkits.
To understand how attacks occur and especially how to defend our networks,
a sound understanding of these tools is essential.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Trojan Horses

You remember your ancient Greek history, right? The Greeks were attacking
the city of Troy, which was well protected against external attacks. After
numerous unsuccessful battles, the Greeks hatched an ingenious scheme to
take the city. They built an immense wooden horse, which they left at the
gates of Troy. The unsuspecting Trojans thought the horse was a gift from
the retreating army (why anyone would think a retreating army would leave
a gift is beyond me!). They brought the horse inside the gates, and, as the
Trojans slept that night, the Greek warriors crept out of the horse and took
the city.

Fast-forward a few millennia. Trojan horse software programs are among the
most widely used classes of computer attack tools. Like their counterparts in
ancient Greece, Trojan horse software consists of programs that appear to
have a benign and possibly even useful purpose, but hide a malicious
capability. An attacker can trick a user or administrator into running a
Trojan horse program by making it appear attractive and disguising its true
nature. Alternatively, bad guys can install a Trojan horse on a victim
machine themselves, disguising the malicious code as some useful or

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

expected program so that unsuspecting users and administrators cannot
detect the attackers' presence. Essentially, at some level, a Trojan horse is
an exercise in social engineering: Can the attacker dupe the user into
believing that the program is beneficial or con the user into running it? The
moral of the story: Beware of geeks bearing gifts!

Some Trojan horse programs are merely destructive; they are designed to
crash systems or destroy data. One such example of a purely destructive
Trojan horse program was a DVD writer software package available for
download on the Internet. This amazing gem had great functionality claims.
It would convert a standard read-only DVD drive (used to install software or
play movies) into a drive that could write DVDs—all through just installing
this free software upgrade! According to the README file distributed with
this apparently fantastic tool, you could create your own movie DVDs or back
up your system with just a free software upgrade. There were only two
catches to this astounding deal. First, it is simply physically impossible to do
this in software when the underlying hardware is incapable of this function.
Second, and tragically, the tool was a Trojan horse that deleted all contents
of the poor users' hard drives. Unfortunately, some unwitting users
downloaded the tool and lost all of their data.

Whereas some Trojan horse tools are merely destructive, other Trojan horse
programs are even more powerful, allowing an attacker to steal data or even
remotely control systems. But let's not get ahead of ourselves; to
understand these capabilities, it's important to explore the nature of another
category of attack tools: backdoors.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks
and Effective Defenses

Backdoors

As their name implies, backdoor software allows an attacker to access a machine using an alternative
entry method. Normal users log in through front doors, such as login screens with user IDs and
passwords, token-based authentication (using a physical token such as a smart card), or cryptographic
authentication (such as the logon process for Windows or SSH). Attackers use backdoors to bypass these
normal system security controls that act as the front door and its associated locks. Once attackers install
a backdoor on a machine, they can access the system without using the passwords, encryption, and
account structure associated with normal users of the machine.

The system administrator might add new-fangled, ultra-strong security controls for access to a machine,
requiring super encryption and multiple passwords for any user on the box. However, with a backdoor in
place, an attacker can access the system on the attacker's terms, not the system administrator's terms.
The attacker might set up a backdoor requiring only a single backdoor password for access, or no
password at all. The classic movie illustrates the backdoor concept quite well. In that movie, the attacker
types in the password Joshua. For the main computer in , typing that password activated a backdoor
that allowed the attacker, as well as the original system designer, to have complete access to the entire
system.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

When Attackers Collide

After conquering a computer system, most attackers want to ensure that other intruders will
be kept off of the system. After all, if a bad guy takes over a machine, he or she doesn't want
some other person raining on his or her parade or making a mistake that gets them both
caught. When an attacker takes over a system, the computer underground refers to that
system being "0wned" by the attacker, with 0wned spelled with a zero instead of an o just to
look more techno-cool, although the pronunciation remains the same. Although the actual
bill of sale might be made out to your company, and the computer sits on your desk, it is
0wned by the attacker, who can reconfigure it or install any software at will. In many cases,
the remote attacker will have greater understanding of and more control over the victim
machine than the user sitting at the keyboard.

So one of the first things a moderately sophisticated attacker will do on a recently
compromised system is to close security holes, including the one through which they gained
access, and install a backdoor. Script kiddies, looking for the easy kill and bragging rights,
usually don't secure their victim against further compromise. The more experienced
attackers who first gain access to a system, however, harden the system, installing security
patches and shutting down unnecessary services to prevent other attackers from gaining
access to the system. Ironically, the attacker is now doing the job of the legitimate system
administrator to prevent other attackers from taking over a system. That's what happens
when you 0wn a machine—you harden its security. If you don't, someone else will 0wn it for
you.

Additionally, because one attacker doesn't want another attacker or administrator to access
the system through a backdoor, sometimes the backdoor security controls are even stronger
than the standard system security controls. For example, whereas the system itself might
require a user ID and password for access, the attacker might employ some form of stronger
cryptographic authentication, possibly using SSH to provide strong public-key-based
authentication and session encryption. When attackers use SSH as a backdoor, they usually
don't configure SSH to listen on its default port (TCP port 22), because the system
administrator might start asking questions if the machine mysteriously and suddenly started
running an SSH server. Instead, the attacker configures SSH to listen on a different port,
using the attacker's own SSH keys for authentication and encryption.

Netcat as a Backdoor on UNIX Systems

As we discussed in Chapter 8, Phase 3: Gaining Access Using Network Attacks, a simple yet powerful
example of a backdoor can be created using Netcat to listen on a specific port. You remember our good
friend Netcat, the tool that is designed to simply and transparently move data around the network from
any port on any machine to any other port on any other machine. Suppose an attacker has gained
access to a system (perhaps using one of the techniques discussed in Chapter 7, Phase 3: Gaining Access
Using Application and Operating System Attacks, or Chapter 8 such as buffer overflows or session
hijacking), has broken into a user account with a login name of fred, and wants to set up a command-

shell backdoor.

To use Netcat as a backdoor, the attacker must compile it with its GAPING_SECURITY_HOLE
that Netcat can be used to start running another program on the victim machine, attaching standard
input and output of that program to the network. This option can be easily configured into Netcat while
the attacker is compiling it. With a version of Netcat that includes the GAPING_SECURITY_HOLE
option, the attacker can run the program with the –e flag to force Netcat to any other program, such as
a command shell, to handle traffic received from the network. After loading the Netcat executable onto
the victim machine, an attacker who has broken into the fred account on a system can type this:

This command will run Netcat as a backdoor listening on local TCP port 12345. Remember,
program name for Netcat. However, an attacker can call the Netcat program any other name desired.
When the attacker (or anyone else, for that matter) connects to TCP port 12345 using Netcat as a client,
the Netcat backdoor will execute a command shell. As we saw in Chapter 8, a Netcat client runs on the
attacker's machine to connect to a backdoor implemented as a Netcat listener on the victim machine.
The attacker then has an interactive shell session across the network to execute any commands of the
attacker's choosing on the victim machine. The context of the command shell session (i.e., the account
name, privileges, and the current working directory) will be the same as the attacker who executed the
Netcat listener in the first place. In our example, the command was executed from an account belonging
to the user fred, so the attacker using the backdoor will have fred's privileges. Table 10.1
commands and explanations to show what an attacker sees on the screen when interacting with this
backdoor listener. (The attacker's keystrokes are in bold.)

Table 10.1. Attacker's Netcat Commands and Responses for a Backdoor Listener with
Explanations

Attacker's Keystrokes and Responses Explanation

This command runs Netcat
in client mode, allowing the
attacker to make a
connection to the victim
machine, where a Netcat
listener is installed on TCP
port 12345.

This command shows the
contents of the directory
that Netcat was started in
on the victim machine.

sensitive_documents tools games

This is the response from
the ls command. Gee, the
sensitive_documents
directory looks interesting.

This command shows the
user ID that commands are
executed under, which is
the user ID of the attacker
who executed the Netcat
listener.

fred

This is the response from
the whoami
commands are run as fred,
the account that was used
to start the Netcat listener.

This command displays the
encrypted password
representations on the
system. If the system does
not use shadow passwords
(as described in
Linux and UNIX Overview),
the encrypted passwords
will be located in
/etc/passwd

/etc/shadow
UID 0 permissions for read
access. Thus, if the fred
account doesn't have
super-user access, the
system will respond with a
message saying that the
user doesn't have the
permissions to read the
file. The fred account, in
our example, does have
sufficient permissions to
read this file.

root:1pdpnHUYx$mIRVhodO/yiCgOeWz/dgp1:
12428:0:99999:7:::
student:1YQwh42HV$fcAFZjTdqDFEWhMpO9Kt70:
12870:0:99999:7:::
fred:1huiiu14J$UshUEI357we52Zjyag3PS0:128
70:0:99999:7:::

Here are the encrypted
passwords. The attacker
can take these password
representations, along with
the account information
from /etc/passwd
feed them into a password
cracking tool like John the
Ripper to determine the
passwords, as described in
Chapter 7

There are several items of interest to note in this interactive session. First, notice that no user ID and
password are required when going through this particular backdoor. The attacker simply connects to port
12345 and starts typing commands, which our Netcat listener dutifully feeds into the command line for
execution. Of course, an attacker could have used a specialized login routine, requiring a password to
access the backdoor. Sometimes, attackers write a simple authentication script around Netcat to check a
user ID and password before running the command shell. Also, note that there is no command prompt
displayed for these commands. The Netcat listener running /bin/sh on Linux or UNIX does not return a
command prompt, requiring the attacker to type commands without the prompt character. When using
the Windows version of Netcat, the familiar c:\ > command prompt is displayed. Finally, notice how the
commands are executed in the context of the user that started the backdoor listener. The
showed the contents of the working directory of the attacker when the Netcat listener was started. The

whoami command showed the effective user ID to be fred, the account used by the attacker when the
backdoor listener was run.

An attacker can also create a very similar backdoor on a Windows system using the Windows version of
Netcat with the Windows command shell, cmd.exe. The command to execute to create such a listener
is:

You might wonder, "Yes, but why? If the attacker has access to the system with account fred, why set up
a backdoor listener for access? Why implement a backdoor when you've already got access through the
front door?" Good question. Attackers often establish a backdoor as a hedge against the possibility that
their normal front-door access might be shut down. A backdoor, ideally, will continue to provide access
for the attacker even as the system configuration changes, with users being added and deleted and
services being turned off and on. What if normal SSH access goes away because a new system
administrator decides to disable SSH and uses a fancy Web-based administrator console for the box? The
attacker can still use a backdoor to gain access even if the original entry point is closed by a more
diligent system administrator. Once attackers gain access, they want to keep it. Backdoors provide just
what the attackers need: reliable, consistent access on their own terms.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

The Devious Duo: Backdoors Melded into Trojan
Horses

We've seen pure Trojan horses (the evil DVD writer example) and pure
backdoors (the example with the Netcat listener executing a shell). Things
get far more interesting when the two classes of tools are melded together
into Trojan horse backdoors. These programs appear to have a useful
function, but in reality, allow an attacker to access a system and bypass
security controls—a deadly combination of Trojan horse and backdoor
characteristics. Although not every Trojan horse is a backdoor, and not
every backdoor is a Trojan horse, those tools that fall into both categories
are particularly powerful weapons in the attacker's arsenal.

Roadmap for the Rest of the Chapter

Throughout the rest of this chapter, we discuss several tools that fall into
the Trojan horse backdoor genre, all operating at different layers of our
systems: application-level Trojan horse backdoors, user-mode rootkits
(which modify or replace critical operating system executable programs or
libraries), and kernel-mode rootkits (which modify the kernel of the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

operating system). Section by section through the rest of the chapter, we
dissect each of these layers one by one, examining the capabilities of
malicious code at each layer and offering defenses for each. As we progress
through these layers, the attacker's ability to hide increases significantly.
Table 10.2 highlights each of these classes of Trojan horse backdoors. In the
table, an analogy is included to illustrate how the particular tool works. For
the analogy, consider a scenario where you are trying to eat soup and an
attacker is trying to poison you.

Table 10.2. Categories of Trojan Horse Backdoors

Type of
Trojan
Horse
Backdoor

Characteristics Analogy Example
Tools in
this
Category

Application-
level
Trojan
horse
backdoor

A separate
application runs
on the system,
giving the
attacker control.

An attacker
adds poison
to your
soup. A
foreign
entity is
added into
the existing
system by
the
attacker.

Remote
control
programs
(VNC,
BO2K,
etc.)
Various
bots
(Phatbot,
Gaobot,
Agobot,
etc.)
Spyware
specimens

User-mode

Critical
operating
system
components
(key system
executables or
libraries) are

An attacker
replaces the
potatoes in
your soup
with
genetically
modified
potatoes

Linux
RootKit 6
(lrk6)
Hacker
Defender
Rootkit
for
Windows

rootkits replaced or
modified by the
attacker to
create
backdoors and
hide on the
system.

that are
poisonous.
The existing
components
of the
system are
modified by
the
attacker.

Other
platform-
specific
rootkits
for BSD,
Solaris,
HP-UX,
and so on

Kernel-
mode
rootkit

The operating
system kernel
itself is modified
to foster
backdoor access
and allow the
attacker to hide.

Attackers
replace
your tongue
with a
modified,
poison
tongue so
that you
cannot
detect their
deviousness
by looking
at the soup.
The very
organs you
eat with are
modified to
poison you.

Adore for
Linux and
FreeBSD
FU Rootkit
for
Windows

As you can see, all of the tools in this class are quite powerful in the hands
of attackers, with each category providing a deeper level of infiltration and
control of a system. Given their power and widespread use, it is critical to
understand how these tools are used and how to defend against them. As we
look at each level of malicious code in more detail, we'll return to that
"Analogy" column from Table 10.2 to get a feel for how each specimen of
Trojan horse backdoor impacts your system, as though you were eating a
bowl of poisoned soup. We analyze each category of Trojan horse backdoor,
starting our detailed analysis by looking at the very popular application-level

Trojan horse backdoors.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer
Attacks and Effective Defenses

Nasty: Application-Level Trojan Horse Backdoor Tools

As described in Table 10.2, application-level Trojan horse backdoors are tools that add a separate
application to a system to give the attacker a presence on the victim machine. This software could
provide the attacker with backdoor command-shell access to the machine, give the attacker the
ability to control the system remotely, or even harvest sensitive information from the victim. The
application-level Trojan horse backdoor analogy of Table 10.2 involves an attacker adding poison to
your bowl of soup. A foreign entity has been introduced into your meal, allowing an attacker access
to your tummy.

An enormous number of application-level Trojan horse backdoors have been developed for Windows
platforms of all types. Because of the use of Windows on millions of computers worldwide, attackers
want to exercise control over these machines. Although the techniques discussed in this section could
also be applied to Linux or UNIX machines (or any type of general-purpose operating system for that
matter), they are most widely used on Windows systems, due to the prevalence of Windows on the
desktop. Application-level Trojan horse backdoors come in a variety of flavors, each with a separate
focus in allowing the bad guy to achieve some goal. Let's zoom in on three different types of
application-level Trojan horse backdoors that support different attacker goals: remote-control
backdoors, bots, and spyware.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Remote-Control Backdoors

What can the poison in your belly allow the attacker to do on your machine? First, application-level
Trojan horse backdoors can give an attacker the ability to control a system across the network. If an
attacker can get one of these beasts installed on your laptop, desktop, or server, the attacker will
"0wn" your machine, having complete control over the system's configuration and use. With a
remote-control backdoor, the attacker can read, modify, or destroy all information on the system,
from financial records to other sensitive documents, or whatever else is stored on the machine.
Critical system applications can be stopped, impacting Internet services or Windows-controlled
machinery and equipment.

Demonstrating the power of remote-control backdoors in the hands of skilled attackers, Microsoft
itself appears to have been attacked with this type of tool in October 2000. Based on reports in the
media, it appears that a Microsoft employee working from home was the victim of an application-
level Trojan horse backdoor called QAZ. Once installed on the telecommuter's computer, the Trojan
horse spread itself around Microsoft's corporate network, gathering passwords and allowing the
attackers to snoop around, even viewing source code from Microsoft products.

Figure 10.1 shows the simple architecture of these tools. The attacker installs or tricks the user into
installing the remote-control backdoor server on the target machine. Once installed, the backdoor
server waits for connections from the attacker, or polls the attacker asking for commands to execute.
The attacker uses a specialized remote-control client tool to generate the command for the remote-
control backdoor server. When it receives a command, the remote-control backdoor executes the
commands and sends a response back to the client. The attacker installs the client on a separate
machine, and uses it to control the server across a network, such as an organization's intranet or the
Internet itself.

Figure 10.1. An attacker uses a remote-control backdoor to access and control a victim
across the network.

Software developers in the computer underground have released thousands of tools with the exact
same architecture shown in Figure 10.1. Sadly, it almost seems like a rite of passage for some in the
computer underground to create a remote-control backdoor and release it publicly. To demonstrate
their coding skills, numerous attackers craft a remote-control tool for Windows, release it to the

world, and then move on to bigger and better attacks, including the rootkit tools we discuss later in
this chapter. When these remote-control backdoor tools are initially released, the antivirus vendors
scramble to devise new signatures to detect each one. For a short time after release, however,
signatures don't yet exist, making the bad guy's job easier.

The Megasecurity Web site at lists thousands of remote-control backdoor tools. This very
comprehensive site is maintained by Aphex, Da_Doc, Magus, and MasterRat. This team provides a
comprehensive inventory, listing each tool's name, author, country of origin, and a screenshot
showing the user interface. They also include a list of TCP and UDP port numbers used by each
remote-control backdoor, the registry keys it modifies or adds, and a brief summary of the tool's
functionality. Although Megasecurity offered the code of each tool for download in the past, they
currently do not distribute the software itself anymore. Now, the site is focused on providing a
comprehensive inventory of these tools, with a list sorted by month of release from March 2000
through today. Some months have a relatively small number of tools released (a dozen), but many
months have more than 50 of these darn things! Figure 10.2 shows a small sample of the user
interfaces of some of the items inventoried at Megasecurity.

Figure 10.2. A small sampling of remote-control backdoors at Megasecurity. Note the
different languages and styles, yet all use the same remote-control client–server

architecture.

[View full size image]

Whenever I'm investigating an attack associated with a remote-control backdoor, I typically search
the Megasecurity site based on the Registry keys, port numbers, or file artifacts I've found associated
with the attacker's tool. Although the Megasecurity site offers its own built-in search capability, I
prefer using Google's handy "site:" directive that we discussed in Chapter 5, Phase 1:
Reconnaissance, to scour through Megasecurity's records. I frequently perform Google searches for
site:megasecurity.org followed by the port number, Registry key name, and file name that
I've discovered in the wild during an investigation. Note that this technique of looking for file names

and related artifacts via search engines is just the starting point of an investigation. I also often
move the evil specimen to an isolated laboratory system without any sensitive data loaded on it.
There, I run the evil program to observe its capabilities before completely restoring the deliberately
infected system to its original state.

Another huge list of remote-control backdoor tools (running on a variety of Windows and non-
Windows platforms) is maintained by Joakim von Braun (of von Braun Consultants) at . The von
Braun list shows the names and default ports used by each Trojan horse backdoor tool. Although
hundreds of varieties of these backdoor Windows tools exist, the script kiddie masses focus on a
small number of these tools. Based on my observations of these tools in the wild, the most popular
Windows remote-control tools are the following (in decreasing order of popularity):

The Virtual Network Computing (VNC) tool, a free, cross-platform (UNIX and Windows) tool used
for legitimate remote administration but often abused as a backdoor, freely available at .

Dameware, a legitimate commercial remote-control tool available for a fee, but also with a free
demo version, at . Like VNC, this normally legitimate tool is sometimes abused by attackers as a
backdoor.

Back Orifice 2000, at , one of the first and most powerful tools in this category.

SubSeven, a very popular remote-control backdoor suite, with several competing versions
available on the Internet.

What Can a Remote-Control Backdoor Do?

Although the functionality of various remote-control backdoors varies, most of them draw from a
basic set of similar underlying functions. One particular tool might offer better control of the GUI
(such as VNC), whereas others might include more control over local resources, including the hard
drive, memory, and file system (such as BO2K). Still others excel at acting as a relay in moving
traffic across the network to obscure the location of the attacker (such as SubSeven). Although
particular tool functionality varies, Table 10.3 provides a round-up of various capabilities included in
a majority of the tools listed at the Megasecurity Web site.

Table 10.3. A Sampling of Remote-Control
Backdoor Functionality

Remote-
Control
Backdoor
Capability

Possible Uses for an
Attacker

An attacker could dupe the
user into entering certain

Pop-up
dialog boxes
on the victim
user's GUI

information or logging onto
specific systems by popping
up a message on the victim's
screen with explicit
directions. Most users will do
nearly anything their
computer tells them to do.
For example, if the user's
screen suddenly flashed:
"You must log in to the
accounting system for an
urgent message from the
system administrator or your
data will be deleted," most
users would follow the
direction. The attacker could
then obtain the user ID and
password for the accounting
system using a keystroke
logger.

Log
keystrokes

A keystroke logger can be
used to gather any
information typed into the
system's keyboard. The
output from the keystroke
logger is usually stored in a
local file, and shows keys
entered into each window.
Even if the user has selected
a difficult-to-guess
passphrase for an incredibly
strong crypto routine, the
attacker can watch with glee
as the keystroke logger
gathers the secret
passphrase to unlock the
crypto key.

List detailed
system
information

Once installed, some remote-
control backdoors can tell the
attacker the operating
system version (including
service pack and individual
patches), the amount of
RAM, CPU type, and hard
drive size of the victim
computer.

Gather
passwords

Some remote-control
backdoors dump locally
cached screen saver,
network access, and dial-up
passwords from the victim
machine. If a user with
administrative privileges
installed the backdoor, the
attacker can dump the
encrypted password
representations from the
SAM database. As described
in Chapter 7, these password
representations could then
be fed into Cain or John the
Ripper for determining other
users' passwords.

View, copy,
rename,
delete,
search, or
compress
any file on
the system

The attacker can access and
modify any file on the
system that the user who
installed the remote-control
backdoor tool has privileges
to access.

Edit, add, or
remove any
system and
program
configuration
by altering
the system's
Registry
settings

The Windows Registry stores
the configuration of most
applications, as well as the
operating system itself. With
Registry editing capabilities,
attackers can reconfigure the
system at their whim.

List, spawn,
and kill any
process

The attacker can shut down
processes or start running
anything on the victim
machine.

Relays for
packet
redirection

This packet redirection
capability allows the bad guy
to turn the controlled
machine into a relay to
obscure the actual location of
the attacker, mimicking the
Netcat relay functionality we
discussed in Chapter 8.

Remotely
accessible
command
shell

Some attackers prefer
remote command shell
access instead of remote GUI
control or access through the
remote-control backdoor
client. With a simple
command shell on the target
machine provided by the
remote-control backdoor, the
attacker can navigate the file
system and execute arbitrary
commands on the machine.

GUI control

Some attackers want the
feeling that they are sitting
locally at the console of the
victim machine. With remote
access of the GUI, the
attacker can watch the
victim's actions, and even
inject keystrokes and mouse
movements.

Streaming
video from a
camera

By activating an attached
video camera on the victim
machine, the attacker can
turn a victim user into the
star of his or her own
Internet television show!
One wonders what drama
could unfold in front of the
victim's camera for all the
world, including the attacker,
to see.

Streaming
audio from a
microphone

Because most laptops and
some desktop computers
have microphones, an
attacker can use a remote-
control backdoor to listen to
all sound picked up by that
microphone. The remote-
control backdoor and the
system's microphone act as a
listening bug in the user's
own cubicle, office, or home.

With a remote-control tool
installed, the attacker can

Sniffers fire up a sniffer on the victim
machine, looking for
sensitive data transmitted
across the LAN.

As an example of these capabilities implemented in one venerable remote-control backdoor, consider
Figure 10.3, which shows an image of the BO2K screen. The attacker has configured BO2K to watch
the GUI of the victim, dump the encrypted password representations from the target machine, and
activate a keystroke logger. The attacker is now about to take over mouse control of the victim
system.

Figure 10.3. BO2K in use.

[View full size image]

What Is So Evil About That?

With these capabilities, most remote-control backdoors look remarkably like legitimate remote-
control programs designed for system administrators and remote users, such as the commercial tools
Symantec's pcAnywhere, Altiris Carbon Copy, VNC, Dameware, Laplink, or even Microsoft's own
built-in Windows Remote Desktop utility. Indeed, many remote-control backdoor tools do the same
thing as these useful remote-control programs, and in some cases, have added capabilities, together
with source code. In fact, as we discussed earlier, attackers abuse some of the legitimate commercial
tools such as VNC and Dameware, using them for illicit remote control.

In a sense, remote-control tools, whether created by commercial companies, open source developers,

or the computer underground, are like a hammer. You can use a hammer to build a house, or you
can hit someone in the head with it. It's the user motivation that determines whether the tool is used
for evil, and nothing in the tool itself. The tool can be used by the white hats (i.e., legitimate system
administrators and security personnel) or the black hats (i.e., the attackers).

Build Your Own Trojans Without Any Programming Skill!

How does an attacker get a remote-control backdoor installed on the victim machine? Most often, the
attackers trick the victim user into installing it. But there's a catch: If I e-mail you a program titled
Evil Backdoor or even VNC, you probably won't run it (although, lamentably, some users will run
anything you send them). One of the most popular methods for distribution of malicious code today
remains mass e-mailing. Every day, millions of spoofed e-mails are sent from infected machines to
everyone in the e-mail contact list of the infected machine, containing an attachment that
implements an application-level Trojan horse backdoor. Because they use the harvested e-mail
addresses from one victim's e-mail contact list, these spoofed e-mail messages might appear to be
legitimate, because they appear to be sent by an acquaintance. Increasingly, we are seeing highly
skilled attackers sending targeted e-mail with Trojan horse backdoor attachments into specific
companies and government organizations, designed to infiltrate those targets on behalf of an
attacker. With a spoofed source e-mail address making the message appear to come from an
important contact in the target, such as a CEO or other high-ranking person, the odds that the e-
mail attachment will be executed increase massively.

To further increase the likelihood that a user will install the backdoor, the computer underground has
released programs called wrappers or binders. These tools are useful in creating Trojan horses that
install a remote-control backdoor. A wrapper attaches a given .EXE application (such as a simple
game, an office application, or any other executable program) to the remote-control backdoor server
executable (or any other executable, for that matter). The two separate programs are wrapped
together in one resulting executable file that the attackers can name anything they want. Two
executables enter the wrapper, and one executable leaves with the blended functionality of both
input programs.

When the user runs the resulting wrapped executable file, the system first installs the remote-
control backdoor, and then runs the benign application. The user only sees the latter action (which
will likely be running a simple game or other program), and is duped into installing the remote-
control backdoor. By wrapping a remote-control backdoor server around an electronic greeting card,
I can send a birthday greeting that will install the backdoor as the user watches a birthday cake
dancing across the screen. These wrapping programs are essentially do-it-yourself Trojan horse
creation programs, allowing anyone to create a Trojan horse without doing any programming.

Numerous wrapper programs have been released, including Silk Rope, Saran-Wrap, EliteWrap, AFX
File Lace, and Trojan Man. The AFX File Lace and Trojan Man programs even encrypt the malicious
code before the wrapping process occurs, a process illustrated in Figure 10.4. That way, antivirus
programs with signatures for the malicious code will not be able to detect the encrypted, wrapped
malicious code, because the encrypted code no longer matches the signatures. To make this
encrypted code functional, however, these wrappers include additional embedded software in the
resulting output program that decrypts the malicious code when the combined package is executed

on the victim machine. Of course, the antivirus vendors have created signatures to detect the
decryption software employed by AFX File Lace and Trojan Man. Still, in future versions of these
types of wrappers, we might see decryptors that dynamically alter their code to evade antivirus
signatures. By recoding itself on the fly, such software would morph itself as it runs, altering its code,
but not its functionality, by choosing from functionally equivalent machine-language instructions.
Software implementing this technique is known as polymorphic code. This fancy term applies to
pieces of code that have the exact same functionality, but a different set of instructions. With
polymorphic code, an antivirus signature that detects one version of the code will not be able to
detect the other, functionally equivalent, code. Yet, although the signature doesn't match, the
functionality does. Using a sophisticated wrapper with polymorphic capabilities, an attacker could
create morphed decryptors that evade detection.

Figure 10.4. Wrapping two executables into a single package, and using encryption to
evade antivirus tools.

But Where Are My Victims?

One of the fundamental problems with these application-level Trojan horse backdoor tools, from an
attacker's perspective, involves knowing where the ultimate victims are. Consider a scenario where
an attacker uses a wrapper program to create a holiday greeting card with a remote-control backdoor
wrapped up inside. The bad guy sends the resulting package via e-mail to one victim. This victim
runs the program and loves the dancing ornaments and jamming holiday tunes. The unsuspecting
victim wants to spread this holiday cheer with other people, forwarding the pretty but poisonous e-
mail to two friends. These two friends like the holiday greeting as well, and forward it to two friends,
and so on, and so on, infesting hundreds or even thousands of computers with the remote-control
backdoor. Ultimately, the attacker doesn't know who all the victims are, and cannot remotely control
them without knowing the victim's IP address. After all, the remote-control client requires the
attacker to enter in the IP address of the victim to be controlled. How can an enterprising attacker
solve this dilemma?

To solve this problem, some of the remote-backdoor programs, including BO2K and SubSeven,
include notification functionality to alert the bad guys when a new victim falls under their control.
Some of these tools advertise the fact that a system with a remote-control backdoor on it has started
up by sending an e-mail to the attacker in effect saying, "Come and get me!" Now, e-mail can take
several minutes to propagate across the Internet. Attackers in a hurry might want realtime

notification about a new victim, rather than waiting for e-mail to arrive. Impatient attackers
sometimes rely on notification via an Internet Relay Chat (IRC) channel to announce a new remote-
control backdoor server in real time. Beyond this announcement capability for newly infected
systems, we'll look at additional uses of IRC for application-level Trojan horse backdoors later in this
chapter, when we cover bots.

Shipping Remote-Control Backdoors via the Web: ActiveX Controls

Remote-control backdoors get even more powerful when melded with some of the active content
mechanisms on the World Wide Web. ActiveX is a Microsoftdeveloped technology for distributing
executable content via the Web. Like Sun's Java, ActiveX sends code from a Web server to a
browser, where it is executed.

These individual applications are referred to as ActiveX controls. Unlike Java applets, which are
confined to a sandbox that limits their ability to attack the host machine, an ActiveX control can do
anything on users' machines that the users themselves can do: alter the configuration, delete files,
send data anywhere on the network, and so on. You simply surf to my Web site with a browser
configured to run ActiveX controls, and my Web server pumps an ActiveX control including a remote-
control backdoor server to your browser, which runs the program and installs my evil code without
your noticing.

Microsoft has engineered ActiveX controls to run only if they have a proper digital signature, using
Microsoft's Authenticode technology. Unfortunately, users can disable this signature check in their
browsers, allowing some very nasty code to run on their systems. Alternatively, an improperly signed
or unsigned ActiveX control forces most browsers to prompt a user asking whether the untrusted
code should be executed. Most users unwittingly click OK without realizing that they've just given
control of their machines over to an attacker.

Trojan Horses of a Different Color: Phishing Attacks and URL Obfuscation

As we have seen, attackers frequently distribute backdoor software as e-mail attachments. However,
another Trojan horse activity associated with e-mail has no attachment at all, but instead a link to a
Web site that appears to belong to a legitimate online enterprise. In these so-called phishing attacks,
the bad guys spew thousands or millions of e-mail messages to a target list of addresses harvested
from victim machines. These e-mails are spoofed to appear to come from a trusted source such as a
bank, e-commerce company, or other financial services organization dealing with sensitive data.
Some of these phishing e-mails are quite convincing, exhorting users to click on the link to reset
their password, review recent purchase activity, or otherwise log in to their account to handle an
urgent situation. But, of course, the link in the e-mail points not to the legitimate Web site, but
instead to a cleverly disguised Web site controlled by the attacker. When an unsuspecting user clicks
the link and sees what appears to be the e-commerce site, he or she might fill in critical account
information, including credit card numbers, Social Security numbers, or banking account numbers.
The bogus Web site, operated by the attacker, then dutifully harvests this sensitive information on
behalf of the bad guys, who will later use it for fraudulent transactions or full-scale identity theft.

With phishing, instead of distributing a Trojan horse backdoor as an e-mail attachment, the e-mail

simply points to a Web site that is itself the Trojan horse. It sure looks like the user's bank, but it is,
in fact, an evil duplicate.

The links included in phishing e-mails are actually accessing the attacker's site, but trick a user in
any one of a variety of ways. The attackers want their links in the e-mail to appear to point to the
legitimate site, but to access their own evil site when clicked. Often, the attackers use an <HREF>
tag to display certain text for the link on an HTML-enabled e-mail client screen, with the link actually
pointing somewhere else.

First, and perhaps most simply, the attacker could dupe the user by creating a link that displays the
text on the screen but really links to an evil site. To achieve this, the attacker could compose a link
like the following and embed it in an e-mail message or on a Web site:

www.goodwebsite.org<p>

Most HTML-rendering mail clients screen merely show a hot-link labeled . When a user clicks it,
however, he or she will be directed to . Browser history files, proxy logs, and filters, however, will
not be tricked by this mechanism at all, because the full evil URL is still sent in the HTTP request,
without any obscurity. This technique is designed to fool human users only. Of course, although this
form of obfuscation can be readily detected by viewing the source HTML of the e-mail message, it will
still trick many victims and is commonly utilized in phishing schemes.

More subtle methods of disguising URLs can be achieved by combining this tactic with a different
encoding scheme for the evil Web site URL. The vast majority of browsers and e-mail clients today
support encoding URLs in a hex representation of ASCII or in Unicode (a 16-bit character set
designed to represent more characters than plain old 8-bit ASCII). Using any ASCII-to-Hex-to-
Unicode calculator, such as the handy free online tool at , an attacker could convert
following ASCII or Unicode representations and include them in an HREF tag:

<A
HREF="http://%77%77%77%2E%65%76%69%6C%77%65%62%73%69%74%65%2E%6F
%72%67">www.goodwebsite.org<p>

<A
HREF="http://www.evilweb
site.org">www.goodwebsite.org<p>

These tactics just scratch the surface of the several dozen mechanisms bad guys use to obscure their
URLs. Other tactics include sending Javascript in the message that encrypts the e-mail content,
including the URLs, only decrypting it when it is displayed in a mail reader or browser's HTML
rendering engine and run. If a user views the source of the message, the decrypting script will be
displayed, along with a bunch of cryptographic gibberish. Other URL obscuring tactics involve
including special characters in the URL that make browsers have problems displaying a full URL, such
as the %01 character, which would make old versions of Internet Explorer stop displaying all parts of
the URL after that character.

These phishing and URL obscuring attacks get even more insidious when combined with the evil SSL
manipulation techniques we discussed in Chapter 8. A bad guy could generate an SSL certificate that
appears to be from a bank or e-commerce company. When a user clicks the link in a phishing e-mail,
an SSL connection is established with the attacker's own Web server. At this point, the browser
might alert the user that the certificate does not appear to be signed by a legitimate Certificate
Authority. The security of the situation is then all left in the user's hands. Will the user allow this
unsecured connection and then supply the attacker's Web site with sensitive information? Sadly,
many users will, completely overriding any security that might have been offered by SSL. Phishing,
URL obfuscation, and SSL trickery are a truly devious combination that we face on a regular basis
today, making it very difficult for users to keep their information secure.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Also Nasty: The Rise of the Bots

The remote-control backdoors we've been discussing are designed so that
the bad guy can have complete control over a machine, one victim at a time.
The attacker can log in to his new prey, control it, log out, and then move on
to control a different victim. However, another class of application-level
Trojan horse backdoor raises the ante significantly: bots. Bots are simply
software programs that perform some action on behalf of a human on large
numbers of infected machines. Unlike the one-at-a-time architecture of
remote-control backdoors, bots are designed for economies of scale. Using
bot software, a single attacker could have dozens, hundreds, thousands, or
even more systems under control simultaneously, each with bot software
installed to maintain and coordinate that control, as illustrated in Figure
10.5. An attacker installs bots or tricks users into installing them on as
many machines as possible, the more the merrier (for the attacker, that is).

Figure 10.5. Bots are designed to be used en masse, increasing the
economies of scale of the bad guy's attack.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Oh, By the Way, Don't Eat That Hot Dog!

You must be careful in downloading software to your computers
from unknown and untrustworthy sources. But you probably knew
that. Still, many users are simply unaware of the danger they face
when trolling the Internet for new toys. These users must be
educated to protect them from damage. An interesting analogy for
this situation involves a user walking down the sidewalk. The user
notices a hot dog on the ground, says, "Gee, I'm hungry," and
scarfs down the meal. Should such users be surprised when they
get sick? Of course not. This scenario is very similar to downloading
software from the Internet indiscriminately, without properly
checking it using antivirus and antispyware tools. Games, browser
search enhancement tools, and other knick-knacks are sometimes
loaded with malicious code, including not only remote-control
backdoors, but also bots and spyware, our next two topics.

Collections of bots under the control of a single attacker are called bot-nets,
and the people controlling such systems are sometimes called bot-herders, a
name that conjures images of a cowboy sitting at a laptop corralling digital
"cattle." With thousands or hundreds of thousands of bots, a bot-herder can
cause significant damage. Indeed, the largest bot-net our team has handled
involved 171,000 systems under the control of a single attacker! The
attacker could have collectively utilized the resources of all of those victim
machines, which included home user systems connected to DSL and cable-
modem lines, university machines in computer centers and dorm rooms,
corporate computers on vast intranets, and government machines scattered
all over the Internet.

Bots originated in the early 1990s as a tool to maintain control of an IRC
channel. Some owners and users of various IRC channels noticed that when
they logged out of a channel, an attacker would grab control of the channel
or take over their chat username with a bot. Once in control of the channel,
the attacker would kick his or her enemies out of the channel and allow in
only those who curried favor with the intruder. The bot would monitor the
channel and grab control when the channel owner or user left. To help
minimize this kind of attack, the channel owners themselves turned to bots,
making sure they never gave up control of the channel in the first place by
employing a bot to periodically send keep-alive traffic to the IRC channel. Of
course, an arms race quickly erupted, with the bad guys deploying more and
more bots to gang up on the channel owners' own bots, trying to force them
out. Although these little bot skirmishes of yesteryear fighting over IRC turf
were certainly entertaining, newer bots have gone mainstream with far

more functionality.

Dozens of bot variations are available today, with source code available
freely for download and customization. Some of the most popular and prolific
are the phatbot family (which includes more than 500 variations based on
tweaks of the same original code, with names like phatbot, gaobot, agobot,
and forbot), the sdbot family (which includes sdbot, rbot, and others), and
the mIRC bot family. Each of these specimens includes very modular code,
which is rapidly being updated by the attacker community. Because the code
is so modular and available in its original source code format, new mutant
strains of bots arise almost every day on the Internet. Whereas some bots
are cobbled together out of poorly written code (such as the sdbot family),
others are very elegantly written, finely tuned for their malicious purposes
(such as the phatbot family). In fact, one bot researcher commented on the
high quality of the phatbot code by saying, "The code reads like a charm; it's
like dating the devil."

From a functionality perspective, most bots include numerous actions that
the bot can take when it receives commands from the attacker across the
network. The phatbot family includes more than 100 different functions,
each in a modular block of code the attacker can choose to embed in the bot
or leave out if the given function is not desired. Variations of phatbot include
all of the functionality we analyzed for remote-control backdoors, including
all of the features of Table 10.3, such as a remote command shell, remote
registry alterations, and streaming video and audio of a victim machine.
However, bot functionality has evolved even further than the Table 10.3
backdoor capabilities, including special features that take advantage of a
large number of infected systems in a bot-net. Table 10.4 includes some bot-
specific features.

Table 10.4. A Sampling of Bot Functionality

Bot
Capability

Possible Uses for an Attacker

Denial-of-
service flood

Many bots include modules to
launch packet floods, including
SYN, UDP, and other packet
types. Some also launch HTTP
floods, making the traffic from all
of the bots in the bot-net mimic
normal access of a target Web
site, as we discussed in detail in

Chapter 9, Phase 3: Denial-of-
Service Attacks. With a bot-net
army of thousands of machines,
the DDoS capabilities we
described in Chapter 9 now have
much more devastating potential.

Vulnerability
scanner

Some bots include distributed
vulnerability scanners that can
look for other machines that
have a given vulnerability. By
exploiting this vulnerability, the
bot can spread to new victims,
extending the reach and scope of
the bot-net. Also, by locating
other machines already infected
with the same bot, the bot-net
can inform the attacker of newly
conquered systems.

File
morphing
capabilities

Some bots are starting to include
rudimentary polymorphic code
capabilities to evade the
signatures of antivirus tools.
Although these features are
primitive at this point, watch for
more evolution on this front in
the near future.

Anonymizing
HTTP proxy

By creating an HTTP proxy that
strips out all information about
where a user is surfing from
(including source IP Address,
user-agent type, etc.), a bot can
support an attacker's anonymous
use of the Internet. By setting up
a half-dozen or more bots with

anonymizing HTTP proxies on
each, the attacker can surf from
proxy to proxy to proxy, making
it nearly impossible for an
investigator to determine where
the attacker really sits.

E-mail
address
harvester

By harvesting e-mail addresses
from an infected machine's e-
mail client program, the attacker
now has a solid list of destination
e-mail addresses to use for spam.
This spam, in turn, can be used
to e-mail the bot itself as an
attachment to new potential
victims. Alternatively, the
attacker could use the e-mail
addresses in a phishing attack to
dupe users into giving up
sensitive information by
pretending to be a legitimate e-
commerce site.

Most bot-nets, including variations of phatbot, sdbot, and mIRC bots, are
controlled via IRC, a protocol that gives the attackers numerous advantages.
First, many networks, especially those ripe with poorly secured systems like
home user machines and university student systems, allow outbound IRC
communication. But even more important, IRC offers the attackers a built-in
one-to-many communications path, in effect implementing a multicast
channel. Think about it. If an attacker wants to send a single command to
171,000 bot-infected machines, the bad guy could write code that creates
this message once and then sends it to each of the 171,000 machines, one
at a time. That's a time-consuming process, even for software on a relatively
fast machine. IRC is a much more efficient bot communication channel. The
various bots in the bot-net are all configured to log into a single IRC
channel. The attacker then logs into this channel and sends commands
across the channel to all of the bots, which then execute the commands. The
attacker doesn't even need to use a specialized client to control the bots.

Instead, the bad guy can log into the channel using any IRC client, and type
special bot-control commands into the channel to make the bots do his or
her bidding. There's no need to replicate the message 171,000 times,
because IRC does that automatically. This use of IRC also lets the bots poll
the attacker for commands, initiating an outbound connection from the bot-
infected system to an IRC server. If the victim machine's personal firewall
blocks inbound connections, that's okay for the attacker, whose commands
are riding into the victim on an outbound IRC session. By default, IRC traffic
is carried over TCP port 6667 listening on the IRC server. Most bots today
still use this default IRC port, although attackers are increasingly using the
same IRC protocol, but configuring their IRC servers to listen on a different
TCP port. That way, their actions are a bit stealthier, without the telltale TCP
port 6667 instantly tipping off investigators.

Although most bots use IRC today, a small number of them are employing
other even more powerful protocols for communication with the attacker.
IRC has numerous benefits for the bad guys, but it has one significant
problem: its reliance on one or a small number of IRC servers to carry the
message to all of the bots. If an investigator shuts down the IRC server or
removes the particular channel used by the bot-net, the attacker is out of
business with a headless bot-net the attacker cannot control. To alleviate
this problem, some variations of phatbot employ another very pernicious
method of communication, a peer-to-peer protocol called Waste. Originally
created by America Online for file sharing among users, Waste is a highly
distributed communication mechanism, without a centralized server to
coordinate communications. Using the Waste protocol, various bot-infected
machines automatically discover each other by scanning for a certain
attacker-chosen TCP port. Once they discover each other, each bot keeps the
other bots up to date regarding commands received from the attacker by
shipping the commands across the network to all other bot-infected systems
that were discovered. So, suppose an attacker has a bot-net of 171,000
systems, controlled via Waste. The attacker can inject commands into any
one or more of these machines, which will dutifully relay that command to
other systems on the bot-net, which will carry the command further to other
systems in the bot-net, and so on and so forth until all of the massed hordes
receive the attacker's information. Now, suppose an investigator discovers
some systems on the bot-net and shuts them down. Let's assume that we've
got an amazing investigator who is able to prune 30,000 bots off of this bot-
net, removing the bot software from each of those machines. Is the attacker
out of business now? Hardly! Using Waste, the remaining systems will
continue to communicate the attacker's wishes. With Waste, the bad guys
have a much more resilient protocol than IRC. Expect to see much more of
this kind of bot communication in the future.

One additional bot feature included in some variants of the phatbot family is

worth noting: the ability to detect a virtual machine environment. Some bot
authors recognized that the good guys are researching the latest bots by
running them in a virtual machine environment, such as VMware or
VirtualPC, to perform dynamic analysis of the bot's behavior. These virtual
machine tools let a user run one or more guest operating systems on top of
a host operating system. With these tools, you could run three or four
Windows machines on a single Linux box, or vice versa. Whenever I'm
looking at the latest bot myself to see how it functions, I instinctively run
the tool in VMware. If the bot under analysis hoses up my virtual machine,
VMware lets me revert to the last good virtual machine image, quickly and
easily removing all traces and damages of the bot without having to reinstall
my operating system.

Yet, because so many researchers rely on virtual machine environments to
analyze malicious code such as bots, the bad guys are trying to foil our
analysis. Some phatbot specimens check to see if they are running in a
virtual machine. If so, they shut off some of their more dastardly
functionality so that researchers cannot observe it. This capability reminds
me of some of the actions of my own children. My son sometimes gets into
fights with my daughter while I'm in the other room. I hear a huge
commotion and the upset shouts of my daughter, a sure sign that the boy
has done something wrong. Yet, when I walk into the room to scope out the
situation, my son almost always smiles at me with a look of pure innocence
on his face, as if to say, "I've done nothing wrong, Daddy. Please move on."
Malicious code, in the form of virtual-machine-detecting bots, sometimes
operates in the same manner when a researcher is investigating its
capabilities.

Most of today's bots detect virtual machines in a very lame fashion by
looking for virtual machine environment artifacts in the file system,
Registry, and running process of the machine. If the bot finds any of the
files, Registry keys, or processes associated with VMware or VirtualPC, it
alters its functionality. However, these types of artifacts are typically created
in the host operating system, and are often left out of the guest operating
system itself, where the researcher typically executes the bot. Thus, most of
today's virtual-environment-detecting capabilities can be trivially fooled. But
that won't always be the case.

A brilliant researcher named Joanna Rutkowska has introduced a tool at that
detects a virtual machine environment in a much more subtle and
fundamental way. Her tool is called the Red Pill, in homage to the movie
where Keanu Reeves' character Neo takes a Red Pill to leave the Matrix and
enter the real world. The Red Pill program runs a single machine-language
instruction for x86 processors, called SIDT. This instruction stores the
contents of the Interrupt Descriptor Table Register (IDTR) in a given

memory location.

You see, the IDTR points to a table in memory that tells the operating
system where it should go to get code to handle various types of interrupts.
Under normal circumstances, this interrupt table (pointed to by the IDTR) is
typically located very near the start of system memory. Yet, when two
machines are running on a single piece of hardware (which they are in the
case of a host and guest operating system of a virtual machine
environment), they cannot use the same IDTR, because that would make
them pretty much the same operating system. Therefore, virtual machines
typically have their own interrupt table located at a higher memory location
than a real system's interrupt table.

The Red Pill simply looks at the IDTR (via the SIDT instruction). If it is a
small number (less than 0xd0), the Red Pill prints out a message saying that
we are running on a real operating system. If it is greater than this value,
the Red Pill says we're on a virtual machine. It works amazingly well on both
Linux and Windows, with both VMware and VirtualPC, and is extremely hard
to dodge. I expect to see the technique used in the future iterations of bots
very soon.

Distributing Bots: The Worm-Bot Feedback Loop

We've analyzed bot functionality and bot communications, but how do these
bots get installed on a victim machine in the first place? Attackers
sometimes rely on the same vectors for bot propagation they've historically
used to deploy remote-control backdoors, namely, installing bots themselves
or tricking users into installing them. Although such techniques certainly
work, they can be difficult avenues by which to achieve a truly enormous
bot-net. To improve their chances of conquering hundreds of thousands of
victims with a bot, attackers have turned to worms.

Beyond the Red Pill: Virtual Machine Escape

The Red Pill's ability to detect a virtual machine environment raises
an important question: If attackers can detect that they are running
in a virtual machine, can they likewise escape a guest virtual
machine, in effect leaving the Matrix and jumping into the host
operating system? Although there is no publicly released code to do
this at the time of this writing, it is a frightening possibility. Many
organizations are rushing to deploy virtual machines as servers on
their business partner networks and even Internet gateways. Here's
a sad scenario we see in many organizations. A group wants to
deploy a server that cannot meet the security requirements of the
organization. This server might be needed for a given business
partner, and is required on the business partner extranet, a
perimeter network. The organization convinces itself that it can
limit its exposure by running the scary application inside a virtual
machine located on the extranet. The organization thinks that if a
bad guy compromises the virtual machine, its exposure is isolated
to that virtual machine itself. Then, inevitably, another group in the
company wants to deploy another scary application on the same
extranet. People start to think, "Hey, we've already got a virtual
machine environment deployed there, so we can just add the new
application in a new virtual machine on the same hardware, saving
ourselves a few bucks!" Then, more and more risky applications are
deployed on virtual machines, often running on the same physical
hardware.

Yet, here's the problem: If attackers find a flaw in the virtual
machine environment, they might be able to escape it and jump
into other virtual machines and into the host operating system
itself! In a sense, the attackers could punch a hole through the
bottom of the virtual machine, directly into the host and other
guest virtual machines on the same physical hardware. Such flaws
are quite possible, and we need to build our networks to carefully
isolate systems that have different levels of trust and are exposed
to different threats. Remember, a virtual machine is not a firewall!
Firewalls are firewalls; that's why we call them firewalls. Don't rely
on a virtual machine environment being impervious to segment
your systems from a security perspective. Virtual machines are
really nifty for managing, patching, and restarting systems in a
convenient, cost-effective manner. But, again, they do not perform
the security isolation of a time-tested, trusty firewall!

Worms are self-replicating code that propagates across a network in an
automated fashion. A worm conquers one machine using a given exploit,
such as a buffer overflow vulnerability. Then, once lodged into that victim
system, the worm uses it to scan for and compromise other machines. This
new set of victims is likewise used to scan for and take over even more
systems, resulting in an exponential rise in the number of systems with the
worm installed.

Historically, worms focused on spreading copies of themselves. Worms begat
worms, which begat more worms. But today, attackers are using worms and
bots together. Suppose an attacker has compromised only ten measly
machines with a bot. That bad guy could write a worm to infect new
machines, and use those ten bot-infected boxes as a nice running start for
worm distribution. Let's suppose that those ten bots spread the worm to 100
systems each, resulting in 1,000 newly compromised machines. The attacker
can include that vary same bot as a payload in the worm. When the worm
takes over a new victim, it carries the bot (and with it, the attacker's
control) to that new system. Now, the bad guy is up more than 1,000 bot-
infected systems, a 100-fold increase in the bot-net size. The attacker can
then craft a new worm that exploits another flaw, using the more than 1,000
bot-infected machines to compromise, let's say, another 100,000 machines,
installing a bot on them as well. So, we've entered a vicious feedback loop,
as illustrated in Figure 10.6. Bots are spreading worms, which are spreading
bots, which are spreading even more worms. No wonder the bad guys are
establishing vast bot-nets around the world!

Figure 10.6. Bots spread worms, which spread bots, which spread
worms, which...

One of the most popular forms of bot-worm combos is a mass-mailing worm
that carries a bot. The attacker sends e-mail spam with an attachment
claiming to be an important document or a critical system patch the user
must install.

Some unsuspecting users run the attachment, which installs a worm–bot
combo on their machines. The bot gives the attacker control. The worm
component then harvests e-mail addresses from the users' e-mail program,
and forwards the same message to a new set of victims. Interestingly, many
of these worms spoof the source address of the e-mail. So, suppose Victim A
gets infected and has e-mail messages from Victim B and Victim C in his e-
mail client. The nasty worm then sends an e-mail from Victim A's machine,
with a source e-mail address of Victim B and a destination address of Victim
C. Victim C will not even realize that Victim A is infected, and might trust
the e-mail appearing to come from Victim B. With thousands of e-mail
addresses harvested from Victim A, this tactic can spread the worm and bot
to a big number of new victims, where the cycle repeats itself. We've seen
such tactics applied to many worms that carry bots, including variations of
the widespread Sobig, Bagle, Netsky, and MyDoom malicious code. Such
techniques are likewise applied in phishing attacks.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Additional Nastiness: Spyware Everywhere!

In addition to remote-control backdoors and bots, another frustratingly
common form of application-level Trojan horse backdoor is spyware. The
Internet today is a cesspool of spyware, with the threat growing all the time
as unscrupulous advertisers and scam artists aggressively foist their spyware
on huge numbers of users around the world. Some innocent Web surfers are
often shocked to discover dozens or even hundreds of spyware specimens
installed on their systems. Spyware, as its name implies, spies on users to
watch their activities on their machine on behalf of the spyware's author or
controller. This spying ranges from fairly innocuous activities to major
invasions of users' privacy, possibly even leading to identity theft. Some of
the most popular spyware capabilities are summarized in Table 10.5. It is
important to note a distinction between spyware and the backdoors and bots
we've been analyzing. The remote-control backdoors of Table 10.3 and the
bots of Table 10.4 typically include huge amalgamations of different
functional doo-dads, bundling together many different rows from those
tables into a single package. Individual spyware specimens, however, tend to
be pretty focused, with each spyware package typically offering only one or
two functions listed in Table 10.5. Some would consider this a major

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

limitation, but, as someone who values privacy, I'm happy we haven't seen
all of these capabilities bundled together in a single package ... yet!

Table 10.5. A Sampling of Spyware
Functionality

Spyware
Capability

Possible Uses for an
Attacker (or Advertiser)

Gathering
large
numbers of
users'
surfing
statistics for
aggregation

By looking at correlated
statistics of users' browsing
activities, advertisers can
customize their ads for
specific consumer types and
place them on the most likely
Web sites to draw desirable
customers.

Gathering
individual
users'
surfing
habits

Advertisers can then tailor
advertisements for a specific
user, trying to maximize
their potential for making a
sale.

Pulling
personally
identifiable
information
about a
user

In its less wicked form, this
kind of activity just lets
advertisers know the phone
number and address of
users. In its more evil
incarnation, this activity can
allow scam artists to engage
in identity theft,
impersonating the user,
buying large items, and
destroying the victim's credit
rating.

Injecting
customized
ads into
users'
surfing
experience

Instead of shooting up
banner ads into a browser
from across the network,
some spyware injects those
ads locally on the victim
user's machine where the
spyware is installed.
Therefore, no matter where
the user surfs, the locally
served banner ads will
appear.

Customizing
or filtering
Web search
results

When a user conducts a
search for a certain product,
this form of spyware injects
specific search results
pointing to a particular
advertising vendor. Likewise,
the competition's search
results can be removed so
the user never sees them.
The user never even notices
that the search results have
been tweaked, thinking that
they all come from a trusted
search engine.

Inserting
pop-up ads

Some spyware pops up one
or two banner ads regardless
of where a user surfs. With
several instances of this type
of spyware on a users'
machine, the victim might be
subject to a barrage of
dozens or even hundreds of
pop-up ads with every site
visited.

Grabbing
keystrokes
from the
user and
sending
them to the
attacker

This most aggressive form of
spyware is often associated
with identity theft or just
stealing money from victims'
accounts.

So this spyware is capable of some pretty invasive stuff, but how does it get
installed on a victim machine in the first place? In some instances, spyware
rides along inside a bot, installed by an attacker or a worm. However, by far
the most common method of spyware propagation is users themselves, who
are tricked into installing spyware that is bundled with other programs.
Some of the add-on search bars for popular browsers include spyware that
aggregates user surfing habits or even tailors search results based on
advertisers' wishes. Some computer games available for free or even on a
commercial basis include spyware capabilities. A few other unique system
add-ons, such as those annoying little animated mouse cursors, special
screen backgrounds, and screen savers carry an undocumented extra
spyware bonus packaged with their main functionality. A few pornographic
Web sites require users to install special video player software or other tools
to optimize those sites' images on users' machines. Such tools quite often
include specialized spyware devoted to the porn industry.

Sometimes, spyware itself is disguised as an antispyware program, designed
to trick users into installing it on their systems, thinking that they've gotten
some level of protection. In particular, the wonderful Ad-Aware program by
Lavasoft is a really good antispyware program, detecting many forms of
spyware on a machine. Ad-Aware is available for free as a tool that you run
on demand, or on a commercial basis with extra features like real-time
spyware installation detection. I use Ad-Aware on my own machine on a
regular basis and have been very pleased with its results in fighting nasty
spyware. However, there are some evil imposters out there, with tools
sometimes named A-daware and even Ada-ware that pretend to be the
normal, wholesome Ad-Aware. Sadly, the imposters actually install spyware
on users' machines. Because of this concern, make sure you use Ad-Aware
downloaded only from and those mirrors that the main site directly links to.
Otherwise, you never know what you're going to get!

So many programs available for free download on the Internet today include
spyware because the companies behind the spyware have made it

economically beneficial for these programs' authors to bundle in a little bit of
spyware. I recently received a message from a software developer who had
written a rather popular computer game, downloaded by 200,000 people
over the last year. The game is available for free, and the author created it
as a labor of love and to have some fun. This game author had received e-
mail from a spyware purveyor containing a pretty lucrative offer. By adding
a couple of small additional programs to his game installation package, this
developer would reap significant financial rewards. For each installation of a
tool that aggregates user surfing habits, the developer would receive a
nickel. With every install of a search bar that would filter and inject ads into
a user's browser, the developer would get a dime. For a pop-up ad
generator, the developer got a quarter. And there were several other
options offered on this spyware purveyor's menu. With the whole menu in
view, the developer realized that by bundling all of these spyware options
into his game program, he could make approximately 95 cents for each
installation. With over 200,000 people installing his game every year, the
developer could make some serious cash on the side, almost $200,000 per
year in extra income! Happily, the game author that e-mailed me was
horrified at even receiving the offer, and never included these functions in
the game. Sadly, however, not all software developers are so scrupulous.
Many of them succumb to these scary offers, lacing their programs with an
unadvertised spyware bonus. In effect, their programs actually become
Trojan horse backdoors. They tease users with one useful or benign function,
while surreptitiously installing another function that gives the attacker some
level of access to or control over the victim machine and user.

Besides bundling with other programs, spyware (and other forms of
malicious code) are increasingly propagating via Web browser
vulnerabilities. As we discussed in Chapter 7, attackers have exploited
otherwise-innocent Web sites and placed malicious code designed to infect
machines that browse these now-toxic sites. By simply surfing to the wrong
site with a vulnerable browser, a victim machine becomes infected with
spyware.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defenses Against Application-Level Trojan Horse
Backdoors, Bots, and Spyware
Bare Minimum: Use Antivirus and Antispyware Tools

The vast majority of the remote-control backdoors and bots described in this
chapter have a well-known way of altering the system, adding particular
Registry keys, creating specific files, and starting certain services. Antivirus
programs include signatures to detect these artifacts created by each tool on
a hard drive and in system memory. Although remote-control backdoors and
bots are not computer viruses (because they do not automatically infect
other applications or documents), they can be detected by antivirus tools. All
of the major antivirus program vendors have released versions of their
software that can detect and remove the most popular evil backdoors and
bots. It's important to note, however, that most antivirus tools do not have
signatures for Netcat and VNC, two programs sometimes used legitimately,
but often abused by attackers as remote-control backdoors.

Beyond the backdoors and bots, which can be controlled by antivirus tools,
we also need to deploy antispyware tools diligently. These tools include
signatures to look for the most common forms of spyware on the Internet.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Some antivirus tools even include antispyware capabilities. Unfortunately,
the antispyware capabilities of some of the antivirus tools are watered down,
due to economic and legal factors. From an economic perspective, some
antivirus vendors limit the comprehensiveness of the signature base of their
bundled antispyware capabilities to help encourage customers to buy a
separate add-on antispyware tool. Rather than selling one program to a
user, the vendor can now sell two.

From a legal perspective, some spyware purveyors have sued antivirus
companies, claiming that their so-called spyware programs aren't, in fact,
malicious. They point out that their programs are merely helping to
customize the user's Web experience based on that user's particular needs
and habits. Underscoring their position, these spyware people point out that
their licensing agreements specifically tell users how their information will
be gathered and used, and that users must agree to these actions before the
program is installed. Of course, this licensing agreement is typically several
pages long, written in indecipherable legalese, and flashed quickly on the
user's screen in small text with a big OK button that many users reflexively
click. Thus, argue these spyware vendors, they've gotten the user's
permission, and therefore their tools aren't evil. One person's spyware is
another person's meal ticket, I suppose. When an antivirus company labels
spyware as malicious, that costs the spyware authors money, so they
sometimes respond with lawsuits. Many antispyware programs get around
this legal imbroglio by not calling discovered spyware specimens "malicious
code." Instead, any discovered spyware is labeled Potentially Unwanted
Programs (PUPs). It's up to the user to evaluate whether a given PUP should
be there or should be deleted, so the antispyware vendor has thus dodged
some significant legal problems.

To deal with these issues, I prefer to run both an antivirus tool and a
separate antispyware tool on each of my machines to get two layers of
protection, one against each type of threat. That way, I don't have to worry
about watered-down antispyware capabilities impacted by economic or legal
wrangling. I can also carefully manage my PUPs based on my own needs.
And, best of all, some of the antispyware tools label Netcat and VNC as a
PUP, letting me make the decision of whether it's my own version of these
tools installed for administration, or some evildoer's version that I want to
eradicate.

Because attackers are constantly developing new remote-control backdoors,
bots, and spyware, it is critical for organizations to load the latest antivirus
and antispyware definitions into antivirus and antispyware software. These
virus definition files should be updated daily or as new signatures are
released. The antivirus and antispyware vendors have all developed
capabilities to download virus definitions across the Internet, and have

included automatic installation of the latest checks. By taking time to
implement an effective antivirus and antispyware program, users and
organizations can minimize the threat posed by application-level Trojan
horses and greatly improve the security of their critical information
resources.

Looking for Unusual TCP and UDP Ports

Many of the remote-control backdoors and bots we've discussed listen on a
given TCP or UDP port. These ports can be discovered using a variety of
mechanisms that we discussed in Chapter 6, Phase 2: Scanning. Remember,
the built-in Windows netstat command, as well as third-party tools like
TCPView, Fport, and ActivePorts, can help you find strange listening ports on
a Windows machine. On Linux and UNIX, the netstat command comes in
handy as well, along with the lsof –i command.

Knowing Your Software

Although antivirus and antispyware tools provide a good deal of protection,
in the end, you have to be wary of what you run on your systems.
Understand who wrote your software and what it is supposed to do. When
you troll the Internet and find some apparently new, useful tool, be very
careful with it! Can you trust it? Antivirus and antispyware tools can help
here by checking to see if the executable has any detectable signatures of
malicious software. However, antivirus and antispyware tools are not a
panacea. They only know certain characteristics of malicious software, and
cannot predict the maliciousness of all programs.

Therefore, beyond virus and spyware checking, you should consider the
developer of the program you are downloading. Is the developer
trustworthy? Do you really want to run a program you downloaded from ,
even if your antivirus and antispyware scanners give it an apparent clean
bill of health? To avoid problems with application-level Trojan horse
backdoor tools, only run software from trusted developers. Of course, many
of the tools discussed in this book come from developers you might not trust.
That is why you should use them with such care, on nonproduction systems
for evaluation purposes.

So, who is a trusted developer, and how do you make sure software came
from a trusted source? The software development community has developed
a variety of techniques to determine the trustworthiness of software. Many
software programs distributed on the Internet include a digital fingerprint so
a user can verify that the program has not been altered. Other developers
go further and include a digital signature to identify the developer of the
program and verify its integrity. By recalculating the fingerprint or verifying

the signature of a downloaded program, a user can be more certain that the
program was written by the developer and was not altered by an attacker.

Digital fingerprints are typically implemented using a hash algorithm. The
Message Digest 5 (MD5) algorithm and the Secure Hash Algorithm 1 (SHA-
1) are common routines used by software developers to create a digital
fingerprint. By running a program such as md5sum or sha1sum, which are
distributed with many Linux operating systems, the developer creates a
digital fingerprint. This fingerprint is stored in a safe place, such as the
developer's own Web site or a high-profile public Web site. After
downloading a program from the developer, users can calculate the
fingerprint of the program on their own system using md5sum or sha1sum
on Linux. Alternatively, you could rely on the md5deep and sha1deep
programs for Linux, UNIX, and Windows, written by Jesse Kornblum and
distributed for free. The public fingerprint can be compared with the just-
calculated fingerprint of the downloaded program to verify the program
hasn't been altered. In this way, fingerprints give users assurance of the
integrity of a program. Figure 10.7 shows an MD5 fingerprint at the very
useful Web site for the sniffer program, tcpdump. Still, you need to be
careful. If attackers break into a software distribution site, they might load a
Trojan horse backdoor of the software and alter the MD5 sum or SHA-1 hash
on the site to match their own malicious code. For this reason, I always
download a new program from a couple of different mirrors and compare the
hashes between the different sites to minimize the chance of an attacker
substituting evil code in place of the program I want to use.

Figure 10.7. MD5 hash of tcpdump helps ensure it hasn't been
Trojanized.

[View full size image]

Going further, other programs carry a digital signature created by the
program's developer. These digital signatures provide integrity assurances
and authentication of the tool's developer. For example, a developer could
use the PGP or Gnu Privacy Guard (GnuPG) programs to digitally sign the
code. Alternatively, Microsoft has created its Authenticode initiative for
digitally signing software developed for Microsoft platforms. By using a PGP-
or GnuPG-compatible program or Internet Explorer's built in Authenticode
signature capabilities, a user can check the signature of a program to verify
that the program came from a given developer and hasn't been altered.

So with these technologies, you can verify that a program was not altered
and that it was written by a given developer. That still leaves open the issue
of whether you can trust that developer. Who can you trust, after all? Can
you trust the software from a major software company? Perhaps. Can you
trust the software from a small developer on the Internet you've never
heard of until you stumbled on their latest cool game? That is purely a policy
issue, and a decision you have to make for yourself and your organization.

User Education Is Also Critical

To prevent application-level Trojan horse backdoor attacks, you must
configure your browsers conservatively so they don't automatically run
ActiveX controls downloaded from the network. All of your Web users should
be educated to avoid alteration of the security settings of their browsers. In
particular, the browser should be configured to execute only signed ActiveX
controls from trusted software houses. Better yet, just disable all ActiveX—

now there's an idea! Of course, if you turn off all ActiveX, some applications
on the Internet might not work. Figure 10.8 shows the security settings of
Internet Explorer that cover downloading and running ActiveX controls,
located in your browser under Tools Internet Options Security Custom
Level. If users alter these settings, they could cause major trouble, allowing
malicious software to seep in from the Web to be executed on a protected
network.

Figure 10.8. Internet Explorer's ActiveX control settings.

Because of these concerns, you might want to block ActiveX controls without
proper digital signatures from trusted sources at your firewalls to prevent
them from coming into your network. Several firewall vendors have the
ability to drop all improperly signed ActiveX controls. By blocking bad
ActiveX controls at the perimeter of your network, you won't have to worry
about these beasts getting through your barriers.

Finally, educate your user base about phishing attacks, and make sure they
don't respond to unsolicited e-mail that appears to come from e-commerce
sites or banks. Whenever they surf to a Web site that requests sensitive
information, users should check to make sure that any certificates associated
the site appear to come from a legitimate site and a legitimate Certificate
Authority. If you find some nefarious phishing e-mail, report it to the Anti-
Phishing Working Group, at , a great team that works to stomp out phishing
by shutting down phishers' Web sites and improving user awareness.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Even Nastier: User-Mode Rootkits

The application-level Trojan horse backdoors we've discussed so far (Netcat
listeners, remote-control backdoors, bots, and spyware) are separate
applications that an attacker adds to a system to act as a backdoor. Although
these application-level Trojan horse backdoors are very powerful, they are
often detectable because they are separate application-level programs
running on a machine. Going back to our soup analogy from Table 10.2, you
could use a poison detector to determine if someone has added poison to
your soup. Similarly, by detecting the additional software running on a
machine (using antivirus and antispyware programs, for example), a system
administrator can investigate and detect the application-level Trojan horse
backdoor.

User-mode rootkits are a more insidious form of Trojan horse backdoor than
their application-level counterparts. User-mode rootkits raise the ante by
altering or replacing existing operating system software, as shown in Figure
10.9. Rather than running as a foreign application (such as Netcat or a bot),
usermode rootkits modify critical operating system executables or libraries
to let an attacker have backdoor access and hide on the system. They are

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

called user-mode rootkits because these tools alter the programs and
libraries that users and administrators can invoke on a system, as opposed
to the kernel-mode rootkits that change the heart of the operating system,
the kernel, which we discuss later in this chapter. Back to our analogy,
rather than adding poison to the soup, usermode rootkits genetically alter
your existing potatoes so that they become poisonous, making detection
even more difficult. There is no foreign additive to the soup; instead parts of
the soup itself have been altered with malicious alternatives. By replacing or
tweaking operating system components, rootkits can be far more powerful
than application-level Trojan horse backdoors.

Figure 10.9. Comparing application-level Trojan horse backdoors
with user-mode rootkits (for Linux and UNIX systems in this

example).

User-mode rootkits have been around for well over a decade, with the first
very powerful rootkits detected in the early 1990s on UNIX systems. Many of
the early rootkits were kept within the underground hacker community and
distributed via IRC for a few years. Throughout the 1990s and into the new
millennium, user-mode rootkits have become more and more powerful and
radically easier to use. Now, user-mode rootkit variants are available that
practically install themselves, allowing an attacker to "rootkit" a machine in
less than ten seconds.

What Do User-Mode Rootkits Do?

Contrary to what their name implies, rootkits do not allow an attacker to
gain root access to a system initially. Rootkits depend on the attackers'
having already obtained super-user access (that is, root on Linux and UNIX
machines, or administrator or SYSTEM privileges on Windows machines). In
a rootkit attack, this super-user access is likely obtained using the
techniques described in Chapters 7 and 8, including buffer overflows,
password cracking, session hijacking, and other means. Once an attacker
conquers root, administrator, or SYSTEM privileges on a machine, a rootkit
is a suite of tools that let the attacker maintain super-user access by

implementing a backdoor and hiding evidence of the system compromise.
User-mode rootkits are available for a variety of platforms, including Linux,
BSD, Solaris, HP-UX, AIX, and other UNIX variations. Several usermode
rootkits have also been released for Windows platforms as well. We'll look at
Linux/UNIX and Windows user-mode rootkits separately in this chapter.

Linux/UNIX User-Mode Rootkits

Most Linux and UNIX user-mode rootkits replace critical operating system
files with new versions that let an attacker get backdoor access to the
machine and hide the attacker's presence on the box. Each rootkit might
alter a half-dozen or more critical executables to achieve these goals. Most
Linux/UNIX rootkits include several elements, including backdoors, sniffers,
and various hiding tools, each of which we explore next.

Linux/UNIX User-Mode Rootkit Backdoors

Some of the most fundamental components of many user-mode rootkits for
Linux and UNIX are a full complement of backdoor executables that replace
existing operating system programs on the victim machine with new rootkit
versions. But how do these rootkits implement their backdoors? To
understand rootkit backdoors, it's important to know what happens when
you log in to a Linux or UNIX machine. When you log in to a system,
whether by typing at the local keyboard or accessing the system across a
network using telnet, the /bin/login program runs. Alternatively, if you
log in using SSH, the ssh daemon runs, typically located in
/usr/sbin/sshd. The system uses the login or sshd executables to
gather and check the user authentication credentials, such as the user's ID
and password for /bin/login and the user's public key for specific
configurations of sshd. Once the user provides authentication credentials,
the login or sshd program checks the system's password file or the user's
SSH credentials to determine whether the authentication credentials are
accurate. If they are okay, we've verified the user's identity, so the login
or sshd routine allows the user into the system.

Many user-mode rootkits replace the login and sshd programs with
modified versions that include a backdoor password for root access hard-
coded into the login and sshd executables themselves. If the attacker
enters the backdoor root password, the modified login and sshd programs
give access to the system, instantly as root. Even if the system administrator
alters the legitimate root password for the system (or wipes the password
file clean), the attacker can still log in as root using the backdoor password
embedded in the login and sshd executables. So, a rootkit's login and

sshd routines are really backdoors, because they can be used to bypass
normal system security controls. Furthermore, they are Trojan horses,
because although they look like normal, happy programs, they are really evil
backdoors.

Figure 10.10 shows a user logging onto a system before and after a user-
mode rootkit is installed. In this example, the login routine is replaced with a
backdoor version from the widely used Linux RootKit, lrk6. Note the subtle
differences in behavior of the original login routine and the new backdoor
version.

Figure 10.10. Behavior of a login executable before and after
installation of a Linux rootkit.

[View full size image]

In Figure 10.10, the first difference we notice in the before and after
pictures is the inclusion of the system name before the login prompt on the
rootkitted system, which says "bob login:" instead of simply "login:".
Additionally, when we tried to log in as root, the original login routine
requested our password. The system is configured to disallow incoming
telnet as root, a common configuration on Linux and UNIX systems, so it
gathered the password but wouldn't allow the login. The original login
executable just displayed the "login:" prompt again. The rootkitted login
program however, displayed a message saying, "root login refused on this
terminal."

Of course, a more sophisticated attacker would first observe the behavior of

the login routine, and very carefully select (or even construct) a rootkit login
routine to make sure that it properly mimics the behavior of the original
login routine. However, if the behavior of your login routine (or sshd
executable) ever changes, as shown in Figure 10.10, this could be a tip-off
that something is awry with your system. You should investigate
immediately. The difference could be due to a patch or system configuration
change, or it could be a sign of something sinister.

To detect backdoors like this, system administrators sometimes run various
executables like the login and sshd programs through the strings
command, a Linux/UNIX program that shows sequences of consecutive ASCII
characters in a file. If an unfamiliar sequence of characters is found, it might
be a backdoor password. After all, a login or sshd executable could have
the backdoor password in it, which it uses to compare to see if the attacker
is trying to get in. A mysterious appearance of a new, unexpected string in
an executable could indicate a backdoor password.

The majority of rootkit developers know of this strings technique and
developed a clever means for foiling it. In most of today's rootkits, the
backdoor password is split up and distributed throughout the backdoor
executable program file, and is not a sequence of consecutive characters in
the file. The password is only assembled in real time when the login or
sshd routine is executed to check if the backdoor password has been
entered. Therefore, the strings routine will not find the password in the
executable, because it is not a sequence of characters.

Furthermore, when a user logs in to a Linux or UNIX system, the login and
sshd programs normally record the newly authenticated user in the wtmp
and utmp files. These accounting files are used by various programs, such as
the who command, to show who is currently logged into the system. The
rootkit versions of the login and sshd programs skip this critical step if
the backdoor root password is used. Therefore, a system administrator that
runs the who command will not be able to see the attacker logged in via the
rootkit's backdoors in login and sshd.

Linux/UNIX User-Mode Rootkits: Sniff Some Passwords

Once attackers have taken over one system, they usually install a sniffer to
attempt to gather passwords and sensitive data going to other systems on
the network. As described in Chapter 8, sniffers can be particularly effective
for attackers trying to gain user IDs and passwords for other machines.
Because of their usefulness, most rootkits include a simple sniffer that
captures the first several characters of all sessions and writes them to a local

file. By capturing the first characters of telnet, login, and FTP sessions, an
attacker could gather the user IDs and passwords for numerous other users.
An attacker can run the sniffer in the background and log in later to harvest
the stored user IDs and passwords.

Linux/UNIX User-Mode Rootkits: Hide That Sniffer!

System administrators on many varieties of UNIX machines can run the
program ifconfig to show the characteristics of the network interfaces.
The ifconfig program shows information such as IP address, network
mask, and MAC address for each network interface. Furthermore, ifconfig
also displays which interfaces are in promiscuous mode, on most UNIX
variations other than Solaris and Linux kernel 2.4 and later. Unfortunately,
Solaris and recent Linux systems do not show promiscuous mode via
ifconfig. The interface is placed in promiscuous mode if a sniffer is
running on a system, gathering all data from the network without regard to
its destination MAC address. By running ifconfig on some UNIX varieties,
the administrator can detect the sniffer, as shown in Figure 10.11.

Figure 10.11. On some UNIX variations, ifconfig indicates sniffer
use by showing the PROMISC flag.

[View full size image]

Of course, the attackers do not want the system administrators to discover
their presence, so they counter this technique of searching for promiscuous
mode. Most usermode rootkits for UNIX include a Trojan horse version of
ifconfig that lies about the PROMISC flag, preventing system
administrators from detecting the rootkit.

Additional Linux/UNIX User-Mode Rootkit Hiding
Techniques

The majority of rootkits replace far more than the login and sshd programs

with backdoor versions and the ifconfig command that hides promiscuou-
smode. The same techniques applied to ifconfig for hiding critical
evidence about an attacker's presence are also employed against numerous
other programs used by a system administrator. Table 10.6 shows some of
the programs that are commonly replaced by Linux and UNIX rootkits to
mask the attacker's activities on the system.

Table 10.6. Programs Typically Replaced by
Linux and UNIX Rootkits

Program
Rootkit
Replaces

Program's
Original
Function

Behavior of
Rootkit
Version

du

Displays disk
usage, showing
how much disk
space is
available.

Lies about
available disk
space, hiding
the blocks taken
up by attacker's
tools, stolen
software,
pornography,
and sniffer logs.

find

Allows users to
find files and
directories, such
as programs
and recently
modified files.

Lies about the
presence of the
attacker's files,
such as sniffer
programs and
other tools,
hiding them
from view.

ls
Shows the
contents of a

Lies about
presence of
rootkit files,
hiding them

directory. from users and
administrators.

netstat

Often used to
show processes
listening on
various TCP and
UDP ports.

Lies about
specific ports
used by the
attacker,
masking the fact
that a process is
listening there.

ps
Displays a list of
running
processes on
the system.

Lies about any
processes the
attacker wants
to hide.

syslogd

Logs various
events in the
system logs,
potentially
gathering
evidence of the
attack.

Does not log the
attacker's
actions, by
omitting from
the system log
various items
associated with
the attacker's
accounts,
source IP
address or
system name,
and particular
types of
activities.

Each of these critical system programs is replaced with a Trojan horse
alternative. Sure, they look and function like the normal programs, but they
hide malicious behavior. Taken together, all of these Linux and UNIX

programs are really the eyes and ears of a system administrator. They allow
the administrator to determine what is happening on the system by
examining network devices, the file system, and running processes. By
replacing the system administrator's eyes and ears, the attackers can very
effectively hide their presence on a system.

User-Mode Rootkits: Covering the Tracks

Rootkits are designed to be as stealthy as possible, and include several
techniques to mask the fact that a system is compromised. Many system
administrators discover intrusions by observing changes in the last modified
date of critical system files (like login, sshd, ls, ps, du, and other
executables). Most user-mode rootkits for Linux and UNIX can alter the
creation, modification, and last access time for any rootkit replacement files
by setting these times back to their original value. The changed times are
undetectable, because they are reset to their original value before the
installation of the rootkit. Furthermore, using compression and padding
routines, the rootkit replacements typically have the exact same size as the
original executables.

Some Particular Examples of Linux/UNIX User-Mode
Rootkits

A veritable zoo of user-mode rootkits is in widespread use today. A good
sample of the diversity of rootkits can be found at , a location with more
than 100 rootkit variations for numerous types of Linux and UNIX systems.
The Linux RootKit 6 (lrk6), written by Lord Somer, is among the most fully
featured rootkits available today. As its name implies, lrk6 targets Linux
systems, and includes Trojan horse versions of the following programs:

chfn netstat
chsh passwd
crontab pidof
du ps
find rshd
ifconfig syslogd
inetd tcpd
killall top
login sshd
ls su

With all of these replacements, it's a wonder anything is left standing on a

system with lrk6.

The shv4 rootkit is another very popular user-mode rootkit for Linux that we
have seen in many of our incident response investigations. Some versions of
shv4 are incredibly easy to install, including a configuration program that
loads, configures, and hides all Trojan horse executables with a single
command. Even the backdoor login account name and password are
automatically configured at the installation command line. The shv4 Trojan
horse repertoire includes the following:

dir md5sum
du netstat
find ps
ifconfig pstree
login slocate
ls sshd
lsof top

Although this is a smaller number of replacements than lrk6, these shv4
rootkit alterations pack a powerful punch. Of the items in this list, the one
that should jump out at you is the md5sum program. As we discussed
earlier, this routine implements the MD5 hash algorithm, sometimes used by
administrators to look for changes to critical system files. The shv4 rootkit
replaces md5sum with a new version that lies about the MD5 hashes of
certain other files included with the rootkit. Therefore, by running the built-
in md5sum program on an shv4-infected system, the administrator will not
notice any changes to the other programs included with the rootkit that the
attacker configured the evil version of md5sum to disguise. Their MD5
hashes will appear (based on the lying md5sum replacement) to be the exact
same value before rootkit was installed. To avoid this kind of problem, an
administrator should run an md5sum program from trusted media, such as a
CD-ROM or a write-lock protected USB memory drive. We'll cover a couple of
free CD-ROM images you can download for such analysis later in the
chapter, when we address kernel-mode rootkits.

Windows User-Mode Rootkits

As we've seen, most Linux and UNIX user-mode rootkits replace critical
operating system program files with evil substitutes. Most Windows user-
mode rootkits opt for a slightly different approach: altering the memory of
running processes associated with the operating system. By altering the
memory of a running process, such as Task Manager or an executing
netstat program, the attacker can hide processes and TCP and UDP port

usage, without even changing the file associated with these executables on
the hard drive. We've still got a user-mode rootkit, though, because the bad
guy is altering the operating system components that users and
administrators rely on. This change in tactics for Windows systems is caused
by several factors, but two are paramount:

Starting with Windows 2000 and later, Microsoft has included a built-in
file integrity checker in Windows systems called Windows File Protection
(WFP). This capability runs silently in the background, monitoring
thousands of critical operating system files to see if they are changed in
an unauthorized fashion. If WFP detects a change, it rolls back the
original version of the file. Therefore, if an attacker replaces some
critical files with rootkit versions, WFP quickly cleans up, and, in effect,
uninstalls the rootkit. Although there are methods for disabling WFP,
such tactics are not typically utilized, because it's far easier to make a
Windows rootkit without altering files on the file system.

The Windows operating system includes various API calls that let one
running process connect to and debug another running process, as long
as the first process has debug rights. These rights are given to
administrator accounts by default. Thus, an attacker can use an evil
process running as administrator to connect to another running process,
such as Task Manager. The evil process can then read and even change
the memory inside the target process, overwriting software inside of that
running process to change its behavior and capabilities.

Windows User-Mode Rootkit Hiding Tactics

Let's analyze how a Windows user-mode rootkit can help an attacker hide on
a Windows machine by altering running processes. First, we need to think
about what an attacker might want to hide. The bad guys want to disguise
their presence on a machine by making their malicious processes, files,
Registry keys, and active TCP and UDP ports invisible to running programs
on the machine. Most Windows applications used by administrators to look
for these elements rely on a handful of API calls into the various Windows
libraries, especially ntdll.dll, a big library used by many programs to
interact with Windows itself. For example, the built-in Windows Task
Manager makes various calls into certain critical libraries to determine which
processes are running. Similarly, the dir command and Windows File
Explorer use a specific set of API calls to determine which files are present
on the machine. Likewise, regedit and netstat look for Registry keys
and TCP and UDP ports, respectively, with certain calls. While each one of
these programs is running, its process memory contains the code to invoke
these functions so the program can display the system status.

A running rootkit can overwrite these API calls in each running process so
that they point not to the normal Windows code to implement the function,
but instead to the attacker's own code. This process of using debug privileges
to overwrite API calls in running processes is called API hooking. So a
process like Task Manager will make an API call to get a list of running
processes on the machine. Typically, Task Manager uses the
NtQuerySystemInformation API call to get this list of processes. However,
the rootkit process can overwrite this API call, so that Task Manager
unknowingly accesses the attacker's code. The attacker's code will, likewise,
get a list of running processes using the normal NtQuerySystemInformation
API call. However, before giving the results back to Task Manager, the
attacker's code filters out certain processes from the list that the attacker
doesn't want the user to see. In effect, the attacker is wrapping the normal
API handling code for NtQuerySystemInformation with the attacker's own
functionality. So, in the end, Task Manager will see only those running
processes the attacker wants it to see.

Beyond Task Manager and the NtQuerySystemInformation API call, many
Windows user-mode rootkits hook more than a dozen different API calls to
hide various aspects of the system. Table 10.7 lists a handful of the most
popular API calls on Windows machines that user-mode rootkits hook. It's
important to note that this list is a small sampling of some of the commonly
hooked API calls. Some user-mode rootkits hook many additional API calls to
hide on the system.

Table 10.7. A Small Sampling of Windows API Calls
Hooked by Some Rootkits

API Call Hooked by
Rootkit

Purpose of
the API

Rootkit's
Purpose in
Hooking the
API

NtQuerySystemInformation

Shows the
status of the
system,
including
running
processes
and
performance
data.

Hide particular
running
processes.

NtQueryDirectoryFile
Shows a list
of files and
directories.

Hide particular
files in the file
system.

NtEnumerateKey

Searches for
specific keys
in the
Windows
Registry.

Hide particular
Registry keys.

NtReadVirtualMemory

Reads
specific
areas of
memory
from a
running
process.

Prevent
rootkit-
detection
tools from
looking in
memory for
hooked API
calls.

One of the more interesting items in Table 10.7 is the hook for the
NtReadVirtualMemory call. Sometimes, investigators run debuggers to
connect to running processes and interrogate memory for signs of API
hooking, namely Windows API calls that have been overwritten with an
attacker's code. But investigators and their debuggers often rely on the
NtReadVirtualMemory call to look for such signs of a rootkit. By hooking this
API call, some rootkits attempt to thwart this style of investigation. When
the NtReadVirtualMemory call is made, the attacker returns a normal-
looking memory image to the debugger, masking any hints that the memory
has been altered via API hooking. That's very subtle, and an amazing feat of
antidetection technology for the bad guys.

Implementing Windows User-Mode Rootkit Backdoors

In addition to API hooking for stealth capabilities, many Windows user-mode
rootkits include a command-shell backdoor, similar in functionality to the
Netcat command shell listeners we covered at the beginning of this chapter,

offering up cmd.exe access across the network. It's important to note that
the backdoor program's file, running process, and port number are all hidden
using various API hooking mechanisms.

Some Particular Examples of Windows User-Mode Rootkits

One of the most popular user-mode rootkits for Windows is Hacker Defender
(also known as hxdef), written by a rootkit designer who calls himself "holy
father." A nickname like that must make for interesting conversations with
local clergy. Hacker Defender, located at , is designed not to defend a system
against attackers. Quite the opposite is true, in fact. Hacker Defender is
designed to defend the bad guys. The tool is centered around API hooking,
which it uses to hide an enormous number of artifacts on a system that
attackers might want to mask. Its features include the following:

Hiding files, processes, system services, system drivers, Registry keys
and values, and TCP and UDP ports.

Lying to users and administrators about how much free space is
available on the hard drive, so an attacker can mask the size of archives
of pirated software, sniffed passwords, pornography, and other items the
attacker has deposited on the system.

Hiding the alterations it makes to running processes when hooking APIs
to thwart investigators using debuggers.

Creating a remotely accessible command-shell backdoor, made invisible
on the local system through the API hooking mechanisms.

Implementing a relay that redirects packets across a network, obscuring
their source, like the Netcat relays we covered in Chapter 8, and the
remote-control backdoor capabilities we discussed in this chapter.

All of this functionality is achieved by a new service introduced into the
system, called hxdef by default, that runs in the background and monitors
system activities to make sure everything is hidden appropriately. Oh, and,
of course, this hxdef process itself is hidden from view using the same API
hooking procedures.

All of this action is controlled by a configuration file that is included with
Hacker Defender. In this INI file, the attacker has to specify in advance each
of the elements that needs to be hidden, using a convenient syntax, such as
[Hidden Ports] TCP:port_num and Hidden RegValues
[reg_key_name]. Although this configuration file format is pretty
straightforward, it does take some getting used to. What's more, if, after
installing Hacker Defender, the attackers create any additional artifacts on

the system, they have to remember to go back to the INI file and tweak it to
hide their new items. If they forget to do so, a diligent system administrator
might notice the attackers' presence. To help alleviate this concern, an
attacker can configure the INI file with wildcard characters, so that all files,
processes, and Registry keys that start with a given sequence of characters
will be hidden, regardless of when they are created after the rootkit is
installed. By default, any of these items whose name starts with hxdef is
hidden.

Figures 10.12a and 10.12b (on pages 600 and 601) show Hacker Defender
in action. For this demonstration, the attacker ran a Netcat backdoor
listener, which was named evilnc.exe, on TCP port 2222 ready to invoke
cmd.exe on receiving a connection (using the syntax evilnc.exe –L –p
2222 –e cmd.exe, of course). As you can see in Figure 10.12a, before
the rootkit is installed, we can see the Hacker Defender rootkit and its
configuration file in the file viewer (named hxdef100). The netstat
command shows TCP port 2222 listening for connections, and the
evilnc.exe process is visible in Task Manager. Then, the attacker installed
the rootkit simply by running its executable file with administrator
privileges. After the rootkit is installed, in Figure 10.12b, the hxdef100
rootkit executable and configuration file, as well as TCP port 2222 and the
evilnc.exe process, simply disappear. Yet, the evil Netcat backdoor
continues to run, offering the attacker remote access to the box, well hidden
by Hacker Defender.

Figure 10.12a. The system before Hacker Defender is installed.

[View full size image]

Figure 10.12b. The same system after Hacker Defender is installed.

[View full size image]

Besides Hacker Defender, another popular user-mode rootkit for Windows is
the AFX Windows Rootkit, written by a developer who calls himself Aphex.
This tool was originally released in 2003, but has been updated several
times since then. As with Hacker Defender, the AFX Windows Rootkit uses
API hooking techniques to hide files, processes, Registry keys, and TCP and
UDP ports. What makes this tool special is its ability to create a hidden world
for the attacker on the victim machine.

Remember how we mentioned earlier that an attacker must remember to
hide new artifacts carefully by tweaking the INI configuration file for Hacker
Defender? If the attacker gets sloppy, some artifacts won't be hidden, giving

a suspicious system administrator the ability to detect the attacker. The AFX
Windows Rootkit avoids this concern in a particularly ingenious way: It
centers everything around the concept of a single hidden directory. As
illustrated in Figure 10.13, the attacker places the AFX Windows Rootkit
executable in one directory on the victim machine and runs it. The rootkit
then hides this rootkit directory from view. Then, everything else that
happens from this rootkit directory is hidden. Any files or subdirectories
created in the rootkit directory are hidden. Any executables that run out of
the rootkit directory or its subdirectories will have hidden processes. Any
Registry keys created by these invisible processes will be hidden. And, any
TCP or UDP ports used by processes running out of the rootkit directory will
be hidden. In other words, the attacker doesn't have to remember to go back
and hide any newly created artifacts on the system. As long as the bad guy
works out of the hidden directory, all items will be automatically invisible on
the machine. The rootkit maintains an inventory of artifacts on behalf of the
attacker, and hides them in a systematic way. In a sense, the rootkit erects
a cone of invisibility around the hidden directory, not letting system
administrators or users see what is happening inside. No rootkit
configuration is therefore necessary by the attacker, because everything is
hidden automatically.

Figure 10.13. The AFX Windows Rootkit creates a "cone of
invisibility" centered around the rootkit directory.

[View full size image]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defending Against User-Mode Rootkits
Don't Let the Bad Guys Get Super-User Access in the First
Place!

As we have seen, user-mode rootkits are quite powerful, and preventing
their installation is certainly a worthwhile pursuit. As we've noted, an
attacker must first conquer super-user access to install a rootkit. By
preventing an attacker from getting root, SYSTEM, or administrator access in
the first place, you prevent them from installing rootkits. Therefore,
everything we've discussed about securing a system throughout this book,
including using difficult-to-guess passwords, applying security patches, and
closing unused ports, are very helpful in preventing attackers from gaining
super-user access and installing rootkits. If you are a system, security, or
network administrator, your organization must have a defined security
program in place for hardening systems and maintaining their security.

One set of tools that can help you harden your systems is created by the
Center for Internet Security (CIS), a volunteer group focused on improving
the security state of systems on the Internet. Their hardening templates,
available for free at , are a great starting point for improving the security of

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

your systems. They've released hardening templates for Windows 2000,
Windows XP, Solaris, HP-UX, Linux, Cisco routers, and even Oracle
databases, among other system types. Each template provides dozens and in
some cases hundreds of tweaks of various operating system and
infrastructure settings to harden the systems beyond their default stance.
Keep in mind however, that these templates are merely a starting point; one
size doesn't necessarily fit all. For example, the Windows XP template
offered by CIS might harden your system so much that your particular mix
of applications can no longer function, given its reliance on default system
settings. At the same time, their Linux template might not harden a system
enough to meet your super-duper, ultra-tough security needs. That's not to
say that their Windows XP settings are particularly strong or their Linux
ones are weak. All of their templates were created by a consensus among
large numbers of people to fit "typical" environments. Thus, start with the
CIS templates and tweak them appropriately to meet your needs. As a
bonus, CIS offers free scoring tools to compare your existing configurations
to the CIS templates, so you can see how out of joint or in the groove you
already are.

File Integrity Checkers

Unfortunately, even if you keep your system hardened, an attacker might
still find some unknown hole in your system, gain root, and install a rootkit.
There is no such thing as 100 percent security; flaws in information
protection schemes happen. So how can you detect a rootkit once it is
installed? As we have seen, the computer underground has very carefully
designed rootkits to foil detection. However, all is not lost. We can pierce
their veils of secrecy.

One of the best ways to detect user-mode rootkits is to use cryptographically
strong digital fingerprint technologies to periodically verify the integrity of
critical system files. A file-integrity checking tool does just that, and is very
helpful in protecting systems against user-mode rootkits. By calculating
cryptographic fingerprints of sensitive system files and comparing against a
trusted base of good fingerprints, a file integrity checker can detect
alterations made by the attacker who has replaced files, altered libraries, or
even included nasty new stuff in critical system directories. These tools use
one-way hash functions, such as MD5 and SHA-1, to create a unique
sequence of bits (a digital fingerprint, essentially) based on the contents of a
given file or directory. Because MD5 and SHA-1 are one-way hash functions,
an attacker will not easily be able to determine how to modify the file in
such a way so that its MD5 and SHA-1 fingerprints remain the same.
Therefore, a system or security administrator should create a read-only
database of cryptographic hashes for critical system files, store these hashes
offline, and periodically compare hashes of the active programs to the stored

hashes looking for changes.

When deploying a file integrity checker in this way, I strongly encourage you
to configure the tool to create hashes using at least two separate hashing
algorithms, such as both MD5 and SHA-1. Some recent research has
indicated weaknesses in both MD5 and SHA-1 hashes that could allow an
attacker to create two different executables with the same MD5 or SHA-1
hash, a problem known as a hash collision. Yet, although both MD5 and
SHA-1 have had some problems discovered, it remains pretty darned
unlikely that someone could purposely create collisions in both MD5 and
SHA-1 at the same time, so you can get a reasonable level of protection by
applying two or more hash algorithms in parallel. That is, run both MD5 and
SHA-1 hashes and use your file integrity checking tool to automatically look
for discrepancies. The particularly paranoid reader might want to consider
running a file integrity checking tool that uses one or more hash algorithms
in addition to MD5 and SHA-1, such as RIPEMD-160. Most of today's tools
support MD5 and SHA-1. In the future, additional algorithms will likely be
added.

Tripwire is a wonderful file integrity checking tool originally written by Gene
Spafford and Gene Kim of Purdue University. Tripwire generates hashes of
critical files and directories. On a Linux or UNIX system, Tripwire can look
for changes in the login, sshd, ifconfig, ls, ps, and du files, among
the many other executables frequently changed by user-mode rootkits. On a
Windows machine, Tripwire can look for additions or changes to the critical
system32 directory where many Windows rootkits drop executables and
libraries that tweak the system's behavior. A free version of Tripwire is
available for noncommercial use on Linux at . Furthermore, Tripwire has
been commercialized at , so commercial support is also available. Other free
and open-source file integrity checking solutions include the Advanced
Intrusion Detection Engine (AIDE) and Osiris. Beyond Tripwire, AIDE, and
Osiris, more than a dozen other vendors sell file integrity checking solutions,
including GFI Languard System Integrity Monitor, Ionx Data Sentinel, and
others.

The trusted hashes or signatures created by any of these tools should be
stored on read-only media (such as a write-protected USB token drive or a
write-once CD-ROM). You should check the hashes of your critical
executables against this safe database on a regular basis (such as hourly,
daily, or weekly) and all changes must be reconciled with any normal system
administration changes on the box. Of course, an integrity checking tool
works best if you apply it before an attack occurs, so you have a secure
baseline of hashes to compare against. If you are comparing the hash of a
backdoor login or sshd executable with the hash of the same backdoor
from a week earlier, you won't detect any problems. You must compare

against a trusted baseline, like the original system installation or a recent
patch. Therefore, you must have a policy and processes regarding running
file integrity checkers on all critical systems. To help establish a safe
baseline, various organizations offer hashes of critical components of trusted
versions of operating systems available for access on the Web. The Web site
has hashes for numerous Linux and UNIX system types. What's more, the
National Institute of Standards and Technology (NIST) offers a free database
of various system hashes online via their National Software Reference
Library (NSRL) at . This massive index includes the MD5 and SHA-1 hashes
for more than 25 million different files associated with popular operating
systems and applications.

When running a file integrity checker, make sure you analyze its output and
reconcile all changes to critical system files. Why did your login program
change? Did anything else change? Was it the result of a legitimate system
patch or other upgrade a system administrator applied since you last ran the
integrity check? If not, your system might have been rootkitted.

Uh-oh ... They Rootkitted Me. How Do I Recover?

If you detect a rootkit on your system, you have a significant problem. An
attacker has gained super-user-level access to your system (after all, he or
she needed super-user privileges to alter the operating system). When a
system has a super-user compromise, it can be very difficult to determine all
the files the attacker might have modified. Of course, your file integrity
checking program will indicate which of your critical system files have been
altered. So, can you simply replace those programs with the original, trusted
versions? Unfortunately, the answer is "No." The attacker might have laced
your system with other backdoors and Trojan horse applications. Consider a
scenario where the attacker gets in, installs a rootkit, and then starts
modifying other applications (such as your database management system,
your text editor, or even that Solitaire game included in your operating
system) to reinstall the rootkit when they are executed. You might discover
the rootkit using a file integrity checker. You methodically replace all of the
files that the checker said were altered. However, your file integrity checker
wasn't configured to check your Solitaire executable, because it's not
considered a sensitive file. The next time some bored administrator runs
Solitaire, the system gets re-rootkitted, and you won't know until you run
your file integrity checker again. Countless similar scenarios exist,
demonstrating that manually cleaning up after a rootkit installation is
difficult, if not impossible.

To be truly sure you eliminate all of the little surprises left by an attacker
with super-user access, you should really completely reinstall all operating
system components and applications, just to make sure the system is clean.

You could rebuild the system from the original distribution media (CDs and
downloaded patches). Alternatively, you could use the most recent trusted
backup to restore the system. A trusted backup is an image of the system
that is known to not have any system compromises. For example, your most
recent file-integrity-checked backup can be trusted, because you used a file
integrity checker to verify the integrity of the system files. For this reason, it
is a great idea to synchronize your file system integrity checks with your
backup procedures.

There are additional defenses against user-mode rootkits, including
automated rootkit checkers and antivirus tools. However, such defenses help
protect against not only user-mode rootkits, but also the nastiest form of
Trojan horse backdoor we face on a regular basis today, kernel-mode
rootkits. Therefore, we cover those additional defenses after exploring
kernel-mode rootkits in detail.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Nastiest: Kernel-Mode Rootkits

We've seen the power of user-mode rootkits, but we've also seen how to
defeat them using cryptographic integrity checks of our sensitive system
files. But wait ... there's more. The most recent evolutionary step in rootkits
goes beyond the user-mode rootkit strategy of altering the executables,
libraries, and processes that users rely on. Now, rootkits are increasingly
being implemented at the kernel level, making them far more difficult to
detect and control. Kernel-mode rootkits are a highly active area of
development in the computer underground, with new examples being
released on a regular basis.

In most operating systems (including various Linux and UNIX systems, as
well as Windows), the kernel is the fundamental, underlying part of the
operating system that controls access to network devices, processes, system
memory, disks, and so on. All resources on the system are controlled and
coordinated through the kernel. In other words, everything that happens on
the system goes through the kernel to get work done in the real world. For
example, when you open a file, your application sends a request to the
kernel to open the file, which gathers the bits from the hard drive and

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

passes them to your file-viewing application. Kernel-mode rootkits give an
attacker complete control of the underlying system, a powerful position to be
in for an attacker.

Back to our tired soup-eating analogy from Table 10.2. A user-mode rootkit
replaces or alters the potatoes in your soup with genetically modified
potatoes. A file-integrity checker (such as Tripwire) acts as a soup ingredient
integrity checker, comparing the molecular structure of the potatoes in your
soup to known, safe potatoes. However, kernel-mode rootkits modify your
tongue, the organ you use to eat, so your soup ingredient checkers just
don't work any more. It's much more difficult to tell if your tongue is
poisonous than checking your soup and its ingredients. By modifying the
underlying kernel itself, the thing you use to run programs, attackers can
completely control the system at the most fundamental level, allowing them
great power for backdoor access and hiding on the machine. The kernel itself
becomes a Trojan horse, looking like a nice, well-behaved kernel, but in
actuality being rotten to the core.

Figure 10.14 shows why kernel-mode rootkits are more devious than their
usermode siblings. Whereas a user-mode rootkit alters the eyes and ears of
a system administrator (i.e., replacing applications such as login, sshd,
ifconfig, and ls on Linux and UNIX or hooking APIs used by Task
Manager, netstat, and the File Explorer on Windows), a kernel-mode
rootkit actually alters parts of the system administrator's brain. After all, in
my experience, I and many system administrators feel that the kernel is an
extension of our brains, controlling basic functions of the computer system,
just like my brainstem keeps me breathing. Kernel-mode rootkits take
advantage of this by modifying the kernel to transform the system
completely and transparently to conform to the attacker's needs. If the
kernel cannot be trusted, you can trust nothing on the system.

Figure 10.14. Comparing user-mode rootkits with kernel-mode
rootkits.

The Power of Execution Redirection

What can attackers do with the power to manipulate your kernel? Many
kernel-mode rootkits include a capability called execution redirection. This
feature intercepts calls to run certain applications and maps those calls to
run another application of the attacker's choosing. It's the classic bait-and-
switch trap. The user or administrator says to run program foo, the kernel
pretends to run foo, but then the kernel actually runs a different program
called bar.

Think about the power of execution redirection! Consider a scenario
involving the UNIX sshd routine. The attacker installs a kernel-mode rootkit
and leaves the existing sshd executable file itself unaltered. All execution
requests for sshd (which occur when anyone logs into the system using
SSH), will be mapped to the hidden file /usr/sbin/backdoor_sshd.
When a user tries to log in with SSH, the /usr/sbin/backdoor_sshd
program will be executed, containing a backdoor password allowing for
remote root-level access. However, when the system administrator runs a
file integrity checker, the standard sshd routine is analyzed. Only execution
is redirected; you can look at the original file sshd and verify its integrity.
This original routine is unaltered, so the cryptographic hash remains the
same.

On a Windows machine, the bad guy can perform a similar execution
redirection maneuver to the Task Manager or netstat executables. You
think you are getting a good process list from a good Task Manager, and a
truthful set of listening ports from a wholesome netstat program. And, in
fact, these programs are indeed intact in the file system. But whenever you
try to run Task Manager or netstat, the kernel pulls the rug out from
under you, running an evil version of each program squirreled away
somewhere in the file system. Again, your file integrity checker is none the
wiser, because it will be looking at the intact Task Manager and netstat
executables in your file system.

Execution redirection allows attackers to modify victim systems at their
whim, while masking all of their alterations. The attacker creates an
alternate universe in the victim computer that looks nice and happy. You can
browse around your file system, look at various executables, and even
calculate strong cryptographic hashes of them. Everything looks wonderfully
intact. However, the system you are observing is a lie, because whenever
you want to run a specific program, the kernel will run something else. You
want to run sshd? You'll actually run /usr/sbin/backdoor_sshd. You
want to run Task Manager? You'll actually run Hacked_Task_Manager. This
execution redirection is some pretty nasty stuff, allowing an attacker to
make any executable on your system a potential Trojan horse backdoor.

A good image of the bizarreness that execution redirection introduces is the
movie . In that movie, the characters are exposed to two worlds: a
computer-simulated world and reality. It is often difficult to determine
during the movie whether the actors are in the real world or the computer
simulation, leading to all kinds of cool plot twists. Kernel-mode rootkits with
execution redirection are quite similar, in that you never know whether you
are in fact running the program you think you are running or an attacker's
substitute. You just think you are executing a certain program, but it's up to
the hidden attacker to determine what is going on in reality, just like the
evil programs in Your whole system could be a sham, a brilliant simulation of
an intact operating system created by the bad guys to trick you into thinking
that everything is okay, even though the system is rotten to the core, quite
literally.

File Hiding with Kernel-Mode Rootkits

"Well," you say, "I'll just look for the /usr/sbin/backdoor_sshd, the
Hacked_Task_Manager programs, or any other things the attacker adds to
the file system." Unfortunately, kernel-mode rootkits go beyond execution
redirection. Many kernel-mode rootkits support file hiding. The attacker
configures the victim machine so that anyone looking around the file system
will see only what the attacker wants. Specific directories and files can be
hidden. Sure, they're still there on the system, and if you know about them,
you can change directories, run executable files, and store data in those
files, but you just cannot see them in a file listing.

This file hiding is implemented in the kernel, making it very efficient for the
attackers. Although a user-mode rootkit replaced the ls program to hide
files, the attacker has to worry that you might come along with another
program to look at a list of files, such as the echo * command, which shows
the contents of a directory on most Linux and UNIX systems. However, a
kernel-mode rootkit can modify the kernel to lie to the intact ls program,
the echo * command, and any other file listing command you attempt to
run. Therefore, if you have any other applications that provide a file list
(such as the Linux dir command, or the very useful lsof program), the
kernel will lie to them as well about the contents of the file system, masking
the attacker's presence. Similarly, on a Windows machine, the attacker can
alter the underlying Windows kernel to lie to your Windows File Explorer and
dir commands to hide the bad guy's items stored in your file system.

Process Hiding with Kernel-Mode Rootkits

Another common feature of kernel-mode rootkits is the ability to hide any
running processes of the attacker's choosing. The attacker might set up a

Netcat backdoor listener, as described earlier in this chapter. To prevent
detection of this running process, the attacker could use a kernel-mode
rootkit to hide that Netcat process. Any application that tries to look at the
process table (such as the ps or lsof commands in UNIX or Linux or the
Task Manager in Windows) will get a wrong answer from the kernel,
conveniently omitting the results the attacker doesn't want you to see. The
attacker can make any process just disappear, while it continues to run. If
anyone asks about the process or a complete process list, the rootkitted
kernel will lie and say that no such process exists.

Network Hiding with Kernel-Mode Rootkits

When a process listens on a specific TCP or UDP port, it can be detected
using the command netstat –na, as we discussed in Chapter 6 and earlier
in this chapter. This command relies on the kernel to determine which ports
are currently active and listening. If an attacker runs a backdoor listener on
the victim machine, the listening port will be displayed, discoverable by an
investigator. To avoid such discoveries, many kernel-mode rootkits offer
capabilities for masking particular network port usage. For example, the
attacker can direct the kernel to lie about TCP port number 2222 when
anyone asks for a port listing. Regardless of the program run on the local
system to determine which ports are open (netstat or whatever else, such
as lsof -i on UNIX or Linux or TCPView, ActivePorts, or Fport on
Windows), the rotten kernel will mask the backdoor listener on this port.

Whereas network hiding works for all requests for network port usage run
locally on the victim machine, a port scan across the network (using a tool
like Nmap, as discussed in Chapter 6) will show the listening port. The
remote tool measuring for open ports across the network will not be blinded
by the kernel, which tricks all local commands that are run on the victim
machine. Therefore, periodic scans of your own systems across the network
are incredibly useful.

Some Particular Examples of Kernel-Mode Rootkits

A wide variety of kernel-mode rootkits are available today. Let's discuss a
couple of the most powerful and useful examples: Adore-ng for Linux and
FreeBSD and the FU rootkit for Windows.

Adore-ng: A Linux Kernel-Mode Rootkit

Adore-ng is a kernel-mode rootkit that targets Linux systems running kernel
2.4, 2.5, and 2.6. The tool has also been ported to FreeBSD. Adore-ng has a
variety of standard kernel-mode rootkit capabilities, including execution
redirection, file hiding, process hiding, and network hiding. Additionally, it

includes numerous nifty features, such as these:

As we discussed in Chapter 8, attackers often run a sniffer on their
victim machines to gather sensitive information sent between other
systems across the network. The attacker can hide the running sniffer
program itself easily using file and process hiding. However, sniffers
typically put the Ethernet interface in promiscuous mode to gather all
packets from the LAN, which the administrator can detect using the ip
link commands on some versions of Linux and ifconfig on some
versions of UNIX. Adore-ng alters the kernel so that it lies about
promiscuous mode, helping to make the sniffer even stealthier.
Interestingly, this promiscuous-mode hiding feature is intelligent, in that
the evil kernel analyzes whether an administrator or an attacker ran a
sniffer to place the interface in promiscuous mode. Think about it. If the
evil kernel always lied about promiscuous mode, saying that it never
exists, a suspicious administrator could catch the kernel in a lie and
detect the attackers' presence. On Linux, the admin could simply run ip
link and see if the interface is in promiscuous mode. If not, the
administrator can then run a sniffer (such as tcpdump), forcing the
interface into promiscuous mode. Now, when the admin runs ip link
or ifconfig to check for promiscuous mode, we have a chance to catch
the kernel in a lie! If the system does not show promiscuous mode, we
know it is lying, because the admin just forced it into that mode. Older
kernel-mode rootkits did not intelligently hide promiscuous mode. The
newer ones, like Adore-ng, are smarter, and check to see if the sniffer is
run by an admin or the attacker. If an admin fires up the sniffer, the
system displays promiscuous mode like normal. But if an attacker runs a
sniffer, the kernel will lie about its promiscuous effects.

Adore-ng can take any running process and cloak it. At the request of
the attacker, the kernel suppresses all information about the given
process. While the process continues to run, all use of the ps, lsof, or
other process viewing commands will not show the process. This feature
reminds me of the Romulans in the sci-fi series. When the Romulans are
getting ready to attack, they activate their ship's cloaking device. All
traces of their spaceship eerily disappear, while the ship continues to
attack. However, if you remember your lore, the Romulans cannot use
their photon torpedoes while cloaked. Adore-ng does not have any such
limitation.

On Linux, the lsmod command provides a list of kernel modules
currently installed on a machine. The attacker does not want the system
administrator to see the Adore-ng module loaded into the system's
kernel. The Adore-ng tool therefore hides itself from lsmod, tweaking

the kernel to lie about the kernel's own status.

Adore-ng also includes a built-in backdoor that lets an attacker connect to
the system across the network and gain a root-level command shell prompt.
This is pretty straightforward stuff, as we've seen Netcat do the very same
thing. The nice innovation of Adore-ng is including the capability in a kernel
module itself, so the attacker doesn't have to mess around with installing
and configuring a separate backdoor tool. Everything is included in one nice
package: the hiding prowess of the kernel-mode rootkit, along with a nice
backdoor shell listener. This approach is very difficult to detect, because no
indications of files, processes, or listening network ports are available to the
system administrator.

The Windows FU Kernel-Mode Rootkit

Kernel-mode rootkits aren't limited to the Linux and UNIX world. For
Windows, a very powerful kernel-mode Rootkit is called FU. Its author, a
researcher named Fuzen, points out that his rootkit's name is a take-off on
the Unix command su for substituting users. Thus, its name is to be
pronounced "eff-yoo" instead of "foo," a distinction I think he makes because
he enjoys hearing people say "FU." Anyway, this very full-featured rootkit
directly manipulates Windows kernel memory on Windows 2000, XP, and
2003 machines. The tool consists of a special device driver, named
msdirectx.sys, which some users might mistake for Microsoft's own
DirectX tool, an environment for developing graphics, sound, music, and
animation programs such as games.

As is common for kernel-mode rootkits, FU can hide an attacker's processes
on the machine. Additionally, FU can alter the privileges of any running
process to any level the attacker wants, on the fly without even stopping the
process. You might have a program running with really limited privileges,
just plodding along doing some work. FU comes along, at the direction of the
attacker, and instantly gooses this process up to SYSTEM privileges, so the
attacker can utilize the process for some nefarious goal. The process is
happy with its newfound privileges, until the attacker abuses it, possibly
altering the system to edit logs, install a backdoor, or change user account
settings.

Furthermore, FU hides selected types of events from the Windows Event
Viewer, so an administrator will not be able to see specific actions taken by
the attacker when running the Event Viewer locally on the machine. The
attacker might want to hide events associated with the bad guy's own logon
and source IP address. Of course, if event logs are forwarded to a separate,
nonrootkitted machine, the administrator will be able to view them properly
there. That's why heavily secured, separate logging servers are such a good

idea for defenders to know what is really happening on their machines.
Finally, FU can even hide device drivers, including itself, so an administrator
cannot see them installed on the system.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defending Against Kernel-Mode Rootkits
Fighting Fire with Fire: Don't Do It!

I frequently get asked whether someone should install a kernel-mode rootkit
on their own systems on a proactive basis before an attacker does. The idea
is that if I install Adore-ng on my own machine, then an attacker won't be
able to do it after me, and I'll have the upper hand. I very much disagree
with this philosophy. If you try to fight fire with fire, you very well could
burn down your house!

This is a bad idea for several reasons. First, without a detailed understanding
of the particular kernel-mode rootkit you install, you might make your
system more vulnerable to a highly skilled attacker who understands the
tool better than you do. Furthermore, a kernel-mode rootkit makes the
system inherently more difficult to understand and analyze. If your machine
is compromised, the postmortem forensics analysis gets significantly trickier
with a kernel-mode rootkit in place. You might have to remap every
executable, file, process, or network request to determine what has really
happened on your system. This more complex analysis would be unwelcome
news in a sensitive investigation. Finally, theoretically, multiple kernel-mode

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

rootkits of different types could be installed on a system at the same time,
possibly without interacting with each other in a negative way. Therefore,
just because you have installed Adore-ng, nothing prevents the attacker
from taking over the system and installing a home-grown kernel-mode
rootkit right on top of it. So, your installation of Adore-ng isn't necessarily
locking out other rootkits.

Sure, you can play with kernel-mode rootkits in your protected lab to learn
more about them. However, I strongly recommend that you do not install a
kernel-mode rootkit on your own production systems.

Don't Let Them Get Root in the First Place!

A recurring theme in this book is preventing attackers from gaining super-
user access on your machines in the first place. Although it might sound
repetitive, I can't overstress it: You must configure your systems securely,
disabling all unneeded services and applying all relevant security patches.
Without super-user access, an attacker cannot install a kernel-mode rootkit
(or a user-mode rootkit, for that matter). Hardening your systems and
keeping them patched are the best preventative means for dealing with
kernel-mode rootkits.

Honeypots: The Only Reason You Might Use Kernel-
Mode Rootkit Techniques on Your Own System

The only time I would use kernel-mode rootkit techniques on my
own machines would be to construct a honeypot. A honeypot
system is a sacrificial host designed to attract and distract
attackers. Kernel-mode rootkit tactics can help create an effective
honeypot that fools all but the most sophisticated attackers. The
honeypot system is designed to look interesting to attackers, but
has no actual sensitive data. Attackers are supposed to find the
honeypot system and spend their time and effort breaking into what
appears to be an interesting host. Honeypots are used for a variety
of purposes, including these:

If your honeypot gets compromised, you know attackers are
present in your network. You could use this early warning
indicator to keep an especially watchful eye on your
infrastructure. In a sense, the honeypot acts like a canary in
the old days of mining. When the canary dies, you know you've
got a problem.

A bad guy might discover a honeypot system and spend a good
deal of time attacking that machine. This time will not be spent
attacking the rest of your machines. The attackers will act like
flies stuck on flypaper. Once they break into the honeypot, you
can isolate them on that system, preventing them from
accessing the rest of the network. This technique is called
creating a jail system.

Setting up a honeypot on your network can help you learn
about the techniques of attackers so you can better sharpen
your detection and forensics skills. Lance Spitzner and the
Honeynet Project Team have developed a series of papers
describing their adventures in honeypot usage for learning.
These papers are part of the wonderful , and are available at .

In fact, the Honeynet Project has released a special kernel
modification tool for Linux called Sebek 2, developed specifically to
monitor bad guys on a honeypot. This tool lets a honeypot
researcher watch the bad guys' keystrokes and remain hidden on a
machine without the attacker being aware of the monitoring. The
original Sebek code used parts of an earlier version of the Adore-ng
kernel-mode rootkit to achieve this stealthiness. However, the
latest releases of Sebek 2 are currently Adore-free, with all of the
new code written by members of the Honeynet Project itself. You

can read about and download Sebek 2 from the Honeynet Project at
.

Control Access to Your Kernel

You also might want to turn to some freely available tools to help limit
attackers' actions on your systems. One noteworthy free tool for identifying
and controlling the flow of action between user mode and kernel mode on
Linux and UNIX is Systrace by Niels Provos, available at . Don't get confused
by the name Systrace. Another tool, called strace, merely shows the system
calls made by an application into the kernel. Systrace goes far beyond
simple strace. Once installed on Linux, FreeBSD, and Mac OS X machines,
Systrace tracks and limits the system calls that individual applications can
make.

Cisco's Security Agent (called CSA for short) and McAfee's Entercept
products perform similar duties on a commercial basis. CSA runs on Windows
and Solaris, whereas McAfee's Entercept is available for Windows, Solaris,
and HP-UX. In fact, these so-called host-based IPSs offer a variety of
protection strategies, like providing system configuration hardening.
However one of the most worthwhile capabilities of Systrace, CSA, and
Entercept involves limiting the calls that various applications can make into
the kernel on the machine. By configuring the host-based IPS to limit which
system calls a given program (such as a Web server, mail reader, or
database application) can make, the bad guys will have a far more difficult
time compromising administrator privileges and installing rootkits. It's just
harder for the bad guys to invade the kernel when they are trapped in the
straightjacket of a good host-based IPS. In effect, Systrace, CSA, and
Entercept are wrapping the kernel in a protective layer of software to block
unusual activity.

Although such tools are very useful in hardening a kernel against attack, do
not underestimate the time necessary to train these tools about what is
"normal" for your given machine. The tools must first characterize normal
access of the kernel for a given application mix on a box. Then, they stop all
abnormal access. However, this training for normal activity can take weeks,
and must be done on a trusted system not compromised by an attacker. If
you train a tool on a compromised machine, you'll have a tool that is
imprinted on abnormal behavior, a very sad and dangerous thing.

Looking for Traces of Kernel-Mode Rootkits by Hand

To detect the presence of kernel-mode rootkits, some people suggest trying
to tickle various features of the rootkits to see if they are present on a

machine. By looking for features of some of the kernel-mode rootkits, you
might detect their installation. For example, as we discussed earlier, you
could activate a sniffer to check to see if promiscuous mode is suppressed. If
the sniffer is running but promiscuous mode is not shown, you will identify
some kernel-mode rootkits. Unfortunately, this technique won't detect all of
them, including Adore-ng.

Although these techniques certainly work for some kernel-mode rootkits,
there is just too much variety for these techniques to catch a large number
of attacks by hand. Furthermore, a significant amount of manual
intervention is involved in searching for the presence of these kernel-mode
rootkit features on a one-by-one basis. Therefore, although these techniques
might be a good idea if you suspect a kernel-mode rootkit is already
installed, how do you get suspicious in the first place? When do you know to
investigate further?

Automated Rootkit Checkers

By looking for various system anomalies introduced by kernel-mode rootkits
in an automated fashion, various automated rootkit checkers are incredibly
useful in investigations. For you fans of movies, these tools are really
looking for glitches in the Matrix. As you might recall, in the movie, glitches
in the Matrix occur when the bad guys start changing things, creating a déjà
vu in the movie. Similarly, with a kernel-mode rootkit, an inconsistency in
the system's appearance could be an indication that something foul has been
installed. Automated rootkit checkers perform various tests that can be used
to catch the kernel in a lie about the existence of certain files and
directories, network interface promiscuous mode, and other issues that
kernel-mode rootkits generally fib about.

In particular, the free Chkrootkit tool at can detect more than 50 kernel-
mode and user-mode rootkits running on Linux, FreeBSD, OpenBSD,
NetBSD, Solaris, HP-UX, and True64. Chkrootkit first scans various system
executables, looking for the fingerprints of very popular user-mode rootkits.
Next, it searches for hidden processes by comparing the contents of the
/proc directory with the results returned by the ps command. The
directory /proc stores information about each running process on the
system. If the ps command does not show all processes indicated by /proc,
some of the processes are being hidden. This technique will turn up most
user-mode rootkits, and some kernel-mode rootkits. Unfortunately, a
sophisticated kernel-mode rootkit will modify what Chkrootkit can see in
/proc, making the attacker too stealthy to be detected by this technique.

Another way that Chkrootkit finds kernel-mode rootkits is by looking for
inconsistencies in the directory structure when a file or directory is hidden.

Each directory in the file system has a link count, which indicates the
number of other directories that a given directory is connected to in the file
system structure. For each directory, this link count should be two more
than the number of subdirectories in the directory. That way, the directory
would have one link for each subdirectory, plus one for the parent directory
(..) and one for itself (.). Many kernel-mode rootkits hide files and
directories without manipulating the link count of the parent directory.
Chkrootkit combs through the entire directory structure, counting the
number of subdirectories that it can see inside each directory and comparing
it to the link count. If it finds a discrepancy, Chkrootkit prints a message
indicating that there might very well be directories that are hidden by a
kernel-mode rootkit.

Rootkit Hunter, available for free at , is a similar tool to Chkrootkit, but it
runs on Linux, FreeBSD, OpenBSD, Solaris, and AIX. I use Rootkit Hunter to
get a second opinion on potentially compromised UNIX or Linux machines,
augmenting the results of my Chkrootkit scan.

Whereas Chkrootkit and Rootkit Hunter focus on Linux and UNIX systems,
similar tools exist for Windows, namely Rootkit Revealer by Mark
Russinovich at and Blacklight by the antivirus vendor F-Secure at . Both
tools are available for free and do a fantastic job of detecting Windows
rootkits, both the user-mode and kernel-mode variants. To accomplish this,
these tools run in both user mode and in kernel mode, looking for
discrepancies between what is visible in user mode and what is viewable
inside the kernel regarding the file system and registry. For example,
suppose a user-mode or kernel-mode rootkit hides some files from view. The
user-mode component of these Windows rootkit checkers will therefore not
be able to see these hidden files. However, the kernel-mode component of
the rootkit checker will see the files, and flag the discrepancy for an
administrator. Bingo! We've detected the rootkit.

However, it is important to note that you might get a false positive
notification from any of these automated rootkit checking tools, whether for
Linux/UNIX or Windows. Some completely benign programs do introduce the
anomalies that these tools look for, particular security tools running on a
Windows environment. Some legitimate personal firewall tools and antivirus
programs try to hide files and processes from users and malicious code by
altering the system using the same techniques as user-mode and kernel-
mode rootkits. These rootkit detectors discover these hiding tactics and warn
their users of a potential rootkit infestation. So, in effect, we've got security
software (the automated rootkit checkers) detecting the techniques used by
other security software (personal firewalls and antivirus tools) while it tries
to hide from malicious software (worms, bots, and even rootkits). Making
matters even more interesting, some of the antivirus tools alert while a

rootkit checker like Rootkit Revealer or Blacklight execute, because they
notice the calls made into the kernel by these tools, which would be
suspicious under other circumstances.

File Integrity Checkers Still Help!

Although they can be tricked by very thorough kernel-mode rootkits, you
should still use file integrity checking tools, such as the Tripwire, AIDE, and
related programs. As we've discussed, a thorough bad guy will configure the
manipulated kernel with execution redirection and other alterations that lie
to a file integrity checker about all file changes on the system. If the
attackers very carefully cover all of their tracks, they can fool a file integrity
checker. In other words, a perfectly implemented and perfectly deployed
kernel-mode rootkit can trick a file integrity checker into thinking that
everything is okay on a system.

However, a less careful attacker might forget to configure the kernel-mode
rootkit to hide alterations to one or two sensitive system files. Even a single
mistake in the file-hiding configuration of the kernel-mode rootkit by the
bad guys could expose them to detection by your file integrity checker.
Alternatively, if the bad guy's rootkit code is flawed in a subtle way, the file
integrity checking tool might still have a chance of detecting the changes.
Therefore, don't throw out the baby with the bathwater! File integrity
checking tools remain very valuable, even though a kernel-mode rootkit can
foil them if the attacker is very careful. I'd rather not depend solely on the
attackers making mistakes to discover their treachery, but you had better
believe I'll be sure to take thorough advantage of their errors. Deploying file
integrity checking tools on all of my sensitive systems lets me prepare for
such circumstances.

Antivirus Tools Help Too!

Most antivirus solutions have signatures for dozens of different rootkits, both
of the user-mode and kernel-mode varieties. When they detect a file from a
rootkit, most antivirus tools prevent the program from being accessed.
Therefore, the rootkit cannot be installed on the system in the first place.
Antivirus tools therefore offer preventative controls for thwarting many
rootkits. So, by using antivirus tools, you'll raise the bar against casual
attackers using rootkits. The bad guy will have to be smart enough to first
disable the antivirus tool, dodge it, or modify its signature base, before
installing the rootkit. In the end, we raise the bar to catch the less skilled
bad guys. Sure, the more skilled guys will jump over the bar, but we've still
got a chance at discovering them when they get sloppy or lazy.

Trusted CDs for Incident Handling and Investigations

When investigating potential rootkit attacks, remember that the operating
system software itself might lie to you about what's happening on the
machine. If you can't trust the existing system executables, running process,
or even the kernel, what can you do to determine the true status of the
system? First, get a solid backup of the machine before even considering
shutting it down. That'll give you some good evidence for your analysis.
Shutting down a system gracefully will change hundreds of files, so get your
backup first if you ever intend to perform forensics analysis.

Next, get a copy of a trusted CD designed for incident handling and forensics
analysis. Two of my favorite tools in this category are Helix, free at , and
Knoppix-STD, free at . Both tools are bootable Linux environments, rendered
in a CD image format. Download these CD image files and burn them to a
CD. Then, investigators can insert the Helix or Knoppix-STD CD in a
potentially compromised machine, and boot from the CD. As the system
shuts down, the potentially evil, deceiving kernel and executables will stop
running. When the system reboots, the trusted kernel from Helix or Knoppix
will be loaded into memory. Because this new kernel is grabbed from the CD,
an investigator can use it to read the victim machine's file system with more
trustworthy results than one can get from an evil kernel. Therefore, after
booting from the CD, the investigator can run a file integrity checker (built
into the CD, of course) to look for changes.

"But, how can I use a bootable Linux CD like Helix or Knoppix-STD to
analyze my Windows system?" you might ask. Well, although Helix and
Knoppix-STD are bootable Linux images, they include a variety of tools for
mounting and analyzing Windows disk partitions. If you don't want to work
in Linux, Helix even include Windows executables that mimic the functions
of such tools as the dir command, the File Explorer, the netstat
command, and the Windows command shell. Of course, if you use the
executables from the Helix CD on a machine with a running rootkitted
kernel, that kernel will still lie to your Helix tools. But, by booting the Helix
Linux image, the evil kernel won't be around any more, and you can conduct
more thorough analysis from within Linux. Thus, Helix and Knoppix-STD can
be used in most environments with Windows, Linux, and even other UNIX
operating systems.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

In this chapter, we have seen a variety of techniques that attackers use to
maintain access on a system. They often add software or manipulate the
functionality of the operating system itself to lurk on the machine. The tools
used for such techniques are getting much more sophisticated, targeting the
most fundamental levels of our operating systems. A large number of
rootkits, and kernel-mode rootkits in particular, are in active development,
with new and powerful features being frequently added.

While altering a system to maintain access, attackers often employ a variety
of techniques to cover their tracks. In the next chapter, we explore many of
these tactics for hiding on a system.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

After gaining access to a target machine, attackers want to maintain that
access. They use Trojan horses, backdoors, and rootkits to achieve this goal.
A Trojan horse is a program that looks like it has some useful purpose, but
really hides malicious functionality. Backdoors give an attacker access to a
machine while bypassing normal security controls.

Backdoors and Trojan horses are the most damaging when they are melded
together. The resulting Trojan horse backdoors can operate at a variety of
levels. Application-level Trojan horse backdoors involve running a separate
application on the target machine that looks innocuous, but gives the
attacker access to and control of the victim machine. Remote-control
programs, bots, and spyware are three of the most popular categories of
application-level Trojan horse backdoor. These tools can be used to access
any file on the victim's machine, watch the user's actions in the GUI, and log
keystrokes, among numerous other features. The best defense against
application-level Trojan horse backdoors is to utilize up-to-date antivirus and
antispyware tools and avoid malicious software.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

User-mode rootkits go to a deeper level of the operating system than
application-level Trojan horse backdoors. User-mode rootkits replace critical
system executable programs, such as the login and sshd programs in
UNIX and Linux. Attackers replace them with another version that includes a
backdoor password. Additionally, attackers rely on user-mode rootkits to
replace many other programs, such as ifconfig, ls, ps, and du, all of
which act as the eyes and ears of a system administrator. By altering these
programs, the attackers can mask their presence on the system.
Alternatively, on a Windows machine, the bad guys use debug privileges to
inject code into running processes to hook their API calls. That way, when
programs such as Task Manager or netstat attempt to determine the
status of the system, the attacker can hide certain critical information, such
as specific processes, files, and TCP ports. To defend against user-mode
rootkits, you should employ file system integrity checking tools, such as
Tripwire, on sensitive systems. These tools calculate cryptographic hashes of
key system files, and can detect changes caused by rootkits.

Kernel-mode rootkits are the nastiest Trojan horse backdoors we face on a
regular basis today. Using these tools, the attacker alters the kernel of the
target operating system to provide backdoor access and hide on the system.
Most kernel-mode rootkits provide execution redirection to remap a user's
request to run a program so that a program of the attacker's choosing is
executed. Kernel-mode rootkits also support hiding files, directories, TCP and
UDP port usage, and running processes.

To defend against kernel-mode rootkits, you should keep attackers from
gaining super-user access in the first place by applying system patches and
host-based IPSs. Tools such as Chkrootkit and Rootkit Hunter for Linux and
UNIX, as well as Rootkit Revealer and Blacklight for Windows, look for
anomalies introduced on a system by various user-mode and kernel-mode
rootkits. Furthermore, antivirus tools can help prevent many of the most
popular kernel-mode rootkits from being installed in the first place. And,
although a perfectly implemented and perfectly deployed kernel-mode
rootkit can dodge a file integrity checker, these tools are more important
now than ever, because they can find very subtle mistakes made by an
attacker that a human might miss. Finally, bootable Linux CDs such as Helix
and Knoppix-STD provide a useful tool chest of incident response and
forensics tools, with output that you can trust more than the lies told by
user-mode and kernel-mode rootkits.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 11. Phase 5: Covering Tracks and Hiding

Every day, attackers take over Web sites by the dozens and tamper with
their contents. A large number of such victims are archived at the Zone-H
Web site (), which contains a virtual museum of Web vandalism attacks over
the last several years. Some attackers want to create a big splash with a
high-profile attack to establish a reputation, embarrass their victims, or to
make a political point. Massive Distributed DoS (DDoS) attacks or vandalism
of a major Web site can surely garner attention.

However, attackers who desire quiet, unimpeded access to computing
systems and sensitive data conduct the vast majority of attacks. This class of
attackers wants to stay hidden, so they can maintain covert control of
systems for lengthy periods of time, stealing data, consuming CPU cycles,
launching other attacks, or just keeping their valued access for use at a later
time. In my experience, these silent system compromises far outnumber the
instances of publicly observed attacks. With the large number of well-
documented, high-profile Web tampering cases, consider that there are
probably far more computer systems on the Internet that have been taken
over by an attacker who silently hides in the background. Many companies,
government agencies, universities, and other organizations are unwittingly
providing a home on their computing systems for these silent attackers. In
the course of investigating incidents, we routinely find networks of
thousands or even tens of thousands of bots hidden from the owners of the
host computers.

How are these attackers, who gain access on a system, hiding their tracks to
avoid detection? In many cases, they don't have to hide. Over the past
several years, the largest proportion of compromises have taken place on
poorly maintained home computers connected to the Internet with
broadband connections. These machines represent attractive targets for an
attacker because they are often operated by individuals with little or no
computer security expertise. However, public awareness of computer crime
aimed at these "always on" home broadband machines is increasing. More
and more home computer users are installing software designed to increase
security without requiring any specialized computer security knowledge,
such as antivirus, antispyware, and personal firewall tools. Although they
certainly won't replace a knowledgeable system administrator, these "point-
and-click" software security products have succeeded, to a greater or lesser
degree, in somewhat increasing the security of the home computer market.
The wild west isn't completely tamed, but the trajectory is improving.

Whereas a broadband-connected home computer might be a good target for
an attacker intent on building a bot-net, the target of choice for the elite
attacker is still a business network. Business networks, although providing

attractive targets, are also more closely monitored, requiring would-be
attackers to hone their skills at covering their tracks. One of the main
techniques for hiding on a system is utilizing a rootkit or backdoor program,
as described in detail in Chapter 10, Phase 4: Maintaining Access. Beyond
installing rootkits and backdoors to mask the changes made to the system,
many attackers go further in covering their tracks, by modifying logs,
creating hidden files, and establishing covert channels. This chapter
describes these techniques for hiding on a system.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Hiding Evidence by Altering Event Logs

To avoid detection by system, network, and security administrators, many
attackers alter the logs of their victim machines. Even though (as we
discussed in the last chapter) the techniques used by rootkits are incredibly
powerful and allow an attacker to mask practically all of their activities on
the compromised machine, there will often be traces of the installation of
the rootkit in the system's logs. Even an attacker who uses the most
powerful and stealthy rootkit will need to remove particular events from the
logs associated with gaining access, elevating privileges, and installing their
backdoors or rootkits in the first place. Events such as failed login records,
error conditions, stopped and restarted services, and file access and update
times must be purged from the logs or altered to avoid having these
activities spotted by an alert administrator.

Of course, on most systems, an attacker with sufficient access privileges
(usually root or administrator) can completely purge or delete the log files.
However, completely deleting the logs, blowing away all normal log data
along with the insidious events, is very likely to be noticed. As the saying
goes, even a blind squirrel finds an acorn once in a while. So it is with

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

system administrators: Even the worst one would probably notice a large
chunk of time missing from the system logs. Attackers want to edit the
system logs on a line-by-line basis to keep normal events in the logs, while
removing the suspicious events generated by their activities. Obviously, the
techniques used to modify system logs are very dependent on the system
type. The techniques that an attacker will use on a Linux- or UNIX-based
system will be dramatically different from those required for a Windows-
based system, simply because the logging mechanisms themselves are quite
different. We analyze attacks against logging in both Windows and
Linux/UNIX. In Chapter 3, Linux and UNIX Overview, we briefly examined
Linux and UNIX logging mechanisms, but before looking at how attackers
manipulate and undermine logging on Windows systems, we'll first need to
learn a little about how logging works under Windows.

Attacking Event Logs in Windows
Event Logging in Windows

On modern Windows systems (that is, NT, 2000, XP, 2003, and later), the
event logging service, known as EventLog, produces a set of files (with the
suffix .LOG) where it temporarily places information about logged system
and application events, such as a user logon, access control violation, service
failure, and so on. This event information is constantly being written into
files, which are named SECURITY.LOG, SYSTEM.LOG, and
APPLICATION.LOG. The event information, however, doesn't stay in these
.LOG files. Each of the .LOG files is periodically and automatically rewritten
by Windows, which moves the event information into the system's main
event logs: the SECEVENT.EVT, SYSEVENT.EVT, and APPEVENT.EVT
files. It is actually these files that are the main event logs in Windows, and it
is the .EVT files that are read by an administrator using the built-in
Windows Event Viewer tool or a third-party log analysis tool. The Event
Viewer tool, showing events from the SECEVENT.EVT file, is shown in
Figure 11.1.

Figure 11.1. The Windows XP Event Viewer.

[View full size image]

The SECEVENT.EVT file stores security-related events, including failed
logon attempts, policy changes, and attempts to access files without proper
permission (if the system is configured to log such event types). The
SYSEVENT.EVT file stores events associated with the system's functioning,
and it is here that you'll find messages with details on the failure of a driver
or the inability of a service to start. The APPEVENT.EVT file stores events
associated with applications, such as databases, Web servers, or user
applications. All of these files, which are written with a specific binary
format, are what attackers want to target to cover their tracks. The
SECEVENT.EVT file is most often targeted because it contains the majority
of the events that attackers wants to remove, such as failed logon attempts
and access violations that were triggered by their attempts to gain access to
a system.

Altering Event Logs in Windows

To erase traces of activity, attackers would, at a minimum, want to alter
SECEVENT.EVT. However, to be more confident that all traces of their
activity are gone, the attackers would possibly want to alter the
SYSEVENT.EVT and APPEVENT.EVT files as well. But all three .EVT files
are "locked" on a running Windows machine, and cannot be opened or edited
with a standard file-editing tool.

Completely deleting any .EVT file is no problem for anyone who has the
proper rights (Manage Audit and Security Log) or permissions (such as
Delete for the \windows\system32\config directory that holds these
logs). But remember, a suddenly empty log should be highly suspicious and
should attract the attention of even the most inattentive administrator.

Whereas a novice attacker might try to cover his or her tracks by simply
deleting the .EVT files, a more experienced perpetrator will try to alter the
event logs on a line-by-line basis.

With physical access to the Windows system, an attacker could simply boot
the system from a CD-ROM and edit the log files on the main system
partition using an editor with the capabilities of regenerating the correct
binary format for the log data. The files are only "locked" and unalterable
when the Windows system that generated them is running. As described in
Chapter 7, Phase 3: Gaining Access Using Application and Operating System
Attacks, a Linux boot CD-ROM image for editing the Windows password
database can be found at . This tool allows an attacker to change the
Windows administrator password by booting from a Linux CD-ROM. A boot
disk for changing system logs on a line-by-line basis and regenerating the
appropriate binary format for the .EVT log file could certainly be created
using any of the Windows or Linux boot CDs available on the Internet, but
there is currently no "prepackaged" tool like this in widespread use.
Although not elegant and requiring a great deal of physical access, this
technique could be remarkably effective in covering tracks.

The most effective technique for altering system logs avoids booting the
system from a CD-ROM and doesn't require physical system access. Event
log editing tools are available that allow an attacker with administrator
privileges to purge individual events from the SYSEVENT.EVT,
SECEVENT.EVT, or APPEVENT.EVT file on a running Windows NT/2000
system (if you need to cover your tracks on a Windows XP or 2003 system,
you're currently out of luck as there are no publicly released tools that work
on those platforms ... yet). To accomplish this task for an attacker with
administrative privileges, the tool first stops the Windows Event Logging
service. It then changes the permissions on the .EVT files, and copies the
data to memory for editing. The attacker can make any desired changes to
the version of the event log in memory. The tool automatically calculates the
new binary-formatted information (a crucial step in ensuring that the
resulting event logs are not interpreted as corrupted by the Event Viewer).
To clean up after the changes are made, the tool overwrites the .EVT files,
resets their permissions, and restarts the Windows Event Logging service.
When the administrators access the logs, they will see only the happy,
pleasant image created by the attacker, with all suspicious events purged.

The WinZapper tool by Arne Vidstrom, allows an attacker to remove events
selectively from the security logs of a Windows NT/2000 machine. Available
at the WinZapper tool provides a point-and-click interface for deleting
security events on a one-by-one basis. As shown in Figure 11.2, the attacker
selects the specific events to delete, and clicks Delete Events and Exit. For

the changes that WinZapper makes to the event logs to take effect,
however, the system must be rebooted to restart the EventLog service.
There are other tools floating around in the computer underground that
aren't really "public" that give an attacker the ability to alter the system logs
without rebooting the machine. These tools typically focus on injecting code
into the running EventLog service itself, giving the attacker the ability to
alter the logs from within by undermining a piece of the operating system
itself, in a fashion rather like the Windows rootkits we discussed in Chapter
10.

Figure 11.2. The WinZapper tool: Marked events will be selectively
deleted from the Windows NT/2000 event logs.

[View full size image]

Attacking System Logs and Accounting Files in Linux and
UNIX
Linux and UNIX System Logs

As described in Chapter 3, on Linux and UNIX systems, the vast majority of
log files are written in standard ASCII text, not a specialized binary format
like the logs of Windows machines. Thus, to edit Linux and UNIX logs, an
attacker requires only root privileges or the privileges of a specific
application that generates the logs, such as a Web server daemon. So, given
this traditional Linux and UNIX log file environment, how do attackers cover
their tracks? Some attackers employ automated scripts that pour through
system logs, automatically deleting various items to cover their tracks. In
the hands of an experienced attacker, these automated log editing scripts
can quickly and efficiently hide any evidence of an attack. On the other
hand, script kiddies often attempt to run such automated scripts on the
wrong flavor of Linux or UNIX, resulting in attempts to edit or delete files

that do not exist on that particular flavor. This then creates a series of
additional log entries, documenting these errors, making the attacker look
pretty ridiculous in the process. Given the myriad differences in logging on
various Linux and UNIX varieties, a standard log editing script will likely fail
unless it is run on nearly the same version of the same Linux or UNIX
variety for which it was designed.

How do more sophisticated attackers, the ones who don't need such scripts,
cover their tracks? The attacker typically begins by looking at the syslogd
configuration file, normally found in /etc/syslog.conf, to determine
where the log files themselves are located. This configuration file tells
syslogd where in the file system to put the logs. Once the log location is
discovered, an attacker with root privileges (which might have been
obtained through exploiting a buffer overflow or other attack) can directly
edit the logs. Because the logs are plain ASCII text, with root privileges,
attackers can alter the log files by using their favorite editor (such as vi,
emacs, gedit, pico, or any other text editing tool). Sophisticated attackers
will systematically go through the log files and remove entries associated
with their gaining access to the system (such as failed login attempts or
specific application error messages). Because the files are text, rather than a
binary format, they can be altered and saved without any indication of file
corruption.

Altering Accounting Entry Files in Linux and UNIX

Beyond the main log files, as described in Chapter 3, the main accounting
files in Linux and UNIX are the utmp, wtmp, and lastlog files. Whereas
the vast majority of Linux and UNIX log files are written in standard ASCII
format, the utmp, wtmp, and lastlog files are written with a special
binary format. The utmp and wtmp files are stored as so-called utmp
structures, and lastlog is stored in a variety of different formats on
different Linux and UNIX machines. If an attacker attempts to edit these files
using a standard text editor, the files will appear corrupted and cannot be
properly read by the system (using who, last, and other commands). Of
course, because the files are written in a binary format, the attacker will
only see gibberish anyway when opening them in a standard editor.

To edit these accounting files, an attacker must use a tool that can read and
rewrite the special binary format that they use. An attacker can choose from
several tools, with a complete inventory available at Particular tools are
often fine-tuned for specific varieties of Linux and UNIX. In particular, the
tool remove, written by Simple Nomad, allows for removing entries from
utmp, wtmp, and lastlog for several UNIX systems. The remove program
also allows an attacker to change the last login time, location, and status of

any users to whatever the attacker desires by editing the UNIX lastlog
file. Other similar tools include wtmped, marry, cloak, logwedit, wzap, and
zapper. Many of these log and accounting editing tools are included as
standard components of the rootkit distributions discussed in Chapter 10.

Altering Linux and UNIX Shell History Files

One additional type of accounting and logging of particular concern to
attackers is individual users' shell history files. The shell history file stores a
list of all commands recently entered by the user into the command line.
Whenever you type something at a Linux or UNIX command prompt, your
shell (if it is configured properly) stores the command that you typed,
maintaining a history of your interactions with the system. Usually, the shell
history contains the previous 500 or so commands, although this is
configurable. The command shell uses this history to allow the user easy
access to previously entered commands, making repetitive command
sequences much easier to enter.

If an attacker takes over a user's account, or creates a brand new account to
attack from, the shell history file will contain a list of all commands entered
by the attacker. Shell history files are typically stored in individual users'
home directories, and have names such as .bash_history. For example,
the following list shows the shell history from a user that has been messing
around with the /etc/shadow file, where encrypted user passwords are
stored:

ls
vi /etc/shadow

These commands were typed into the command line by the attacker and
dutifully stored in the shell history file by the command shell program. We
can see that the attacker first executed the ls command to get a listing of
the contents of the current directory. Then, the attacker used the text
editor, vi, to view and possibly alter the /etc/shadow file. The attacker
might have changed a password or simply looked through the file for other
account names and password hashes. After snagging a copy of the shadow
file, the attacker might have started cracking the password representations.

Like standard UNIX log files, shell histories are written in plain ASCII, and
can be easily edited using the attacker's favorite text editing tool. Wiley
attackers remove all lines associated with their nefarious activities to throw
off administrators and investigators. Additionally, the attacker can configure
the length of the shell history file to simply be "zero" so that no history will

be maintained for an account used for attacks. Shell history files with a
length of zero could raise suspicions of system administrators, though, so
the more careful attackers simply remember to remove the commands that
could raise suspicion rather than completely deleting the history.
Interestingly enough, attackers can even lines to another user's shell history
file, possibly framing that user or diverting suspicion.

However, by simply opening the shell history file to edit it, the bad guy faces
a problem. It's important to remember that shell history is written when the
shell is exited. Therefore, you won't see your most recent commands in the
shell history; they are stored in memory until the shell is exited gracefully.
At that time, they are written to the shell history file. This has significant
impact for attackers editing shell history. In particular, the attacker's
command used to invoke the editor will be placed in the shell history file, so
an investigator might see something like vi .bash_history. That's bad
news for the attacker, because the investigator now knows the bad guy
altered the shell history. To deal with this problem, the attacker could exit
the shell, log back in, creating another shell, and then try to edit the shell
history file again to remove the line about editing the shell history. But,
then, when the attacker logs out, the most recent history will be written,
along with the new command about editing the shell history file! It's a
chicken-and-egg problem for the attacker.

With computers, if you ever face a chicken-and-egg problem, you need to
find out how to kill the chicken or break the egg, solutions that lend
themselves well to editing shell history. There are two widely used solutions
to this dilemma for the attacker. First, the bad guy could simply set the shell
history size to zero, as we discussed earlier (I suppose that's breaking the
egg). But a more comprehensive way of dealing with the issue is to kill the
chicken; that is, simply kill the shell instead of gracefully exiting it.
Remember, shell history is written only when the shell gracefully exits. By
killing the running shell process, the attacker deprives it of the ability to
write its history. Therefore, instead of logging out, the attacker can kill the
shell by simply running a command like this:

kill –9 [pid_of_the_shell_process]

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defenses Against Log and Accounting File
Attacks

To mount an effective defense, it is critical to prevent attackers from having
the ability to alter logs. Logs that have been tampered with are less than
useless for investigative purposes, and conducting a forensic investigation
without adequate logging is like trying to drive your car while wearing a
blindfold: difficult if not impossible, and certainly messy. As with hardening
any system, the amount of effort you will want to apply to defending a given
system's log information depends on the sensitivity of the server. Clearly,
for Internet-accessible machines with sensitive data, a great amount of care
must be taken with the logs. For some internal systems, logging might be
less important. However, for critical systems containing information about
human resources, legal issues, and mergers and acquisitions, logs could
make or break your ability to detect an attack and build a case for
prosecution. Let's examine the techniques used to defend logs on Windows
and Linux/UNIX, as well as other platforms.

Activate Logging, Please

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The first step in ensuring the integrity and usefulness of your log files is
quite simple: Activate logging on your sensitive systems! Quite often, I have
been involved with a security investigation only to discover that by default,
logging is deactivated on many of the servers that are included in the
investigation. My heart drops when I come to this realization. Your
organization must have a policy or standard specifying that logging must be
done. Additionally, you should periodically audit your systems to ensure that
logging is activated in accordance with your policy. It is especially important
to check that adequate storage exists to house logging information. Windows
systems are configured out of the box to limit each of the event logs to a
paltry 512K, with the newest events overwriting the oldest events when that
limit is reached. This limit can be changed through the "properties" item for
each of the particular "classes" of events (security, system, or application)
within Event Viewer. When deciding on these limits, it is important to
consider just how quickly you believe your organization can respond to an
event and track it back to a particular machine. Only slightly less frustrating
than finding a compromised machine with logging disabled is finding a
compromised machine where critical events have been overwritten, so give
your logs plenty of disk space—hundreds of megabytes or even gigabytes of
space—depending on the typical volume of logs for a given system.

Setting Proper Permissions

Another commonsense defense for protecting critical system logging and
accounting information is to set proper permissions on the log files, as well
as (for Linux and UNIX systems) utmp, wtmp, lastlog, and users' shell
histories. Although particular permissions vary depending on the operating
system, you should configure your system to allow for the minimum possible
read and write access of log files. In particular, security and kernel logs
should be set to be read and written only by root, if your Linux and UNIX
flavor allows such tight permissions. Some variants of UNIX require that
particular log files be writable by particular accounts other than root. If this
is the case for your flavor of UNIX, make sure you configure the minimal
permissions necessary for logging to function properly.

Using a Separate Logging Server

One of the most effective techniques for minimizing an attacker's capability
to alter logs involves setting up a separate logging server. Your critical
systems, such as your Internet-accessible DNS server, mail server, Web
servers, and so on, should be configured to redirect their logs to a separate
machine on your DMZ. Your critical internal systems should send their logs
to a group of separate logging systems on the internal network. Not only
does this technique help to centralize logs for better analysis, it also
significantly limits an attacker's ability to monkey with the logs. If attackers

take over root on a Linux or UNIX system or an administrator account on a
Windows box, they will not be able to alter the logs to cover their tracks,
because the logs are elsewhere. The attacker will only be able to modify the
logs by mounting a successful attack against the logging server. Therefore,
by using the separate logging machine, we've just raised the bar. Of course,
you must strongly secure the logging server. Make sure you apply system
security patches, and close all unused ports on the logging server machine.
Additionally, strongly resist the urge to use your logging server for any
other purpose beyond aggregating logs. The more services you place on the
logging box, the more vulnerable it becomes to attack.

Although you won't be able to capture shell histories, utmp, wtmp, and
lastlog from Linux and UNIX systems on a separate server, you can still
redirect all of the pure logs to a separate server. To configure a Linux or
UNIX system to use a separate logging server, you must configure syslogd
so it knows where to direct the logs. First, make sure there is a line in your
/etc/services file associating syslog with its standard port, UDP port
514:

syslog 514/udp

Next, include an entry in the syslog.conf file that tells syslog to
redirect particular message types to a remote server. For kernel-type
messages, the following line should be placed in syslog.conf:

kern.* @[hostname_for_remote_logging]

Note that this type of configuration can be done in addition to local logging,
rather than replacing local logging. That way, you'll get two sets of the same
logs, which can act as corroborating evidence in an investigation. One set of
logs comes from the local system, and another set comes from the log
servers. Such a setup will also help you look for discrepancies when an
attacker starts to change the local logs of a victim machine.

Just to be sure that an attacker cannot disable logging by attacking DNS, the
logging server hostname listed above should be included in /etc/hosts so
that it resolves locally. This local resolution of the log server name shouldn't
present a major management headache, because your centralized log server
will not be changing its IP address very often.

For particularly sensitive servers, I've also sent syslog information over a

serial connection to a local logging box with no network connectivity at all.
The purpose of this log was to simply act as a local backup of information
logged remotely, but it also provides a log that is virtually unalterable to
anyone who does not have physical access to your location.

In Windows, the EventLog service can be replaced by a Windows-compatible
version of syslog, with capabilities for centralizing log access. Several syslog-
for-Windows tools are available, including the commercial tool SL4NT at and
Kiwi syslog for Windows at . By using these tools, event logs can be sent to
separate syslog servers from a Windows system.

Encrypting Your Log Files

Another very useful technique for log protection is to encrypt the log files.
When attackers try to edit the files, they will not be able to alter them
meaningfully without the decryption key. The attacker's only option will be
to delete the log file, which is a very noticeable action. To encrypt log
information as it passes across the network and is placed in the log files
stored locally on the logging server, you could use Core Labs' free Secure
Syslog tool available at . Of course, syslogging to a separate logging server
can be combined with this log encryption technique to even further protect
the system logs.

Making Log Files Append Only

On Linux and some UNIX systems, you might want to make your log files
append only, particularly if you use a separate syslog server. To do this, use
the change attribute command as follows:

If attackers try to edit a log file that has been set to be "append only," they
will find it write protected, as it has been changed to allow operations only to
append data to the file. This is, of course, only a speed bump, because any
slightly sophisticated attacker with root privileges will notice this and simply
change the attribute back to make the log file alterations. This is, however,
a simple change that will flummox many of the log-cleaning scripts used by
the rank-and-file script kiddie masses.

Protecting Log Files Using Write-Once Media

A more thorough way of protecting the logs on any type of system
(Windows, Linux, UNIX, or others) is simply to store the logs on unalterable
media, such as a nonrewriteable DVD or CD-ROM. The prices of both DVD
recorders and media have dropped to the point over the past several years
that this is certainly a viable option. The attacker cannot alter the logs
because they are protected by the physical medium itself. Write-once media
(like DVDs and CD-ROMs) unfortunately will always have lower performance
when compared with a speedy hard drive, and might not be capable of
sustaining real-time logging from several different sources simultaneously.
Therefore, you might want to configure your logging server to flush logs
periodically to the write-once media, such as once per day, or when specific
file size thresholds are reached.

When all six of these techniques are applied together (activating logging,
setting minimal permissions, using a separate logging server, encrypting the
log files, setting the logs to append only, and storing them on write-once
media), you can have a far better degree of confidence in the integrity of
your log files. Of course, each of the techniques can be employed separately
depending on your security needs.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Creating Difficult-to-Find Files and Directories

Another technique used by attackers to cover their tracks on a system
involves creating files and directories with special names or other attributes
that are easily overlooked by users and system administrators. Attackers
often create "hidden" directories and files to store various attack tools
loaded on the systems, save sniffed passwords, and store other information
belonging to the attacker. Of course, as described in Chapter 10, rootkits can
alter the function of critical system components to hide both files and
directories. We have explained the techniques used by rootkits elsewhere, so
we now turn our discussion toward other, nonrootkit options for hiding data.
Let's explore the many ways to hide files and directories under UNIX and
Windows using only the basic operating system features, without requiring
the installation of a rootkit.

Creating Hidden Files and Directories in UNIX

On UNIX systems, attackers often name their files with a period (.) at the
start of the name to make the files less likely to be noticed by users and
system administrators. Why are such files less likely to be noticed? By

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

default, the standard UNIX ls command used for viewing the contents of a
directory does not display files with names that begin with a period. This
standard behavior was designed to keep directory listings from getting
cluttered. An application can create a file or directory that is hidden from a
user just by naming it .[filename]. Applications often use files or
directories named in this way to store configuration information specific to
an individual account, and there are usually many files of this type in each
user's home directory. To view all files in a directory (including those files
with names that begin with a period), the ls command must be used with
the –a flag, which will show of the contents of the directory. Consider an
example in which the attacker wants to hide information in the /var
directory. The attacker can create a file or directory named .mystuff to
hide stolen passwords or attack tools. When such a file is present, let's look
at the difference between the output of the standard ls command and the
ls –a command:

[View full size image]

An even subtler technique for hiding files on UNIX systems involves naming
files or directories with a period followed by one or more spaces. As
described in the Chapter 3 section titled "Linux and UNIX File System
Structure," included inside every Linux and UNIX directory there are two
links to other directories. One of these links is named., which refers to the
directory itself. The other is .., which refers to the parent directory just
above the given directory in the file system hierarchy. These conventions
allow a user to refer to files in the local and parent directories with a
convenient shorthand. An attacker will often name a file or directory period-
space (.) or period-period-space (..) to hide it, making it appear just like
the . and .. directories. Let's look at what happens when an attacker names
a file period-space:

Most administrators looking at the output of this ls command would not see
the name period-space in the output, effectively hiding the directory from
view. The hidden directory is camouflaged and blends in with what an
administrator would expect to see in the directory. Some attackers use other
variants of this technique, naming a file or directory with just a space () or
with three dots (...).

Creating Hidden Files in Windows

Techniques for hiding files are not limited to UNIX. Modern Windows systems
offer users the option of setting a file or directory with the attribute "hidden"
so that it will be omitted from view by default. By simply right-clicking on
the file or directory in Windows Explorer and selecting Properties, the user is
presented with an option to make the file hidden, as shown in Figure 11.3.

Figure 11.3. Setting the "hidden" attribute on a file or directory.

However, discovering files with the "hidden" attribute is actually quite easy.
In Windows 2000 and XP, using the Folder Options panel in Windows
Explorer, you can select the View tab and select Show All Files. The screen
to configure this setting is shown in Figure 11.4.

Figure 11.4. Showing hidden files in Windows 2000/XP.

A far more powerful and subtle technique for hiding information in Windows
involves using Alternate Data Streams (ADS), which relies on options
included with the NTFS file system. The basic capabilities of NTFS are
described in Chapter 4, Windows NT/2000/XP/2003 Overview. Beyond these
basic capabilities, NTFS allows every file or directory to have multiple
"streams" of data associated with it. These streams can store any type of
information. In fact, the normal contents of a file that can be seen and
accessed normally by users on the system is a stream itself. However,
behind this normal stream, data can be stored in an arbitrary number of
additional streams. Let's consider an example in which an attacker wants to
hide data in a stream associated with the file notepad.exe. Of course, the
attacker could hide data behind any file or directory on the system, but
suppose they have chosen notepad.exe. The normal stream associated
with notepad.exe contains the executable program for the simple
Windows editor Notepad.

You might think that special programs are required to create and access ADS
data, but our attacker can actually create another stream behind
notepad.exe using only the built-in Windows commands coupled with
input/output redirection. For our example, the attacker wants to take the file
stuff.txt and hide it in a stream behind notepad.exe. The attacker
could use this command:

C:\>type stuff.txt > notepad.exe:data.txt

This command copies the contents of the stuff.txt file into a stream
named data.txt behind the file notepad.exe. The colon followed by a
stream name indicates in which stream to put the data. The attacker could
give the stream any name at all and create any number of streams for each
file, as long as the partition on which notepad.exe resides is NTFS. If it is
a FAT or FAT32 file system, streams are not supported, so an error message
is displayed. But for NTFS-based file systems, the most common in use today
for Windows systems, the new stream named data.txt is automatically
created by this command and tacked onto the end of the notepad.exe file.
After deleting the file stuff.txt, no remnants of the file stuff.txt will
be visible in the directory. All of the contents of stuff.txt are hidden
behind the Notepad executable. That's the beauty of ADS from an attacker's
perspective: There is nothing built into Windows to locate these streams.
Windows Explorer doesn't show them, nor does the dir command. They are,
in fact, invisible on a stock Windows system. These streams act rather like a
subterranean world burrowed under your file system. Remember, any file or
directory can have an arbitrary number of streams underneath it.

Now, if anyone runs the notepad.exe program with our stream attached
to it, only the normal executable will run, with no indication of the hidden
file stream. When anyone on the system looks at the file size of
notepad.exe, the size of the normal, executable program will be
displayed, with no indication of the hidden stream of data. This stream is
quite effectively hidden. At a later time, the attacker can come back to the
system and retrieve the hidden data from the stream by using only built-in
Windows commands again, as follows:

C:\>more < notepad.exe:data > stuff.txt

Now the stuff.txt file has been restored, and the attacker can access its
contents.

It is important to note that the types of streams are independent of the
parent file under which they are attached. For example, a .txt file can be
embedded in a stream under an .exe file, or vice versa. You could store an
.exe under a .txt file, and then even run the .exe from within the
stream! Suppose we have created a stream called evil.exe underneath
the file good.txt. We could create this situation with this simple
command:

C:\>type evil.exe > good.txt:evil.exe

Now, we can run the executable from within the ADS by typing:

C:\>start .\good.exe:evil.exe

The evil executable runs just as if it were its own file, separated from the
ADS itself.

Defenses from Hidden Files

To defend against these techniques for hiding files on sensitive systems, you
should use file integrity checking tools that look at the contents of files and
directories to make sure no additional data, files, or directories have been
hidden in them. A file system integrity checker like Tripwire has this
capability, as do numerous others that we discussed in Chapter 10 during
our examination of rootkits. Additionally, host-based IDSs, which are
described in more detail in Chapter 6, Phase 2: Scanning, as well as
antivirus tools, can check the contents of directories to determine if a
malicious hidden file is present and generate an alert message for a system
or security administrator. If you use Windows, it is important to verify that
the virus and spyware scanning tools you employ are ADS aware, because
this method of hiding files and directories represents a huge untapped
resource for malware authors. At the time of writing, there are few if any
malicious programs that actually use ADSs, but look for that to change in
the future. Additionally, there are specialized tools that will scan the entire
file system looking for data stored in alternate streams. One such program is
CrucialADS, a free ADS scanning program that can be found at Another is
the free LADS tool (which stands for List Alternate Data Streams) by Frank
Heyne at . It is important to remember that all ADS data isn't bad (notably,
many graphic packages store metadata information about photos in an ADS)
but you should carefully check any ADS data that a scanner uncovers to
determine its origin, especially executables tucked in streams.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Hiding Evidence on the Network: Covert
Channels

Once attackers have installed backdoor listeners on a system and cleaned up
their tracks in the logs, they still need to communicate with their nefarious
programs on the victim machine to control them. To avoid detection, some
attackers utilize stealth mechanisms to communicate with the backdoor
system across the network. Such disguised communication mechanisms are
referred to as covert channels. Covert channels are essentially an exercise
in hiding data while it moves. Whereas encryption mathematically
transforms data into ciphertext so an adversary cannot understand its
contents, covert channels hide the data so the adversary doesn't detect it in
the first place. A truly paranoid attacker will use both a covert channel to
hide information and cryptography to scramble the contents of the
information as well.

The techniques we discuss for establishing covert channels across the
network require both a client and a server. The server must be installed on a
victim's system, acting as a sentinel, ready to exchange data with the client.
The client packages up data using stealth techniques, and the server

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

unpackages the data and reacts to it. The covert channel can be used to
control a system remotely, to transmit files secretly, or to hide any other
application capability the attacker needs to disguise. Figure 11.5 depicts a
typical generic exchange of data using a covert channel between a client and
a server.

Figure 11.5. A covert channel between a client and a server.

How does the covert channel server acting as an endpoint for the covert
channel get installed on a victim's machine in the first place? We have seen
attackers employ countless techniques in real-world cases, including these
scenarios:

An attacker can take over a system and place a backdoor listener on it
through a vulnerability such as a buffer overflow.

The attacker could e-mail an unsuspecting internal user an executable
Trojan horse program, worm, or virus, which implements a covert
channel server.

The attacker might be an ex-employee who had system administration
privileges before being terminated. The attacker could leave the covert
channel server as a way to keep unauthorized, lingering access.

The attacker might have been a temp or contractor who signed on for a
brief stint with the organization for the sole purpose of installing a
backdoor agent on the internal network (and heck, to make a couple of
bucks while on the victim's payroll).

The attacker could have physically broken into a computing facility late
at night, and installed an agent on a system. In some environments,
nighttime is not even a necessary ingredient. By simply walking in the

front door and acting confident enough, an attacker can pretend to be a
vendor or use some other ruse to gain access to computing systems to
install internal covert channel servers.

Any of these mechanisms can be used to gain access. Once access is
obtained, the covert channel allows the attacker to work in stealth mode
remotely.

Tunneling

Covert channels often rely on a technique called tunneling, which allows one
protocol to be carried over another protocol. Any communications protocol
can be used to transmit another protocol. Information theory says it must be
so. Consider a hypothetical protocol called TCP/CP. TCP/CP marries a
modern-day computer protocol to an ancient mechanism for delivering
messages, resulting in a slow, yet remarkably effective communication tool
for intermediate distances.

In a real-world example of tunneling techniques, the SSH protocol can be
used legitimately to carry other TCP-based services. Originally, SSH focused
on providing strongly authenticated, encrypted command shell access across
a network, still probably its most popular use today. However, through
tunneling, its use has been greatly expanded. With a rock-solid SSH session
in place, any other TCP services, such as telnet, FTP, or even an X-Window
session, can be transmitted securely over SSH. The information comprising
the telnet, FTP, X, or other session is simply written into SSH messages and
transmitted across the authenticated, encrypted SSH pipe. This SSH
tunneling technique is frequently used to create VPN-like access across
untrusted networks for TCP services. Although SSH tunneling only works
with TCP connections, there are other tunneling protocols that are designed
to handle UDP traffic. But, if you're ever in a jam, remember that our old
friend Netcat (see the section titled "Netcat: A General-Purpose Network
Tool" in Chapter 8) can be used to create a UDP listener to grab traffic,
which can be piped into a Netcat client creating a TCP stream, allowing you
to pass it through an SSH tunnel.

What Is TCP/CP?

The Transmission Control Protocol (TCP), transmitted via Carrier
Pigeon (CP), of course. The higher layer application (which could be
Web browsing, telnet, FTP, SSH, or any other TCP-based
application) passes data down its protocol stack. The TCP layer
formats the packet, and instead of sending it to the IP layer, it
prints each TCP packet on a tiny sheet of paper. Each packet is then
wrapped around the leg of a carrier pigeon. The pigeon is released,
carrying the printed sheet to its destination. At the destination, the
data is retyped into a computer, passed up through the TCP layer,
and sent to the receiving application. Pigeons are then fitted with
responses, and interactive communication occurs. Although not
terribly efficient (downloading the latest MP3, in addition to
outraging the recording industry, has the unwanted side effect of
exhausting fleets of pigeons), TCP/CP shows how any protocol, no
matter how bizarre or awkward, can be used to carry another
protocol through tunneling. Another bird-related transport protocol
was defined by the IETF in RFCs 1149 and 2549. Check out for
more information about how to transmit IP over avian carriers.

An SSH tunnel and protocol tunneling in general are powerful methods to
allow confidential traffic to flow through an untrusted network, but like most
good things, they can be abused as well. Attackers have harnessed the
power of these tunneling techniques to remain undetected as they
communicate with their backdoor listeners. Several tools are widely
exchanged within the computer underground based on these techniques.
We'll look at a few of the most widely used tools for tunneling covert
information: Loki and Reverse WWW Shell.

Loki: Covert Channels Using ICMP

Many networks allow incoming ICMP packets so users can ping or traceroute
to their Web sites for troubleshooting. Suppose an attacker takes over such
a Web server, installs a backdoor listener, and wants to communicate with it.
Sure, the bad guy could set up a backdoor listener on a specific port, but
that might be detected. A more stealthy approach would be to utilize ICMP
as a tunnel to carry on interactive communications with the backdoor
listener. Tunneling the communication over ICMP has several advantages,
including the fact that ICMP messages don't require an open port that might
be detected by a curious system admin using the netstat or lsof
commands we discussed in Chapter 6. Numerous tools have been released
that utilize tunnels over ICMP to establish a covert channel, and one of the

most popular is Loki, pronounced "Low-Key."

Loki was written by daemon9 to provide shell access over ICMP, making it
much more difficult to detect than other (TCP- or UDP-based) backdoors.
Loki was originally described in Phrack issue 49, with source code available
in Phrack 51 (both at). The tool runs on Linux, FreeBSD, OpenBSD, and
Solaris systems and although there are rumors that it has been ported to
Windows, if it has, it certainly isn't in widespread distribution. As shown in
Figure 11.6, the attacker types in commands at a prompt into the Loki
client. The Loki client wraps up these commands in ICMP and transmits them
to the Loki server (known as "lokid" and pronounced "Low-Key-Dee"). Lokid
unwraps the commands, executes them, and wraps the responses up in ICMP
packets. All traffic is carried in the ICMP payload field. The Lokid responses
are transmitted back to the client, again using ICMP. Lokid executes the
commands as root, and must be run with root privileges, so it can snag the
ICMP packets from the kernel and extract the commands.

Figure 11.6. Loki hides data inside ICMP messages.

As far as the network is concerned, a series of ICMP packets are shot back
and forth: Ping, Ping-Response, Ping, Ping-Response. As far as the attacker
is concerned, commands can be typed into the Loki client that are executed
on the server machine, yielding a very effective covert communication
session.

System administrators often use the familiar netstat –na command to
show which processes are listening on which TCP and UDP ports. In addition
to running netstat, system administrators can periodically port scan their
systems to detect backdoor listeners using a tool like Nmap, as described in
Chapter 6. However, as stated earlier, ICMP does not include the concept of

a port, and is therefore not detected using netstat and will not show up in
a port scan. Loki therefore foils these two detection techniques, flying under
the radar screens of the common system administrator backdoor detection
techniques. The only trace of the Loki daemon on the internal system is a
root-level process running, and ICMP packets going back and forth.

Loki also has an option to run over UDP port 53, thereby disguising its
packets as DNS queries and responses. These packets are not properly
formatted DNS queries and responses, however. Instead, Loki just uses the
same port as DNS traffic. Loki supports on-the-fly protocol switching to
toggle between ICMP and UDP port 53. When in UDP mode, Loki will show up
in the output of the netstat –na command, and can be identified during a
port scan. Additionally, to further stealthify the connection, Loki supports
end-to-end encryption of the ICMP payload information using the Blowfish
algorithm for encryption and Diffie-Hellman for key exchange.

This technique of transporting covert communication via ICMP is by no
means limited to Loki. There are several other tools that can be used to
tunnel communications over various protocols. The Covert Channel
Tunneling Tool (CCTT) can tunnel communication using ICMP, TCP, and UDP
packets. MSNShell is a tool that tunnels shell commands to and from a Linux
machine using Microsoft's MSN protocol. Both tools are projects of Gray
World Net Team and available from These tools and others like them are
currently used by the underground to provide covert communication with
backdoors installed on compromised systems.

Reverse WWW Shell: Covert Channels Using HTTP

"Loki is interesting," you might say, but you are far too smart to allow
incoming or outgoing ICMP on your network. Sure, blocking pings is an
inconvenience for users, but security is paramount, for goodness sakes. So,
because ICMP is blocked at your border, you're secure against covert
channels, right?

Well, unfortunately, Loki and ICMP tunneling are but a small area in an
enormous universe of covert channel choices for an attacker. Another
particularly insidious technique is to carry shell-type commands using HTTP,
which has been implemented in the aptly named Reverse WWW Shell tool.

Reverse WWW Shell allows an attacker to access a machine with a command
shell on your internal network from the outside, even if it is protected with a
firewall. It was written by van Hauser (who also wrote THC-Scan, the war
dialer described in Chapter 6—clearly a talented individual) and is available
at The attacker must install (or get one of your users to install) a simple
program on a machine in your network, the Reverse WWW Shell server.

On a regular basis, usually every 60 seconds, the internal server tries to
access the external master system to pick up commands, essentially calling
home. If the attacker has typed something into the master on the external
system, this command is retrieved and executed on the internal system. The
next communication from the internal agent will carry the results of this
command, and a request for the next command. This is the "reverse" part of
Reverse WWW Shell: The server goes to the master to pull commands,
executes them, and pushes the results. This polling technique is called a
reverse shell, or, more colorfully, shoveling shell, as we discussed in the
context of Netcat in Chapter 8, Phase 3: Gaining Access Using Network
Attacks. Figure 11.7 shows the operation of Reverse WWW Shell in more
detail. Therefore, we have simply pushed out shell access, an impressive
feat, but by no means revolutionary, right?

Figure 11.7. Reverse WWW Shell looks like outgoing Web access, but
is really incoming shell access.

[View full size image]

But wait ... there's more! From a network perspective, the internal (victim)
machine appears to be surfing the Web. The Reverse WWW Shell server
uses standard HTTP GET messages sent to the attacker's external system
across the network, where the Reverse WWW Shell master is running. When
it accesses the master, the Reverse WWW Shell server pushes out the
command-line prompt from the server, tunneled in HTTP requests and
responses. So, the internal agent looks like a browser surfing the Web. The
external master looks like a Web server. All outgoing data is transmitted
from a high source port (greater than 1024), to a destination TCP port of 80.
All responses come back from TCP port 80 to the high-numbered port.

So the packets have HTTP characteristics, but, even worse, the shell data is
formatted as HTTP GET commands. Therefore, even a proxy firewall that
enforces the use of HTTP on TCP port 80, carefully combing the protocol to
make sure it's HTTP, is befuddled. The firewall and other network
components view the traffic as standard outgoing HTTP, something that most
networks allow. In fact, the covert channel is incoming shell access, allowing

the attacker to execute any command on the internal system.

From the attacker's point of view, using Reverse WWW Shell is rather
annoying; the cadence of entering in commands, waiting for the server to
come and retrieve them, execute them, and send the response can be
cumbersome and frustrating. The attacker types in a command, waits 60
seconds, and then gets the response. The attacker can then type another
command, wait 60 more seconds, and get the response. Although annoying,
the tool is still incredibly useful for an attacker, and the 60 seconds can be
set to a lower value. Making it too low, however, would not look as much
like normal HTTP traffic. If you saw a browser going to the same Web server
every three seconds, you might be suspicious. Of course, to make Reverse
WWW Shell even stealthier, the attacker can randomize this period between
accesses.

Unfortunately, you are still not safe if you require HTTP authentication with
static passwords to get out of your firewall. Many organizations only allow
outgoing Web browsing if a user authenticates to a Web proxy with a user ID
and password, a reasonable increase in security and auditability under most
circumstances. However, Reverse WWW Shell allows the attacker to program
the system with a user ID and password that will be given to the outgoing
Web proxy firewall for authentication.

From an implementation perspective, the Reverse WWW Shell client and
server are the same program, with different command-line parameters. The
single client/server program is written in Perl, so a Perl interpreter is
required on both the inside and outside machines. Additionally, several folks
have developed similar functionality for tools that use HTTPS.

Unfortunately, the ideas behind Reverse WWW Shell didn't stay confined to
the computer underground. Currently, there are some commercial services
that implement remote GUI access to the desktop via HTTP, with one of the
most popular named GoToMyPC.com. It's very scary from a security
perspective, letting your users (and evil attackers) anywhere on the Internet
control machines remotely via outgoing HTTP that is secured only by a user-
chosen password. If users choose weak passwords, an attacker might be able
to take over their internal systems by riding across the outbound HTTP
access of GoToMyPC. This security administrator's nightmare even offers a
free trial period, and claims it takes only two minutes to install. And people
wonder why some security folks have thinning hair!

Other protocols besides ICMP and HTTP are being used to tunnel covert data.
Attackers have created tools that utilize SMTP, the protocol used to
transport e-mail across the Internet, to carry shell access and transfer files.
Of course, the latency of using a store-and-forward application like e-mail
for transmitting commands and results is even more painfully slow than

Reverse WWW Shell. Still, for an attacker whose greatest asset is time,
transmitting data using e-mail could be an attractive alternative. Countless
other tunnel schemes exist, sending covert data over numerous other
protocols, including FTP, Streaming Audio, and SSH.

Covert Channels and Malware

No discussion of covert network channels would be complete without a nod
to our friends in the spyware and malware industry. These charming and
delightful folks have done more over the past several years to advance the
cause of covert channel communication than anyone. (For the sarcasm
impaired, we find these folks neither charming nor delightful.) Malware
"products," by their very nature, are about communicating information in a
way that doesn't draw attention to the fact that communication is taking
place. If you knew, for example, that your banking information was being
stolen and transmitted to some dark, smoky room in Romania, you would
(we hope) do something to stop it. For a password-stealing Trojan horse to
succeed, it absolutely must communicate in a stealthy manner. So how do
these things get their information "out" without raising a ruckus?

On Discovering Problems, Being Ignored, and Then
Recasting the Threat

One of the potential pitfalls that all of us face as we work on
securing our systems and networks is that we sometimes get so set
in our own way of thinking and doing things that we miss issues
that are sitting right in front of us. It's not so much that the folks
who are out there attacking our systems are far better than we are
at "thinking outside the box" when it comes to abusing protocols
and finding ways around our carefully thought-out protections. It's
just that there are so darned many of them that they're bound to
outfox us every so often. As the anointed protectors of our
networks (the guys wearing the white hats, if you will), we need to
constantly check that we're not letting our own biases cloud our
thinking when it comes to security. Here is a case in point: In
January 2003, while working on an unrelated project, one of us
stumbled across a flaw in the way that personal firewall software
(PFW) handled DNS requests under the then brand-new Windows
XP operating system. Because of the way XP created outbound DNS
requests, PFWs were unable to track which program on the machine
was attempting to resolve a machine name. This resulted in the fact
that a new, unknown program could create an outbound DNS
lookup without triggering an alert from the PFW. When this
situation was discovered, we had yet to experience the
overwhelming surge of the spyware "industry" that hit during the
summer of 2003. When PFW vendors were contacted about this
issue, it was presented to them as a potential "covert channel" for
outbound communication, complete with a small proof-of-concept
program that demonstrated the ability to send information from a
computer without triggering a PFW alert. That demonstration was
roundly ignored. It was only after contacting the PFW vendors
again, and couching the flaw as a possible avenue for a DoS attack
(which was the "hot" security concern at the time) that action was
finally taken and the vulnerability fixed. If that same flaw had been
discovered today (as we find ourselves in the midst of an all-out
war on spyware) having the flaw described as a possible "covert
channel" would have gotten immediate action. It's important to
make sure you present threats and other security issues in terms
that your desired audience considers noteworthy, an especially
useful lesson when interacting with vendors and management.

The authors of malicious code find themselves in a constant battle with both
the antivirus and antispyware vendors and the makers of PFWs. Evading

detection by antivirus and antispyware is only half the battle for a password-
stealing Trojan horse. It must also be able to communicate in a way that
bypasses the outbound communication detection built into today's firewalls.
Following in the grand tradition of Loki and Reverse WWW Shell, malware
authors found that the simplest solution to not tripping an alert is to
piggyback outbound communication on that of a program or protocol that is
already allowed to access the network. Most often, under Windows (which,
because of its widespread usage is the platform of choice for malware
authors), this means using Internet Explorer. Additionally, this means that
the protocols of choice for malicious software that wants to "phone home"
will be HTTP and HTTPS, which happily pass through most corporate firewalls
and proxies, especially with Internet Explorer's help. Many malicious
programs these days install themselves as a Browser Helper Object (BHO), a
plug-in to extend the browser. Acting as a BHO makes the malicious code, in
effect, a part of Internet Explorer. And, even though "Helper" is in the BHO
acronym, the malware BHOs do not have their victims' best interests at
heart. Positioned from within the victim's browser, the malicious code is
capable of stealing account and password information as it is entered into
Internet Explorer and able to use Internet Explorer's status to pass that
information outbound through an unsuspecting firewall. In many ways, the
malicious software acts as a dumbed-down version of a live attacker,
exploiting a victim's trust of specific software and protocols to do its dirty
work, siphoning crucial information from your system into an attacker's
hands.

More Covert Channels: Using the TCP and IP Headers to
Carry Data with Covert_TCP and Nushu

Although covert channels created by embedding one protocol entirely in a
different protocol can be quite effective, covert channels can also be
constructed by inserting data into unused or misused fields of protocol
headers themselves. The TCP/IP protocol suite is particularly useful in
carrying covert channels. Described in more detail in Chapter 2, Networking
Overview, many of the fields in the TCP and IP headers have huge openings
through which data can be sent.

One particularly interesting tool that illustrates exploiting TCP/IP headers to
create covert channels is called Covert_TCP, available at Written by Craig H.
Rowland and included as part of his paper, (also available at that same site),
Covert_TCP shows how data can be secretly carried in TCP/IP headers by
implementing a simple file transfer routine using the technique.

Figure 11.8 depicts the IP and TCP headers. Covert_TCP allows for
transmitting information by entering ASCII data in the following TCP/IP
header fields, shown in bold in Figure 11.8:

Figure 11.8. The IP and TCP headers.

IP Identification

TCP sequence number

TCP acknowledgment number

Of course other components of the TCP and IP headers could be used to
transmit data, such as the Reserved, Window, Code Bits, Options, or Padding
fields, but only three components are supported by Covert_TCP. The problem
with using these other fields is that there are situations in which these fields
are either altered or stripped from the packet by various routers along the
hops it takes between its source and destination. The fields that Rowland
chose to use should not be altered unless the packet goes through some sort
of NAT or proxy device. Even then, depending on the type of NAT device
encountered, one of the fields (IPID) may make it through safely. Although
only these three fields are supported in the tool, Covert_TCP is still
remarkably effective in creating a covert channel.

Once again, a single executable program implements both the client and
server. The attacker configures Covert_TCP to run in a particular mode,
depending on the field to be used to carry data. The command-line
arguments used to initialize Covert_TCP indicate whether it is to transmit
data over the IP Identification field (-ipid mode), TCP sequence number (-

seq mode), or TCP acknowledgment number (-ack mode). These modes are
mutually exclusive, and the client and server must use the same mode to
communicate with each other.

The way that the IP Identification mode works is quite simple. ASCII data is
dropped into that field at the client and then extracted at the server. A
single ASCII character is carried in each packet.

The way that the TCP sequence number mode works is somewhat more
complex. In the first part of the TCP three-way handshake, the Covert_TCP
client sends a packet with the SYN flag set, which carries an initial sequence
number (ISNA). This sequence number is set to represent the ASCII value of
the first character in the file to be transferred covertly. The Covert_TCP
server then sends back a RESET packet, killing the connection, because the
intent of the SYN packet is to deliver the character in the sequence number
field, not to establish a connection. This RESET packet, ironically, acts as an
acknowledgment for the Covert_TCP client that the SYN packet was
received. The client then sends another session-initiation packet (again, the
first part of the three-way handshake), containing another character as the
initial sequence number. Again the server sends a RESET and the three-way
handshake is not completed. Although not terribly efficient in transferring
data, using a 32-bit sequence number field to carry only 8 bits of data, this
Covert_TCP mode is still quite useful.

The most complex mode of operation for Covert_TCP is the TCP
acknowledgment number, which can only be used in a so-called bounce
operation. For situations where the Acknowledgment mode is used, there are
three systems involved: the server (the receiver of the file), the client (the
sender of the file), and the bounce server (an unwitting "victim" that simply
aids Covert_TCP in sending information).

In this mode, the attacker essentially sends data from the client and bounces
it off the bounce server using IP address spoofing techniques, thereby
transmitting it to the receiving server. To accomplish this, the attacker first
establishes a Covert_TCP server on the receiving machine, putting it into
"ack" mode. The attacker also selects a bounce server, which could be any
accessible machine on the Internet. Potentially, the attacker could use a
high-profile Internet commerce Web site, the FTP server of your favorite
software repository, a mail server from a university, or the Web site of your
friendly neighborhood government agency. No attacker software is required
on the bounce server. All the bounce server needs is a TCP/IP stack and
network connectivity. The attacker then sends the file over a covert channel
from the client system to the receiving system via the bounce server. The
steps involved in this process, depicted in Figure 11.9, are as follows:

Figure 11.9. Using Covert_TCP with a bounce server.

[View full size image]

1.

The client generates TCP SYN packets with a spoofed source
address of the receiving server and a destination address of the
bounce server. The initial sequence number of these packets
(ISNA) is set to a value corresponding to one less than the
ASCII character that needs to be transmitted. This packet is
then sent to the bounce server.

2.

The bounce server receives the packet. If the destination port
(which is configurable by the attacker) on the bounce server is
open, the bounce server will send a SYN/ACK response, thereby
completing the second part of the three-way handshake. If the
destination port on the bounce server is closed, the bounce
server will send a RESET message. Regardless of whether the
port is open or closed, the bounce server will send its response
(a SYN/ACK or a RESET) to the apparent source of the
message, which is the receiving server. That is how the
"bounce" occurs—the client spoofs the address of the receiving
server, duping the bounce server to forward the message to
the receiver. Of course, because of the way TCP/IP works, the
SYN/ACK or RESET will have its ACK sequence number value
incremented to one more than the initial SYN sequence
number. This incrementing by one will set the value of the
response's acknowledgment sequence number to the proper
ASCII value.

3.

The receiving server gets the SYN/ACK or RESET, recovers the
character from the acknowledgment number field, and waits for
more. The data is gathered from the acknowledgment numbers
and is written to a local file.

The beauty of this bounce mode of operation, from the attacker's point of
view, is that a trace of the packets at the server will show that they come
from the bounce server. The client location is hidden, obfuscated by the
bounce server. A forensics investigator must trace the spoofed connection
back from the receiving server to the bounce server and then to the client,
which can be a truly difficult task. To make the situation even harder, the
bounce operation can be distributed among several different bounce server
victims. A single client could bounce a file off of dozens or hundreds of
bounce servers, with a single receiving server getting the file. Taking this
situation to an extreme, each character of the file being transmitted could
come from a different bounce server, resulting in a much more complex
investigation and better prospects for the attacker to remain hidden.

With a high degree of flexibility, Covert_TCP offers the ability to send data
with any TCP source and destination port number. The ability to configure
source and destination ports allows an attacker to set up Covert_TCP to best
fit data through the target's routers and firewalls. Suppose your network
only allows incoming server-to-server e-mail (SMTP on TCP port 25). The
attacker can configure Covert_TCP to use TCP port 25 as a source and/or
destination port. If your network allows only TCP port 53 traffic (for DNS
zone transfers), the attacker can fire up Covert_TCP on those ports.

Covert_TCP, although effective, isn't the only game in town when it comes
to inserting data into the sequence number of the TCP header. A tool named
Nushu utilizes this technique as well, but with an important twist. For each
character it sends, the older Covert_TCP tool generates a packet containing
that data, which it transmits either to the destination or a bounce server. In
other words, it is an tool, generating its own packets. Nushu, a tool written
by Joanna Rutkowska, creates covert channels. Instead of sending its own
packets to exfiltrate data, Nushu inserts its data for the covert channel
inside of packets generated by other applications running on the machine
where Nushu is installed.

As illustrated in Figure 11.10, the victim machine with Nushu running sends
packets out across the network in its normal course of operation. These
packets represent the actions of users and services on that system,
potentially including HTTP, SMTP, FTP, or other protocols. Nushu, sitting

silently on the victim machine, waits for new TCP connection initiations.
When it sees the kernel of the victim system generate a new TCP session
using the three-way handshake, Nushu alters the ISNA of that packet to
insert its data inside of it. The data is then transmitted across the network to
its ultimate destination; a machine the attacker doesn't control or have any
interaction with whatsoever. The attacker also must control a gateway on
the network through which all of the victim's traffic is funneled. This could
be a router or gateway system run by the victim's ISP under control of the
attacker, or a system the attacker inserted in the communication using the
ARP cache poisoning or DNS spoofing attacks we discussed in Chapter 8.

Figure 11.10. Using Nushu to implement a passive covert channel.

[View full size image]

At this gateway system, the server component of Nushu copies data from the
ISNA and forwards the secret information to the attacker. The SYN packet
itself is then dutifully carried to the ultimate destination, which responds
with packets of its own. In a sense, the attacker is leaking data out of the
victim machine using the first packet of the three-way handshakes engaged
in by other applications. Now, the attacker will only be able to send up to 32
bits of data per outbound TCP session from the victim, as only the ISNA can
carry data (all of the other sequence numbers in outbound packets for that
session are just increments of that ISNA for each octet of data transmitted).
Still, if the victim machine is a fairly busy server or a client actively surfing
the Web, enough TCP session initiations will occur to set up a powerful and
quite covert channel.

To pull this off, Nushu is implemented as a special Linux kernel module,
altering the kernel to intercept packets on their way out of the victim
machine, as shown in Figure 11.11. Before the kernel transmits the packet,
Nushu grabs it. Nushu then takes a piece of data it wants to transmit, and

calculates the offset between the data it wants to send and the original ISNA

the kernel itself generated for that packet. Nushu will remember this offset
for the duration of this session. Then, Nushu inserts its data into the ISNA

field and transmits the packet.

Figure 11.11. Nushu transmitting a packet.

[View full size image]

Next, we can see why remembering that offset is so important. As shown in
Figure 11.12, when a response packet is received from the ultimate
destination, Nushu has to map the acknowledgment number (which is based
on the Nushuset sequence number in the original packet, simply
incremented by one or the number of octets transmitted so far on that
session) back to the original sequence number (incremented appropriately).
Nushu subtracts the offset from the acknowledgment number field and hands
the packet to the normal kernel routines for handling.

Figure 11.12. Nushu getting a response.

[View full size image]

Nushu does introduce an unusual anomaly when implementing this process.
If investigators run a sniffer, such as tcpdump, on the victim machine, they
will see the sequence numbers generated by the normal kernel code. They
can then compare those local sequence numbers with the sequence numbers
of supposedly the same packets sniffed from somewhere on the network
between the victim and ultimate destination. By comparing these two sets of
sequence numbers for what are supposed to be the same packets, they will
see a difference! The sequence numbers in the packets sniffed locally versus
the packets sniffed from the network will be different by the offset for each
session.

Currently, Nushu is implemented only in Linux. This same kind of technique
could be particularly insidious in Windows-based spyware, given the
widespread use of Windows machines and the proliferation of Windows
spyware, although such software hasn't yet been released publicly as of this
writing.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Defenses Against Covert Channels

Defending against these covert channels can occur at two places: on the end
host and on the network. On the end host, we must absolutely strive to
prevent the attackers from gaining access (particularly at root or
administrator level) in the first place. The operating system should be
hardened, with a secure configuration and the regular application of security
patches. Without a high level of access, the attackers will be prevented from
installing the server side of the covert channel to unwrap the packets sent
on the covert channel. On Windows systems, because of the prevalence of
malware, it is critical that all systems have antivirus software with up-to-
date virus definitions. Because most antivirus applications do not address
spyware, it is also prudent to have an additional antispyware application as
well. On systems that are used for Web browsing, it is important to monitor
the Web browser to make sure that no components have been added into
the browser itself (like BHOs in Internet Explorer) that can use the browser
itself as a means of communication. Most antispyware tools can look through
your BHOs to see if they might be menacing.

Unfortunately, however, no defense is 100 percent effective. Even though

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

the operating system is hardened, attackers could still gain access and install
a covert channel server on a system. To help ensure quick detection of such
a server, system administrators must be familiar with which processes are
running on their critical systems (Internet-accessible systems and sensitive
internal machines). This cannot be stressed enough: Only by knowing what
is "normal" on a machine can you spot when something "abnormal" is going
on. By periodically inspecting the process list on an uninfected system, an
administrator can become familiar with which processes are normally
running on a system. If an unusual process is discovered, it must be
investigated to determine why it is running, particularly if it is running with
super-user privileges. If there is any process running that has no valid
function on the server, it should always be disabled. (This is best practice for
machines, not just sensitive servers.)

Further Fun and Mayhem with Steganography

Although this chapter focuses on using data hiding techniques for
moving information, the computer underground has created a large
number of tools for hiding data stored in local files. The process of
hiding data inside of other data is referred to as steganography.
Perhaps the most popular method for hiding data in files is to utilize
graphics images as the hiding place. Several tools are available that
let a user embed any information (such as the source code for your
favorite attack tool, lists of compromised servers, plans for future
attacks, and even your grandma's closely guarded favorite
chocolate chip cookie recipe) in a graphics image. These graphics
steganography programs shave off a few bits in strategic locations
from a .jpeg, .gif, or .bmp image and replace them with bits from
the data to be hidden. By replacing only a small amount of data
scattered carefully throughout the image, the image itself appears
unaltered to the viewer. Other mechanisms can store data inside of
executable programs and even sound files.

Although there has never, to our knowledge, been a publicly
confirmed incident of steganography being used as a communication
channel among terror groups, there has been widespread worry
that steganography might be used to make even the most
innocuous image on the Internet into a terrorist's conduit for
planning or disseminating information. In 2001 and 2002, Niels
Provos scanned more than 2 million images from eBay with
StegDetect, software that he developed to look for anomalous
patterns in images indicative of steganography use. Provos followed
up with a scan of more than 1 million images found in Usenet
newsgroups. In both studies, not a single hidden message was
found.

A large number of freeware, shareware, and commercial
steganography tools are available. A very useful reference for these
tools is a comparison matrix located at

Some attackers use these tools to hide data on their victims'
systems. If it has been taken over without your noticing, your Web
server could be distributing attacker tool source code to the entire
world, embedded in the logo on your main Web page! If this occurs,
typical users will not notice any changes in the images on your Web
site. However, the attackers might tell their comrades in the
underground that to get the latest attack tool, they should browse
to your Web site, save your fancy logo, and apply the appropriate
steganography tool to the saved image to extract the exploit du

jour. No special software is required on your Web server (just
slightly altered images on Web pages), and the attacker has turned
you into an unwitting distribution warehouse for attack tools or
other data.

Knowing which processes are "normal" for your system is neither easy nor
foolproof. It is very difficult to know everything that is running on your
systems when you have hundreds (or thousands) of users. Still, particularly
for the publicly available systems (Web servers, e-mail servers, DNS
servers, etc.), you definitely should know the purpose of every process
running, and when a new process starts up, investigate it immediately. To
help you sort through various process names, a really nice description of
various default Windows processes is located at This list even includes a set
of evil process names often used by malicious code.

Of course, the underground is aware that covert channel servers like Lokid
are often detected because they require a waiting process listening for
packets. Any attackers worth their salt will run them with a name other than
"lokid" to help hide things a bit. Attackers like to run their processes with
innocuous names like, nfsd, inetd, or printer. On Windows systems, anything
with "win" or "sys32" in the title is given an aura of respectability. Still, in
spite of renaming their rogue process, the system administrator might
discover it and start investigating—which is not a good thing from the
attacker's point of view.

To avoid this type of discovery, more and more attention has been given by
the underground to incorporating their backdoor tools and the covert
channels that control them into kernel-mode rootkits. Because they sit
within the kernel itself and modify information in a way that is nearly
undetectable, such kernel-mode rootkit covert channels are the "holy grail"
of hackerdom, as we discussed in Chapter 10.

Because of these concerns, we cannot rely solely on the security of and
investigation at the end system. At the network level, many of the more
common covert channel tools (such as Loki) can be detected using network-
based IDSs. Because these covert channel tools rely on a predictable packet
structure, several of these tools leave telltale fingerprints that can be
detected on the network. IDS tools in both the commercial arena (such as
Sourcefire Intrusion Sensors, ISS RealSecure, Cisco Secure IDS, and
Network Flight Recorder) and the freeware world (Snort) can detect some of
the types of anomalous packets used in covert channels. If your IDS
suddenly alerts you, saying that it has detected a covert channel tool in use,
you must begin an investigation and determine if someone is trying to hide

something from you.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

As we have seen throughout this chapter, attackers employ many techniques
for covering their tracks on a system. Using these tactics, the bad guys can
lurk silently on a machine for months or even years. The best attackers
carefully cover their tracks and attempt to maintain the system on behalf of
the system administrator. Often, attackers will harden a system after
compromising it, keeping "their" system up to date with patches so that they
can maintain control on their terms. Although system administrators might
change due to job churn, the attackers often remain constant. Unbeknownst
to system administrators, the attackers secretly "Own" the system,
gathering all data that goes into or out of the machine, for possible use at a
later date.

Covering the tracks completes the five-phase cycle of attack that we've
explored throughout the heart of this book. However, it is important to note
that after attackers cover their tracks on one victim system, they usually
begin the process again, by conducting reconnaissance and scanning against
a new set of targets, using their victim as a jump-off point. In this way, as
each cycle is completed, the attacker's sphere of influence continues to

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

grow.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

After installing Trojan horse backdoor tools to maintain access, attackers
often cover their tracks by manipulating the system. One of the most
important ways to avoid detection is to edit the system logs. Purging the logs
entirely is likely to be noticed, so attackers like to edit individual events out
of the logs. They usually edit events that would show their method of
compromising the machine, such as failed login attempts, use of specific
accounts, and the running of certain security-sensitive commands. On
Windows systems, attackers can use the WinZapper tool to delete specific
security events. On UNIX systems, a variety of tools, most of them found on
the box to begin with, support log editing.

To defend against log editing attacks, you should utilize separate logging
servers for critical networks, such as your Internet DMZ. Additionally, you
might want to consider encrypting your log files so attackers cannot alter
them if they are able to take over a system. Finally, by periodically burning
your logs to write-once media (such as a DVD), you can have a permanent
record of the logs that an attacker cannot modify.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Attackers can employ various operating system functions to make files and
directories more difficult to find. On UNIX systems, file or directory names
that begin with a period (.) are much less likely to be noticed. Furthermore,
files or directories that are named period-space (.) or period-period-space
(..) are even more stealthy. Hiding files on a modern Windows system can
be done using ADS on an NTFS partition using only built-in system
commands. Files and directories hidden in this manner cannot be detected
without the use of third-party tools.

To defend against such hidden files, you should employ host-based IDSs and
antivirus tools that can detect malicious software stored in hidden files and
directories. On Windows, it is important to confirm that antivirus and
antispyware tools are ADS aware.

Steganography is the process of hiding data. An attacker could hide data in
images or sound files. Alternatively, an attacker could hide data during
transmission. Using covert channels, an attacker can send hidden data
across the network. This data could consist of files to be transferred or
commands for a backdoor running on a victim machine. Tunneling is a
technique for carrying one protocol on top of another protocol. A large
number of tools implement tunneling of command shells over various
protocols, including ICMP and HTTP. Attackers can even use the extra space
in the TCP and IP headers to carry information between systems without the
knowledge of system administrators, employing either active or passive
covert channels. Viruses and spyware also employ covert channels to
transmit information, and often will "ride" on other, trusted programs for
network access to avoid detection.

To defend against covert channels, you should prevent attackers from
installing software to send or receive covert data in the first place.
Additionally, for sensitive systems, you need to know the purpose of all
running processes on the machine, particularly those with super-user
privileges. If a process starts running with high privileges that are not
typical for the system, you should investigate. Network-based IDS tools also
help identify abnormal traffic patterns that could indicate covert channels.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 12. Putting It All Together: Anatomy of
an Attack

We've discussed a variety of different tools and the ways in which they are
utilized to construct attacks. The five steps of an attack discussed
throughout this book are useful in understanding how the tools interrelate
and seeing how most attacks are organized. However, don't think that every
attacker follows with exactitude this step-by-step approach. It is important
to note that attackers, particularly the more sophisticated ones, are very
pragmatic. Although many incidents follow the five steps we've outlined,
pragmatic attackers use whichever step and whichever tool best suits their
needs at a given time for a given target.

For example, if attackers have already gained access on a given machine,
they will likely skip the initial reconnaissance, scanning, and gaining access
phases, as they move directly to installing Trojan horses, backdoors, and
rootkits. Likewise, an attacker might iterate through the steps we've
discussed, and then revisit earlier steps as further information is required.
So an attack might start with reconnaissance, scanning, and gaining access.
Then, after gaining access, the attacker might begin scanning again to find
additional vulnerable systems, or to harvest data that can be useful in
further conquest.

Most of the more sophisticated attackers have their own style, consisting of
a set of tools and techniques they are comfortable with, as well as a general
mindset for organizing the attack. Sure, most script kiddies clumsily follow
everything the README files included with their tools tell them, or just
haphazardly run attack tools without any understanding of how they work. A
more sophisticated attacker, on the other hand, uses each tool and
methodology we've covered as a basic building block, combining them in new
and very imaginative ways, based on the characteristics of the target.

To better understand how a creative attacker can structure an attack using
the tools discussed throughout the book, this chapter presents three attack
scenarios. We study each sample attack to learn how the attackers
accomplish their goals. Additionally, we carefully analyze the mistakes of the
victims so that we can better learn how to defend our own systems.

The attack scenarios discussed in this chapter are composites of actual
attacks I've seen and studied in the real world. The scenarios and characters
are fiction, but the attack techniques are real. I've boiled down a large
number of attacks my colleagues and I have witnessed, plus extrapolations
from various public stories of attacks, to develop these three examples. Of
course, although these scenarios are based on actual attacks, the names
have been changed to protect the innocent (and the guilty!).

Of course, an infinite number of other scenarios can be constructed.
However, I have constructed these three scenarios to piece together many of
the tools we've discussed and to help solidify concepts covered throughout
the book. With this objective, we cover the following three example
scenarios:

Crouching Wi-Fi, Hidden Dragon

Death of a Telecommuter

The Manchurian Contractor

Enterprising movie moguls should note that the rights for these computer
attack scenarios are still available, at a reasonable fee.

For each of these scenarios, we discuss the attackers' activities at each stage
of the game. Furthermore, we highlight the mistakes made by the victims so
we can learn from their errors. Also, a note about iconography is in order.
When a particular target system falls under the control of an attacker, we
signify this new victim pictorially by a computer with a sad face.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Scenario 1: Crouching Wi-Fi, Hidden Dragon

Carl was a businessman, you understand. Others, including the government,
might have viewed his deeds as technically "illegal," but Credit Card Carl
(CCC), as he was known, had managed to suppress his own feelings of guilt
under a scab of rationalization. "I'm teaching those losers a lesson, and
making a little money along the way," CCC frequently thought to himself.
But a little money was certainly an understatement. CCC sold stolen credit
cards on the black market, making about a dollar per illicit card. His
customers would surely use them to defraud consumers and their banks for
many thousands of dollars on each card, but CCC was very happy with his
one dollar. Carl chuckled, "I'm just a little fish; those people committing the
fraud are the biggies that the government wants in jail." But at a buck per
stolen card number, it was volume CCC was after. Big time. A heist of
100,000 credit cards would make his lavish monthly goal, and a million
would set him up for almost a year in his opulent, yet nomadic, lifestyle.

One of CCC's biggest hauls yet involved Acme Widgets Corporation, the
premier retailer of the world's finest widgets. Acme operated more than 200
retail stores distributed in cities around the country. Stores were located in

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

shopping centers, strip malls, and stand-alone buildings. As shown in Figure
12.1, each retail outlet communicated with Acme's central corporate network
using a VPN. This VPN link was configured to stay up all the time, so that
credit card transactions and inventory information could be seamlessly
moved from individual stores back to the Acme mother ship. Each store had
several Point-of-Sale (POS) terminals, a fancy name for their computerized
cash registers. To lower costs of deployment and increase flexibility in store
layout, the POS terminals accessed the local store network using wireless
access points. Acme thought it had improved security by configuring these
access points with MAC address filtering, allowing only the hardware
addresses of each POS terminal for a given store in through that store's
wireless access point. Each retail outlet also included a store server, which
helped in processing credit card transactions. The store server would forward
these transactions to a centralized server on the corporate network, which
included a Web application used by Acme management to analyze and
manage business operations.

Figure 12.1. The Acme Widgets Corporation network of stores.

CCC decided to go after Acme because of an article he had read about the
company's rapid expansion, a possible sign of security weaknesses. Perhaps
Acme's quick growth meant the company wasn't as careful with its security
as it should have been. CCC began his adventure against Acme by doing
some reconnaissance. He needed some more information about his victim
before starting to knock on its (virtual) doors. CCC cruised over to the
InterNIC and looked up information on Acme Widgets Corporation. The
results of his InterNIC search proved quite fruitful. Acme had an assigned IP
address space of a.b.c.0-255.

As Figure 12.2 illustrates, CCC used this information to begin scanning. He
routed all scanning traffic through a system with FragRouter installed in an
effort to avoid IDS detection or IPS blocking. He started scanning Acme's
network using Cheops-ng to discover which systems were alive on the target
network, resulting in the discovery of three Internet-accessible systems.
Using Cheops-ng's integrated traceroute capabilities, CCC developed a basic
idea of the architecture. One of the three systems was in front of the other
two. A quick Nmap SYN scan revealed TCP port 80 open on one of the
systems, clearly a Web server. The other system displayed no open TCP
ports, but the Nmap UDP scanner showed port 53 open. CCC had found a
DNS server. The other system had no ports open, but Firewalk showed that
it was indeed a packet filter firewall with rules allowing TCP port 80 and UDP
port 53 to the DMZ machines. At this point, CCC discerned the general
architecture of Acme's Internet DMZ and firewall. He scribbled down all of
this information, creating a simple sketch of the target. CCC also ran a
vulnerability scan using Nessus, just to see if Acme made any simple
mistakes, like leaving vulnerable or unpatched services accessible on the
Internet. Unfortunately for CCC, the Nessus scan came up dry. No known
vulnerabilities were present on the DMZ.

Figure 12.2. Scanning the Acme DMZ.

[View full size image]

With the Internet attack vector lacking promise, CCC surfed to the Acme
Web site and stumbled upon a Web page that listed each of Acme's retail
outlets. Why, there was an Acme store located in a shopping mall just across
town from CCC's home. Hopping in his car, CCC drove to the mall. After
buying a burrito in the food court less than 100 yards from the Acme store,
CCC sat down, booted up his laptop, and began looking for available access
points. Careful not to spill burrito sauce on his computer, CCC launched

Wellenreiter, the completely passive wireless monitoring tool. Using
Wellenreiter, CCC was even able to see access points that were configured
not to include their SSIDs in their beacon packets, as well as those set up
not to respond to probe packets. By just gathering legitimate traffic, as
shown in Figure 12.3, he noticed several access points nearby, but one had
a particularly interesting SSID: acwicorp041. "Sounds like Acme Widgets
Corporation to me," he uttered quietly with a big smile on his face.

Figure 12.3. War driving near an Acme store.

[View full size image]

After configuring his wireless client with the acwicorp041 SSID, CCC ran into
a snag: He couldn't access the network for some reason. The access point
appeared to be dropping all of his packets, as though it had a filter. Turning
back to his Wellenreiter display, CCC looked through it to see if anything
popped out at him. Just then, he noticed the MAC address of one of the
other devices using the acwicorp041 SSID. "I'll bet they are allowing only
certain MACs in," he thought, as he configured his Linux laptop with the MAC
address snarfed from Wellenreiter by simply using the ifconfig command.

Mistake #1

The spoofed MAC address worked like a charm, allowing CCC through the
access point so he could get an automatically assigned IP address on the
store network using DHCP. With access to this network, CCC now turned his
attention to determining the lay of the land. He launched the Nmap tool to
run a ping sweep of the target network, discovering the other POS devices,
as well as the store server. With a reverse DNS lookup of the store server's

IP address using the dig command in Linux, CCC saw what he wanted: The
store server was named store041.internal_acmewidgets.com. "I've found
you now, my pretty," he said.

Nmap also proved useful in conducting a port scan of the store server. On
this machine, CCC found TCP port 5900 open, a likely sign of a VNC server,
a tool frequently used for remote GUI access by administrators. Based on
this result, CCC fired up the THC Hydra password-guessing tool trying to log
into the store server's VNC service, as shown in Figure 12.4. Hydra guessed
password after password for a variety of standard user IDs, including "root",
"admin", and "operator". After five minutes of guessing, bingo! CCC had a
user ID and password of "operator" and "rotarepo," which is merely the word
operator backwards.

Figure 12.4. Using Nmap to identify targets and THC Hydra to guess
passwords.

Mistake #2

Mistake #3

With his VNC access of the store server, as shown in Figure 12.5, CCC rifled
through its files, searching for interesting information. After half an hour of
searching files, he hit pay dirt! In an obscurely named directory, CCC found
a file containing transaction history placed on the store server by the POS
terminals. This history file included all credit card information—including
account number, name, and expiration date—for all transactions at the store

since the store server was initially deployed, more than 100 days ago! All
told, this single system provided more than 100,000 credit card numbers for
CCC. With such a beautiful bounty, CCC decided to call it a night and went
home.

Figure 12.5. Using VNC to grab more than 100 days of credit card
transactions.

Mistake #4

.

While at home, snug in his bed, CCC thought through the events of the day.
He had gotten into a single store's server and grabbed a bunch of credit
cards. That was nice, but he wanted more. He thought about looking up
other Acme store locations on the Web site, but physically trudging from
store to store might be a lot of work. Instead, he thought hard about what
he had found during the day: a VNC service running on a server at that
particular store. Surely, other stores had similar configurations. With its
rapid growth, Acme likely had each store built in as cookie-cutter a fashion
as possible. That insight would dictate CCC's next move.

The next afternoon, CCC drove back to the mall and snagged a soda at the
food court. He configured his laptop to go through the access point he used
yesterday. Next, instead of attacking the local store VNC services, he
changed the IP address of the target, simply altering its third octet. Instead
of trying to make a VNC connection to w.x.y.z, CCC tried to connect to

w.x.y+1.z. He almost fell off his chair with excitement when he saw his VNC
client connect to a different VNC server, this time at a different retail outlet
of Acme Corporation! As shown in Figure 12.6, he tried the exact same
password he used in the first store, and got right into this newly discovered
VNC server.

Figure 12.6. Getting VNC access to another store location.

Mistake #5

Mistake #6

After grabbing another hoard of credit card numbers from Store B, CCC
reflected on the attack briefly. "Sure, all of these stores have their own
credit card histories, but there must a bigger pot somewhere else," he
pondered. Stepping back, he looked at the results of the port scan from the
server in Store A. Sure enough, it was running a popular backup program
widely known to have a buffer overflow vulnerability. CCC launched the
Metasploit attack tool from his own Linux box against the backup service
running on the Store B server, assuming it was running there just as it was
running in Store A, taking advantage of that cookie-cutter architecture. The
exploit worked! Now, with full command shell access on the Store B system
provided by Metasploit, he installed a sniffer to gather information passing
across the store LAN, as illustrated in Figure 12.7. The sniffer grabbed
transaction information as it passed from the POS terminals to the store
server, a point that didn't interest CCC that much, because he already had

such information from the VNC service in the store. However, the sniffer
turned up a more subtle and important point: The store server itself was
sending transaction requests to another server on a different network. These
transactions were being sent in clear text, letting CCC rapidly discern that
he was looking at credit card authorization requests.

Figure 12.7. Using Metasploit to attack a backup service and install a
sniffer.

[View full size image]

Mistake #7

Mistake #8

Using the destination address information gathered from the sniffer, CCC ran
the Nmap port scanner. This time, he was scanning a server on the Acme
Corporate network, that crucial system Acme used for processing all credit
card transactions as well as managing its business. Nmap rapidly identified
TCP port 443, a sure sign of HTTPS access to the box. On his own Linux
machine, CCC launched a browser to surf to the given Web site on the Acme
corporate server, only to be presented with a Web page describing the
internal management application. This particular Web page didn't have any
sensitive information on it, but instead allowed internal Acme users to log in
to a Web application that provided detailed business information. Without a
user ID and password, though, CCC was stuck. He tried the user ID and
password that got him into the VNC servers, but to no avail. Likewise, THC-
Hydra's password guessing turned up nothing either.

Next, as shown in Figure 12.8, CCC fired up the Paros Proxy tool. Using its
automated Web application scanning capabilities, CCC searched the target
for Cross-Site Scripting and SQL injection flaws. After about five minutes of
intense anticipation, Paros returned with some really good news for CCC: a
SQL injection flaw in a Web cookie associated with the user ID component of
the target application. By setting up Paros Proxy to manipulate this cookie
manually, CCC tweaked the SQL injection syntax to explore the database
underlying the corporate Web application. He discovered a table in this
database that held a set of customer records from across all 200 Acme
stores, including more than 1 million credit card numbers. CCC had hit the
jackpot.

Figure 12.8. Using Paros Proxy and SQL injection against the
corporate Web application.

[View full size image]

Mistake #9

Mistake #10

Now, with his treasure of credit card numbers successfully liberated from the
confines of Acme's corporate server, CCC left the mall. He rapidly sold the
account information to his underworld buddies, and then destroyed all
aspects of the data he had stolen. CCC then took the rest of the year off,
enjoying the fruits of his labor. Two weeks later, however, the credit card
companies noticed a huge flurry of fraudulent activity. Looking for the
common thread behind these account numbers, they quickly discovered that

all cards were used for transactions at various Acme Widget Corporation
stores over the past several months. Early the next morning, the credit card
companies notified Acme about a possible breach of their systems, spawning
a major internal investigation. The company was required by law to notify its
customers whose data had been stolen, causing a major dent in the
company's reputation and pocketbook.

Now that we've seen what a credit card thief can accomplish, let's explore
the possibilities associated with professional attackers for hire looking to
steal the source code of a major software product.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer
Attacks and Effective Defenses

Scenario 2: Death of a Telecommuter

Bonnie and Clyde were professionals. Their company, B&C Enterprises, specialized in helping people
with a lot of money. If you needed data from someone's network and were willing to pay big bucks
for it without asking a lot of questions, they were there to help you. Their clientele included ... well,
who knew and who cared. As long as they paid real money, Bonnie and Clyde would deliver the
goods. Their customers probably included hypercompetitive companies, foreign nation states, the
criminal underground, and other sorts, but whomever they worked for always wanted anonymity
and plausible deniability. Nontraceability was one of the biggest selling points of B&C's packaged
services.

Bonnie and Clyde got a nice job to steal the source code for a product from Monstrous Software.
Monstrous Software was one of the largest software companies in the world, with more than 45,000
employees worldwide. Monstrous developed a variety of programs, but their marketing efforts
centered around the extremely lucrative Foobar operating system. Source code, especially the
Foobar source, was the lifeblood of Monstrous Software. B&C were tasked with getting a copy of the
source code for the next generation of Foobar for an anonymous client. For this very sensitive
project, B&C wanted to make sure that the attack would be difficult to trace back, so indirection and
relays were going to be a key to their success.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The scenario is shown in more detail in Figure 12.9. The subject of the attack, the Foobar source
code, was stored in a source code repository on the Monstrous Software corporate network. This
network was protected by a complex Internet gateway, made up of numerous firewalls. In
12.9, all of these different firewalls are collapsed into one logical entity on the diagram. Being a
typical large high-technology company, Monstrous Software had numerous employees working all
over the planet, with a large number of telecommuters working from home. These telecommuters
accessed the Monstrous network through a VPN. Users of the VPN were required to type in a user ID
and password to be authenticated at the Internet gateway, before being allowed access to resources
on the internal network.

Figure 12.9. An attack against Monstrous Software to obtain the Foobar source code.

Bonnie and Clyde started their attack by looking for jump-off points that they could place between
themselves and Monstrous Software. Using a couple of Internet access points discovered near
cybercafes in their hometown during a war-driving attack, Bonnie and Clyde scanned for bot-
infected or otherwise vulnerable systems in Russia and Southeast Asia. These geographic areas
were known as fertile hunting grounds for vulnerable or compromised systems. As shown in
12.10, using the Nessus vulnerability scanner, B&C turned up a Windows Web server at a university
in Russia running a bot. The attacker who had installed this bot didn't do a very good job of securing
the compromised system, because B&C were able to guess the bot password within minutes,
wresting complete control of the machine from the original infiltrator. Additionally, they found a
weak Linux server running a vulnerable version of MySQL database at a small Internet start-up in
Southeast Asia. B&C quickly took over these systems, installing their own Trojan horse backdoors so
they could remotely control them. Although these new victims had nothing to do with Monstrous
Software, they would be very useful in masking where the real attack was coming from. In a game
of high-stakes chess, Bonnie and Clyde had just made their opening moves by taking a couple of
pawns.

Figure 12.10. Scanning for some weak jump-off points around the world.

Next, B&C did a little reconnaissance work to gain some useful tidbits of information about
Monstrous Software. They conducted an automated scan of various Internet newsgroups, looking for
postings by Monstrous Software employees. They quickly turned up hundreds of postings from
Monstrous employees who were blogging, providing advice to Monstrous Software users, and
engaging in miscellaneous nonbusiness discussions on topics ranging from politics to popular
culture. Some of these postings indicated sensitive information about Monstrous Software, including
questions and comments about the configuration of their VPN server and their firewall.
Furthermore, each of these newsgroup postings included an e-mail address of the employee that
sent it to the news group. Bonnie and Clyde had now gained e-mail addresses for more than 200
Monstrous Software employees.

Mistake #1

Using the e-mail addresses harvested from newsgroups, B&C composed the following e-mail for their
targets with a fantastic offer:

To: All Interested Gamers
From: GameMaster@ComePlayFreeGames.com
Subject: Play The Latest Games for Free

You are obviously a computer game aficionado. Our company is test
marketing new computer games, and needs feedback from experienced gamers.
We need your help!

Click here to download our latest gem and let us know what you think.
http://www.letmecheckoutthatcoolgame.com/samplegame

Bonnie smiled at her handiwork as she forwarded it to the computer in Russia. From this machine,

they sent e-mail to 20 Monstrous Software employees, based on the e-mail addresses retrieved from
newsgroups, as illustrated in Figure 12.11. Although they had e-mail addresses for hundreds of
employees, they utilized only 20, because larger numbers of e-mail messages with the same content
would surely trigger Monstrous Software's antispam filters. Additionally, after registering the
domains comeplayfreegames.com and letmecheckoutthatcoolgame.com under false names, they
uploaded a nifty little game Clyde had written on the computer in Southeast Asia. They used a
wrapper program to include an application-level Trojan horse backdoor tool in the game package put
on the Southeast Asia server. This Trojan horse backdoor was custom created by Bonnie just for this
attack, so none of the popular antivirus solutions in use by Monstrous Software had a signature for
the malware. Note also that B&C didn't include the wrapped game in an e-mail attachment, because
Monstrous Software might be filtering attachments. Instead, the e-mail included merely a link to
B&C's evil wares.

Figure 12.11. Sending e-mail spam with an enticing offer.

Telly Commuter was a software developer working for Monstrous Software slinging code from her
home. She had been at Monstrous for three years, an absolute eternity in this business. Telly was a
classic geek who loved to write code and play computer games all day long. As depicted in
12.12, while working from home, Telly would log into the Monstrous corporate network using the
company VPN, download her business e-mail, and check out some source code to work on.

Figure 12.12. Telly Commuter downloads her e-mail.

Telly read her e-mail that morning. "Nothing very interesting," she thought, as she scanned the
subject lines, until she found the message about free games. "This could be cool," she thought.

Not wanting to get caught downloading recreational software through the corporate firewall, Telly
disengaged her VPN connection after reading her e-mail. She then clicked on the link in the e-mail
to download the sample game. Her cable modem lights flashed frantically as the game software was
copied onto her hard drive. She hesitated a second before running it, concerned about computer
viruses. She scanned the new executable using her antivirus program, which indicated no viruses
were present. Given this clean bill of health, Telly enthusiastically double-clicked on her new toy, as
shown in Figure 12.13.

Figure 12.13. The telecommuter takes the bait.

Mistake #2

Mistake #3

Unfortunately for Telly, her antivirus program was out of date. Making matters worse, the antivirus
vendors didn't even have a signature for the custom backdoor code written by Bonnie anyway. As
Telly ran the game, the executable package installed an application-level Trojan horse backdoor on
her system. Telly did not notice the backdoor installation, which happened in the background, but
did think that the game was mildly amusing. She liked the dancing vacuum cleaners in the title
animation, and dutifully composed an e-mail with her feedback for the gaming company B&C had
dreamed up.

To send this e-mail, as well as to check for other incoming e-mail, Telly set up her VPN connection
again with the Monstrous Software corporate network, typing in her user ID and password. When
the VPN connection came up, as shown in Figure 12.14, the Trojan horse backdoor program started
automatically searching the network for Windows file shares. On finding a share, the Trojan horse
backdoor first copied the familiar editing program, notepad.exe, on the share to a file called
note.com. Then, it overwrote notepad.exe on the share with a copy of the backdoor itself. In
this way, the Trojan horse backdoor had wormed its way from the telecommuter's machine across
the VPN and onto the drives of two machines on the Monstrous Software internal network.

Figure 12.14. When the telecommuter uses the VPN again, the Trojan horse backdoor
searches for mountable Windows file shares on the Monstrous corporate network.

[View full size image]

A short time later, users of the two systems on the corporate network ran the Notepad program to
edit some files, depicted in Figure 12.15. Notepad.exe was really the Trojan horse backdoor,
which then installed itself fully on the victim machine, before executing note.com
only saw the Notepad program start running.

Figure 12.15. When users on the corporate network run notepad.exe, the Trojan horse is
installed.

[View full size image]

One very damaging feature of the Trojan horse backdoor used by Bonnie and Clyde was the ability
to dump password hashes from the local system and the domain. As shown in Figure 12.16
the concepts embodied in the Pwdump3 and Cain and Abel tools, the Trojan horse backdoor grabbed
more than 500 Windows password hashes from the domain controller and sent them in e-mail to the
system Bonnie and Clyde had compromised in Russia.

Figure 12.16. The Trojan horse dumps password hashes and e-mails them across the
Internet.

[View full size image]

It is important to note the incredible automated capabilities of the Trojan horse backdoor used by
Bonnie and Clyde. Not only did the program automatically spread itself over the network by
overwriting notepad.exe on available Windows file shares, the program included the ability to
dump password hashes and a feature for e-mailing the hashes across the Internet. This was a very
capable Trojan horse, indeed, and several such beasties are in use on the Internet today.

Next, as shown in Figure 12.17, Bonnie and Clyde accessed their stolen password hashes. However,
they didn't just log in directly to their bot-infected victim system in Russia, because that would be
too easy to trace. Instead, they set up a Netcat redirector on their victim system in Southeast Asia

to forward all traffic to their victim machine in Russia. Furthermore, they installed a Covert_TCP
server on the Southeast Asian machine, operating in bounce mode, and adapted the tool to provide
remote command shell access. Finally, B&C selected a high-profile Web site in the United States,
which sells gobs of toys on the Internet. They used a modified Covert_TCP client to bounce an
interactive command shell session off of the high-profile e-commerce site, to the Covert_TCP
listener in Southeast Asia. The Covert_TCP listener was configured to forward data to the Netcat
redirector on the same system, which sent the session to the machine in Russia, where the
password hashes resided. Confusing? That's exactly what Bonnie and Clyde wanted in an effort to
throw any investigators off track.

Figure 12.17. The attackers crack the passwords through three of levels of indirection.

[View full size image]

Using these three levels of indirection, Bonnie and Clyde installed and ran John the Ripper on the
machine in Russia to crack the passwords from the Monstrous Software network. Of the 500
password hashes stolen, they were able to crack 50 passwords in three hours.

"We're almost there," exclaimed Clyde. As shown in Figure 12.18, Bonnie and Clyde next
established a VPN connection from the system in Russia to the Monstrous Software corporate
network, using the passwords they had just cracked. Once on the internal network, Bonnie and
Clyde started poking around, scanning for the location of the source code repository.

Figure 12.18. The attackers set up a VPN connection using the stolen passwords, and
remotely control the Trojan horse on the internal network.

[View full size image]

Mistake #4

After locating the source code for the next-generation Foobar project on the internal network,
Bonnie and Clyde downloaded their stolen treasure, sucking the data through each level of
indirection to their own systems. As pictured in Figure 12.19, Bonnie and Clyde had now achieved
their goal. At this point, they provided the stolen source code to their customer, who anonymously
transferred the agreed-on funds to one of their offshore accounts. "Not bad for a month's work,"
thought Bonnie, as she verified payment.

Figure 12.19. Bonnie and Clyde get the Foobar source code.

[View full size image]

Now that we have seen what determined outside attackers can accomplish, let's look at a
tremendous threat that's often ignored by many organizations: the malicious insider.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Scenario 3: The Manchurian Contractor

It was a dark and stormy night. Mallory Ishes sat in her cubicle working late
into the night ... again! Mal's boss didn't appreciate all the work that she did
as a contractor working as a system administrator at General Conglomerate.
Mal had worked at the company for two years, but had never seen a raise.
In fact, she was convinced that her annoying boss didn't even like her. He
had given her four consecutive bad performance reviews, the most recent
one last week. Mal Ishes was a very disgruntled contract employee. "I'm not
even in the least bit gruntled," Mallory muttered, typing away on her
computer as she heard thunder outside.

During her original job interview at General Conglomerate, Mal didn't like
the guy who would later be her boss. But the money was decent, and the job
was just an interim thing while she got her life together to start her own
company, a security consulting firm. By now two years had passed, and she
was growing tired of all the corporate garbage ruining her life.

Mallory was a very gifted system administrator; it was her attitude that got
her into trouble on the performance reviews. Also, Mallory had some

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

experience in recreational hacking, sharing information and techniques with
some of her buddies in the computer underground. She knew the tools and
how they were used. In the dark recesses of the computer underground,
Mallory was known as the Red Queen.

This scenario is pictured in Figure 12.20. Mallory Ishes (or the Red Queen)
used her administrator machine located on the General Conglomerate
internal network, as well as a machine at her home, connected to the
Internet. General Conglomerate relied on a Microsoft Exchange e-mail
server. Additionally, General Conglomerate had an Internet DMZ made up of
two firewalls, and a series of business partner connections. Figure 12.20
shows a business partner link used for the outsourcing of payroll functions.
General Conglomerate human resources personnel pushed a file of payroll
information using FTP to the business partner every other week. The file
contained information about who should be paid and how much money
should be in each employee's check.

Figure 12.20. The General Conglomerate network.

Mallory, always the curious sort, had mapped out the network and kept track
of how it had evolved over the past couple of years, using tools like Cheops-
ng and the traceroute command. She knew where the mail servers,
human resources systems, and business partner links were located. She felt
she was entitled to that information as one of the best system administrators
in the company.

Mallory was convinced that her boss was persecuting her. "He puts on a
façade, but he's really out to get me," thought Mal. Wanting to read his e-
mail to see what he really thought of her, Mallory loaded the Cain tool onto

her work computer and activated its integrated Windows authentication
sniffing capabilities.

Whenever she was hacking, Mallory much preferred to use her Red Queen
moniker, which made her feel as though she were part of hacking royalty.
Even though it was late at night, the Red Queen was able to sniff the
Windows NTLM challenge-response for the mail administrator, as he logged
into the Domain Controller, shown in Figure 12.21. "Poor sap, he must be
working late, too," thought the Red Queen, as the hash materialized on her
Cain sniffer screen.

Figure 12.21. Capturing the NTLM challenge-response using Cain.

Having captured the administrator's logon challenge and response, the Red
Queen proceeded to crack the password using Cain. She left Cain running on
her system the rest of the night, returning home at 2:00 after a marathon
working session.

When she arrived at work the next day at 10:00 , the Red Queen was happy
to see that she had cracked the administrator's password, which was set to
"quixotic!$".

Mistake #1

Later that day, as shown in Figure 12.22, the Red Queen logged into the
domain as the mail administrator and started perusing e-mail to and from
her boss on the mail server. The Red Queen thought, "The big creep! He's
telling his boss that I'm his most troublesome employee! I'd better delete

that message before it gets delivered. They'll never notice."

Figure 12.22. Reading the boss's e-mail.

Mistake #2

The Red Queen knew her negative performance evaluation form was located
over on the Human Resources (HR) systems. She didn't want the bad
evaluation following her for the rest of her career, so she mounted an attack
against the HR system, as depicted in Figure 12.23. She scanned the
system, looking for vulnerabilities using Nessus. According to Nessus, the HR
system, which was based on Windows, did have one remotely accessible file
share. When the Red Queen tried to connect to the share, she realized she
did not have permission to access it.

Figure 12.23. Looking for holes in the human resources system.

She logged off her Mallory Ishes account, and reauthenticated to the domain
using the mail administrator's password. Now, the Red Queen tried again to
access the HR system's share as the mail administrator. Boom! She was in,
and able to view the files in the network share. Her performance evaluation
was there. As Figure 12.24 shows, she quickly changed several of the more
negative aspects on the evaluation form, because in her view, they just
weren't fair. In fact, she believed that she was helping her nasty boss to do
his job properly by documenting a more realistic assessment of his best
system administrator. She left a few of the more mild criticisms in there, so
that the resulting doctored version of the form was more plausible. After
saving her handiwork, the Red Queen closed the session.

Figure 12.24. Selectively improving Mallory's evaluation form.

Mistake #3

That evening, the Red Queen realized that modifying her evaluation form
was not enough to address the wrongs her boss had inflicted on her. She
wanted to go farther, but was afraid of getting caught. "What I need is a
diversion," she said during her drive home.

When she arrived home, the Red Queen logged into an IRC channel she
used to control some bots she had managed to get installed on about 200
victim machines scattered around the Internet. Weeks before, she had sent
out a spam e-mail that included bot code as an attachment, duping 200
people into running her e-mail attachment. Her bot-net wasn't gigantic, but
her mere 200 machines would give her some useful, if limited, DDoS
capabilities, as shown in Figure 12.25. A little script running on her home
computer would trigger these bots to flood the General Conglomerate
network simultaneously at precisely 11:30 the next day. "If this diversion
works," thought the Red Queen as she departed for work at 1:00 the next
afternoon, "it'll give me some cover."

Figure 12.25. The Red Queen sets up some bots for a DDoS attack.

Ada Ministrator, the chief security person at General Conglomerate, was just
about to turn in for some shut-eye at 11:30 . Suddenly her pager went off
with an urgent message from her external network IDS. With bleary eyes,
Ada tried to discern what her pager was saying. Massive DoS attack. "Just
lovely," she muttered as she quickly started dialing the telephone numbers
of her incident response team.

Within a half-hour, the entire security team was focusing on the General
Conglomerate Internet DMZ, trying to make their e-commerce site available
to paying customers around the world. The team desperately attempted to
contact their ISP to enlist their help in blocking the onslaught of packets.

With the entire security team's attention diverted by the DDoS attack, the
Red Queen started going for her biggest kill. As pictured in Figure 12.26, she
wanted to get access to the business partner that printed paychecks, so she
began to scan their firewall using Cheops-ng, Nessus, and Firewalk.

Figure 12.26. Scanning business partner connections while the DDoS
attack is inderway.

[View full size image]

Mistake #4

The Red Queen found that the FTP service was open through the business
partner network, and she quickly started scanning for FTP servers on the
other side of the link. She found one! Aiming Nessus at that machine, she
discovered that it was vulnerable to a root-level exploit that would allow her
to run an arbitrary command on the victim's FTP server, as detailed in
Figure 12.27. She launched Metasploit, which she could use to get control of
this victim machine.

Figure 12.27. Exploiting an FTP server on the business partner
network.

[View full size image]

Mistake #5

But what Metasploit payload should the Red Queen run on the target FTP
server? She realized that for full control of this FTP server, she would be
best off trying to get control of the victim system's GUI. The Red Queen ran
Metasploit, configured with the reverse VNC injection payload. She triggered
the FTP server exploit so that it would send back a VNC connection from the
FTP server to her own workstation, as pictured in Figure 12.28. Keeping her
fingers crossed, she gingerly pressed the Enter key on her workstation to
carry out the exploit.

Figure 12.28. Getting VNC control of a machine on the business
partner's network.

[View full size image]

Suddenly, the Red Queen's VNC viewer program displayed the GUI of the
victim machine. She had gotten complete control of her target! She rapidly
scanned the file system of her newest victim, the FTP server on the business
partner network, finding a file containing paycheck information.

The Red Queen located the Mallory Ishes record in the file and edited it to
double her paycheck size. "This might or might not work," she thought, "but
it's worth a try!" To lower the chance that her handiwork would be traced
back to her, she altered the paycheck information for six different people,
and made sure the totals at the bottom of the file reflected the new values
she had entered into the system. Her DDoS diversion was working perfectly,
as the security team had not noticed any of her activity on the internal
network.

Mistake #6

Mistake #7

With GUI control, the Red Queen was able to cover her tracks on the
business partner's FTP server, as shown in Figure 12.29. With her mission
accomplished, the Red Queen waited to see if her self-appointed raise would
show up in her next paycheck.

Figure 12.29. Covering the tracks on the target.

[View full size image]

Unfortunately for the Red Queen, her paycheck-altering scam was
eventually detected. A week after her late-night antics, the processing
department at the business partner noticed a discrepancy in the electronic
funds transfer between General Conglomerate and the payroll company. This
out-of-band verification revealed that some of the check values had been
inflated. The payroll company passed the results of their investigation to
General Conglomerate. The HR members of the General Conglomerate
Incident Response Team analyzed the employment background of each of
the employees whose checks were out of synch. They rapidly zoomed in on
Mallory Ishes. After gathering ample evidence of her attack, particularly her
altered performance review, Mallory was terminated from her job.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Conclusion

As we have seen in these sample scenarios, attackers and their techniques
vary widely. Professional criminals, hired guns, and even insiders, to name
just a few of the multitude of threats we face, can launch attacks. Their
motivations can include revenge, monetary gain, or common pettiness. Their
skill levels range from the simple script kiddies using tools that they don't
understand to elite masters who know the technology better than their
victims and possibly even the vendors themselves.

Although real-world attacks have all of these variations, they also do have
one thing in common: They all involve attackers finding mistakes made in
their targets' defenses. For each of our scenarios, we have seen the
numerous reinforcing mistakes made by each organization that allowed an
attacker to achieve domination of the target. If the victim companies had
only done business differently, the avenues for the attackers would have
been closed. Although implementing a total security program that defends
against the myriad techniques used by attacker is not easy, it is a necessity
today. By diligently implementing a comprehensive security program, you
can be ready to defend your systems against the types of attacks we've

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

discussed in this chapter.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

We have discussed a commonly used five-phase approach to attacks in this
book. Attackers are often pragmatic, however, and jump around between
phases, exploiting whatever vulnerabilities they can find when they discover
them. Furthermore, the tools presented throughout the book are not used
individually. Instead, they are combined in clever and elaborate scenarios to
mount effective attacks. To understand how tools can be combined, we
analyzed several scenarios based on real-world events.

In Scenario 1, an attacker gained access to a target through a weak wireless
implementation at a retail store. With a wireless assessment tool like
Wellenreiter, the attacker was able to sniff information, including the SSID
and MAC address, that he could use to easily break into the target network.
The attacker then employed a ping sweep and port scan to find a weak VNC
server on the store networks, where a password guessing tool found an
account and password. The attacker then stole credit card transaction
information from this store. Because there were no internal network filters
between stores, the attacker was easily able to jump to the VNC servers of
other retail outlets for the target company. The attacker then exploited an

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

unpatched backup program on a store server to install a sniffer, which
identified the corporate Web application server. This server, in turn, was
subject to a SQL injection attack, giving the attacker access to over 1 million
credit card numbers.

In Scenario 2, the attackers sent e-mail spam advertising a new game to
employees of the target company. One of the employees (a telecommuter)
downloaded the game, which included an application-level Trojan horse
backdoor. This backdoor tool propagated to the corporate network across the
VPN, loading itself on several internal systems. Once installed on the
internal network, the Trojan horse backdoor e-mailed password hashes from
the corporate network to the attackers. After cracking the passwords, the
attackers were able to gain access through the VPN to the target network,
bouncing their attack off of several servers to obscure their true source.
Once on the internal network, the attackers stole copies of the source code
for the victim's product.

In Scenario 3, a malicious insider used a sniffer to capture a Windows
authentication challenge and response, which were cracked to determine the
e-mail administrator's password. The attacker used this password to delete
e-mail from the server and alter a poor performance review on a file server.
To create a diversion, the attacker launched a DDoS attack against the
Internet DMZ while she started scanning for business partners. After finding
a business partner that printed paychecks, the attacker exploited an FTP
server and gained VNC access to the machine. With access to the FTP server,
the attacker altered her own salary in the file stored there. She covered her
tracks, but was ultimately discovered due to accounting anomalies.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Chapter 13. The Future, References, and
Conclusions

The world of computer attack tools and techniques is like a DVD player stuck
in fast forward, running at quadruple speed, with profound new
vulnerabilities being discovered on an almost daily basis. Powerful and ever-
easier-to-use attack tools are likewise constantly being released. Where will
this all lead in the future? How can you keep up with the onslaught? This
chapter tackles these questions.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Where Are We Heading?

As we have seen throughout this book, the systems, applications, and
communications protocols in use today have a variety of vulnerabilities.
Many vendors hype their latest release, but short-circuit true security
testing in an effort to get software quickly out the door to grab market
share. Contributing to the problem, many organizations roll software into
production when it is little better than alpha code. Furthermore,
inexperienced system administrators maintaining machines for growing
hordes of clueless users run a large number of networks. Indeed, as the
number of Internet hosts has skyrocketed, the average experience of system
administrators and users has plummeted. New administrators often do not
know how to defend against attacks, and many users cannot even recognize
when an attack has occurred. Security tools and features, if they exist, are
often difficult to use and understand. In the computer underground, well-
meaning researchers and some bad guys widely publicize vulnerabilities and
exploits, despite the long duration it often takes for vendors to release fixes,
and the even longer time required by many organizations to deploy these
fixes. Additionally, attackers have teamed up around the globe to share
information and coordinate attacks. Given all these trends, it truly the

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Golden Age of Hacking.

So what does the future hold? I never claim to be a prophet or a psychic, but
I will share my thoughts on where we're headed given current trends. My
thoughts are based on a discussion I had when I first started in the security
business. I was once having a deeply philosophical talk with a veteran
security and crypto guru. I asked him where all of the computer attack tools
and techniques were leading us. He responded, "There'll either be massive
attacks and we'll be very busy, or the vendors will finally get their act
together, and we'll become the electronic equivalent of the night
watchguard." These ideas are even truer today than when I first heard them.
Let's explore these two future scenarios in more detail.

Scenario 1: Yikes!

In this scenario, attackers continue to discover significant vulnerabilities in a
variety of computing platforms. Like today, we will continue to have many
individuals and organizations falling victim to attack, with a DoS attack here,
a stolen account there, and a variety of vandalized Web pages everywhere.
This is pretty much the status quo. Thousands of people fall victim to
identity theft, and a business or two is destroyed because of a major security
compromise. But all in all, the massive herd of people and companies trudge
along, managing to avoid becoming victims.

More ominously, though, some attackers might secretly discover major
vulnerabilities in the underlying infrastructure utilized by most computer
systems and networks. In particular, attacks against the Internet routing
infrastructure could cause major disruptions. Similarly, a gaping hole in DNS
would allow an attacker to wreak havoc, as so much Internet functionality
requires the ability to resolve names. A major vulnerability in a widely used
operating system, such as Windows, Linux, UNIX, or IOS (the Internetwork
Operating System software of Cisco's routers) could have devastating
impacts. With such vulnerabilities, a determined group of attackers could
undermine the entire Internet or several major organizations all at once. We
could have a replay of the Robert Tappan Morris, Jr. worm incident from
November 1988. The Morris Worm took many sites offline and ground much
of the early Internet to a halt for a couple of days. Of course, at that time,
the Internet was the domain of academia and experimentation, so few lives
were impacted. We've come close again several times since the early years
of the Internet. The Blaster worm of 2003 followed closely on the heels of a
major DoS vulnerability disclosure in Cisco's IOS. If those issues weren't
responsibly disclosed to vendors in advance, and attackers had harnessed
the power of that worm to hit routers, we could have had a Very Bad Day
(VBD). As we discussed in Chapter 9, Phase 3: Denial-of-Service Attacks,
another VBD opportunity hit us in 2004, when it was announced that TCP

Resets could bring down communications on BGP routing sessions. Again,
happily, fixes were deployed before the bad stuff hit the fan. These issues
seem to crop up every six months to a year, and so far, for the most part,
we've turned up on the lucky side of every issue.

However, I'm uncomfortable trusting in luck alone. A significant attack today
against the Internet infrastructure or a handful of important organizations
could have widespread implications for our society. Major, life-impacting
attacks could occur, where critical systems are hobbled, hurting people.
Health care, transportation, utilities, and financial firms all could be
impacted. A terrorist organization or a government utilizing information
warfare tactics could trigger such events. Alternatively, it could be a simple
joyride by a group of attackers experimenting with a new worm gone
horribly awry.

In my opinion, this future scenario is quite likely. I'm not happy to say that
and I don't want to overhype this concern, but based on what we've seen
over the last decade, we could be in store for some major attacks.

Scenario 2: A Secure Future

Another view of the future is far more comforting. Eventually, software
vendors, governments, companies, and other organizations will devote the
resources necessary to be much more secure. Vendors will have security
built into systems by default, with default configuration and patching so
inexperienced home users will be safer up front. Let's think about this
security Nirvana (feel free to hum your favorite hymn as we describe the
glorious secure future). Security will be designed into operating systems and
applications from the get-go, and not shoehorned in at the last minute.
Computing platforms and software development tools will enforce strong
security. Software products will be thoroughly tested before implementation.
Systems will be automatically patched against the latest attacks in darn near
real time, eliminating many opportunities for attack. Rather than having a
rickety infrastructure loaded with potential vulnerabilities, our systems will
be inherently strong, with good security activated as the default.

Unfortunately, this is not the trajectory we're on, with software release
cycles shrinking every day and the rush to be first to market. Still, in the
very long term (which, in Internet years, might be a decade or so away), we
will likely be much more secure. I believe that we are going to get a lot
closer to this security nirvana; it's just a matter of time.

In many ways, we're still in the infancy of the computer revolution. Desktop
computing is about 25 years old, and high-speed network access by the
masses has been available for little more than a decade. A hundred years
from now, our descendents will look back on this time as an amazing burst

of creativity and rapid implementation of a worldwide computing
infrastructure. In the grand scheme of things, we should expect some major
hiccups as we wire our world. But things will ultimately get better.

Scenario 1, Then Scenario 2

Of course, these two visions of the future are not mutually exclusive. We'll
likely go through a decade or more of some serious vulnerabilities and
attacks. We will work through many of these transient security flaws,
eventually approaching a more secure world. I doubt that we'll ever have a
completely secure computing infrastructure, but we will manage our
exposures down to a minimal, acceptable level. Think about the airline
industry. Its safety record is not flawless, but it is acceptable for most people
to fly. Likewise, the chance of an automobile accident doesn't dissuade most
people from driving. As a society, we live with vulnerabilities throughout our
daily lives. We minimize the risks, and come to accept the residual chances
that some problems are still there. With our cars, we wear safety belts, keep
our tires properly inflated, drive the speed limit (more or less), and keep our
fingers crossed. We then buy insurance to deal with the relatively small
amount of residual risk that's leftover. In effect, we manage our risk down,
and transfer the remaining risk to a company that wants to buy it from us,
sometimes at a handsome profit. That's what will likely happen with our
computing infrastructure. We'll secure it pretty well, and then buy insurance
for the residual risk. It won't be perfect, but it will be vastly better than what
we face today.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Keeping Up to Speed

This book has presented a current view of the most common and damaging
attack tools and techniques, and a brief view of the future. However, with
new tools, exploits, and vulnerabilities being released on a constant basis, it
is very important to stay abreast of new developments in computer attacks.
This section includes recommendations for Web sites, mailing lists, and
conferences that are invaluable in keeping up to speed. There are thousands
of sources of security information on the Internet today. Some are fantastic,
others are mediocre, and some are just plain bad. I personally use the
sources listed here to learn about the latest and greatest attack techniques
and effective defenses.

Web Sites

A huge number of very good security-related Web sites are available on the
Internet. I try to read the Web sites listed in this section every day, or at
least a few times a week, to keep up to date with the latest security news
and attack techniques. There are so many good Web sites available, let's
focus on the high points.

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Of course, the URLs of many of these Web sites are in constant flux.
Therefore, if, by the time you read this, a given site isn't available anymore,
just use your favorite search engine to look for the name of the site. In most
cases, these valuable sites have been mirrored several times all over the
Internet, making their content available long after the original site is taken
down.

The Counter Hack Web Site

As a companion to this book, I maintain a Web site at . Feel free to check in
there periodically for information about the book and other goings-on in the
information security business. Probably of far more interest to you are the
challenges and scenarios I post on this site every few months. If you enjoyed
the scenarios of Chapter 12, Putting It All Together, check out the well over
a dozen additional scenarios based on real-world attacks, which challenge
you to find the mistakes made by the victims and encourage you to devise
better defenses. As is my way, each of these challenges has a movie or TV
theme both to disguise the innocent and to make them a little more fun. The
scenarios include , , and . On occasion, we have a contest to solve these
challenges, where the best answer wins a fine prize, a good line to put on
your résumé, and bragging rights to use with all of your friends and
potential mates!

The Internet Storm Center (ISC)

The Internet Storm Center is one of the most useful sources of practical
information about current issues in the information security arena. Run by
the SANS Institute, the ISC is staffed by a group of approximately 40
volunteer incident handlers. At any given moment, one Handler-on-Duty
(HoD) stands by looking for signs of trouble and mayhem on the Internet.
The HoD receives e-mails from members of the community, anyone on the
Internet reporting their experience with recent attacks and defenses. Some
people turn to the HoD to get free advice on how to interpret a potential
attack or how to respond to a real one. Each and every day, the given HoD
writes a Handler's Diary to describe the latest action and to give real-world
advice for how to secure systems and thwart the bad guys. In the interest of
full-disclosure, both Ed Skoudis and Tom Liston, the coauthors of this book,
are handlers supporting the ISC. Check out the ISC and read the Handler's
Diary regularly. You won't be disappointed. The ISC is available at .

Security Focus

The Security Focus Web site is a valuable source for news, commentary, and
detailed technical discussions covering the latest security issues. The site
includes a mix of information security topics, with some articles focusing on

deep technical issues, some on legal matters, and others designed to get
newbies up to speed quickly. Another invaluable resource at the Security
Focus Web site is the Bugtraq mailing list archive, which we discuss in more
detail later. In a lot of ways, Security Focus acts like an information security
community water cooler around which we can gather to take in huge gulps
of refreshingly valuable information. You can access Security Focus at .

Packet Storm Security

The Packet Storm Security site is incredibly useful. Whenever a new attack
tool is released, its authors usually send a message to Packet Storm, which
includes the latest tools in its vast archive, updated over many, many years.
Every day or two, new exploits and attack tools are listed in their "New
Tools" section. The site also includes a very useful search engine to find
tools and capabilities, ranging from old, mangy tools that are mere points of
historical interest, to the latest and greatest attack tools and methodologies.
The organization behind this site is a nonprofit group, dedicated to
improving the information available to security researchers and defenders.
Whenever I'm looking for a specific tool, I check out Packet Storm first,
available at .

TechTarget's SearchSecurity Web Site

The folks at TechTarget maintain a news site called SearchSecurity devoted
to the latest issues in the information security business, from both a policy
and a technology perspective. Their writing is crisp, focused, and a joy to
read. I love to peruse their most recent articles, often finding knowledge
nuggets that I use in improving the security of my own systems. Read it at .

Information Security Magazine

You should definitely check out You could subscribe to the dead trees (i.e.,
paper) magazine, or surf over to their Web site at for current and archived
articles. I find it a useful resource for keeping in touch with how corporations
and product vendors view security, along with some practical
recommendations. When a new copy of arrives in my mailbox, I really look
forward to sitting down in a quiet room and completely absorbing the issue,
cover-to-cover. Now that's my idea of fun.

Metasploit Web Site

As we discussed in Chapter 7, Phase 3: Gaining Access Using Application and
Operating System Attacks, the Metasploit framework contains a huge
number of exploits combined with very powerful payloads. The team behind
this free tool does a lot of research, releasing their results at their Web site .
Often, when a new vulnerability is disclosed, the first exploit crafted to

attack it is released within the Metasploit framework, making their Web site
an absolute must-watch source for the latest in attacks.

The Honeynet Project Web Site

A tireless group of volunteers lead by the intrepid Lance Spitzner has
established a project that involves setting up systems on the Internet and
waiting for the bad guys to attack them. "They're foolhardy masochists," you
might be thinking. In actuality, this is the Honeynet Project, whose mission
is to learn the tools, tactics, and motives involved in computer and network
attacks, and share the lessons learned. This not-for-profit group has written
numerous highly engaging research papers on their discoveries made with
honeypots, and hosts a Scan of the Month contest, where you get to analyze
evidence of a honeypot compromise and submit your results to win prizes.
The Honeynet Web site is located at .

Mailing Lists

Electronic mailing lists are another good source of security information. By
subscribing to the lists discussed in this section, you'll get real-time
information (or daily digests if you prefer) of the latest security news.

Bugtraq

The Bugtraq mailing list is perhaps the most valuable free resource covering
security vulnerabilities and defenses. According to its FAQ, Bugtraq, "is a full
disclosure moderated mailing list for the *detailed* discussion and
announcement of computer security vulnerabilities: what they are, how to
exploit them, and how to fix them." Bugtraq archives are available at the
Security Focus Web site at . If you really want detailed information about
attacks, you should subscribe to Bugtraq. There is a good deal of traffic on
the list (dozens of messages in the typical day), but the moderator keeps
things fairly well focused. Also, note that the Security Focus team runs more
than two dozen other mailing lists to discuss more specific topics, such as
penetration testing, VPNs, honeypots, and much more. You can subscribe to
Bugtraq or any of those other mailing lists by filling out the form at .

U.S. CERT

The U.S. Computer Emergency Readiness Team (CERT) collects an enormous
amount of information about computer attacks and releases Technical Cyber
Security Alerts describing major threats and vulnerabilities and how to
defend against the associated attacks. These advisories offer practical advice
in applying system patches and configuring systems securely. If Bugtraq has
too much traffic for you to keep up with, you should at least subscribe to the
U.S. CERT mailing lists. These advisories act as a kind of bare minimum of

security information that you really should have to protect your systems.
Archives are available at . U.S. CERT offers various forms of information via
mailing lists, including the following excerpted bullets from their Web site:

Written for system administrators and experienced users, technical
alerts provide timely information about current security issues,
vulnerabilities, and exploits.

Bulletins summarize information that has been published about new
security issues and vulnerabilities. They are published weekly and are
written primarily for system administrators and other technical users.

Written in language for home, corporate, and new users, these alerts are
published in conjunction with technical alerts when there are security
issues that affect the general public.

Tips provide information and advice about a variety of common security
topics. They are published biweekly and are written primarily for home,
corporate, and new users.

You can subscribe to the various U.S. CERT mailing lists by sending e-mail to
majordomo@us-cert.gov. In the body of the e-mail message, type in the
appropriate list you'd like to subscribe to, such as:

subscribe technical-alerts
subscribe security-bulletins
subscribe alerts
subscribe security-tips

Type in the name of any one of these lists in your e-mail. If you want to
subscribe to more than one list, you'll have to send a separate e-mail
message for each list you want to join.

Crypto-Gram

Bruce Schneier, CTO and founder of Counterpane Internet Security, Inc.,
writes a monthly newsletter called distributed via e-mail and dealing with
some fantastic topics in cryptography and security. is very well crafted, and
often mixes cutting-edge security analyses, security philosophy, and
fascinating editorials. To subscribe to surf to . Alternatively, to view the
amazing compendium of past issues, go to .

Conferences

mailto:majordomo@us-cert.gov

In addition to these Web sites and mailing lists, it's useful to interact with
other computer professionals and even people in the computer underground
at a variety of conferences. There are a huge number of security
conferences today. In this crowded market, here are some of my favorites.

DEFCON

DEFCON is one of the most popular conferences in the computer
underground. Held every summer in Las Vegas, Nevada, it attracts
thousands of people from all walks of life. If you go, you'll see people
wearing lots of black clothing and a few folks with interesting piercings and
colorful spiked hair. Additionally, there are plenty of computer professionals
and law enforcement officers, some of whom look very out of place.
Attendance is very cheap (traditionally less than $100), attracting all kinds
of people. If you go, wear a black T-shirt and jeans and you'll fit right in.
There are usually some nice technical discussions, but the energy and
ambiance are what I go for. The "Spot-the-Fed" contest, where audience
members are challenged to find federal law enforcement officers attending
the conference, is particularly fun, as is the highly competitive capture-the-
flag event. You can learn more about DEFCON at .

Black Hat Briefings

The Black Hat Briefings are a notch up the professional scale from DEFCON,
but still retain a good amount of the character of the computer underground.
Their focus is on computer attacks and defenses, and a good deal of
technical information is available. Some of the best and brightest folks from
the computer underground, as well as some computer professionals, deliver
detailed presentations at Black Hat. Black Hat Briefings are offered several
times a year in cities around the world, and one is usually scheduled in Las
Vegas in July just before DEFCON to make it easy to attend both
conferences. Check out for more information.

The SANS Institute

Let's move toward conferences with less flavor of the computer underground
and more of a professional feel, loaded with valuable information about
computer security. The SysAdmin, Audit, Network, and Security (SANS)
Institute holds several conferences and training sessions each year that are
chock full of information in how to properly build, maintain, and secure your
systems. I enjoy SANS courses because they get into a great level of detail.
Topics range from Introduction to Security all the way to Reverse
Engineering Malware, and everything in between. Specific courses include
Windows, Linux/UNIX, in-depth packet analysis, and incident handling.
Again, in the interest of full disclosure, I present regularly at SANS

conferences, and very much enjoy doing so, to get a chance to meet and talk
with very gifted professionals from all over the world. SANS also offers a
good deal of valuable security information at its Web site, .

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Final Thoughts ... Live Long and Prosper

In this book, we have explored numerous nasty tools and techniques
commonly used to wreak computer havoc. However, the purpose of this book
is not to depress you. Also, I don't want you to run away terrified that a
computer attacker will hurt you. Instead, the purpose of this book is to learn
what the attackers are doing so we can defend ourselves. For each attack,
we've discussed defensive techniques to protect your systems. Consider the
defensive measures we've discussed: educating yourself, practicing safe
surfing and e-mail habits, applying system patches, carefully monitoring
your systems, shutting down unneeded services, and so on. None of these
solutions is rocket science.

Sure, implementing and maintaining a comprehensive security program is
not trivial. Indeed, it is a lot of work to keep up with the attackers and
defend your systems. If you view it as a chore, it will be tough. However,
think of it as an intellectual challenge, worthy of your time and dedication.
Don't get depressed! Just as this is the Golden Age of Hacking, so too is it
the Golden Age of Information Security. We live in very exciting times, with
technologies rapidly advancing, offering tremendous opportunities for

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

learning and growing. If the technology itself doesn't get you excited, think
of the tremendous job security afforded to system administrators, security
personnel, and network managers who know how to secure their systems
properly. Keep in mind that by remaining diligent, you really can defend
your systems and information, while having a challenging and exciting job.

Release from TeamUnknown

Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and
Effective Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index | Additional Reading

A A A

Security Networking Ed Skoudis Tom Liston Prentice Hall Counter Hack Reloaded, Second Edition: A
Step-by-Step Guide to Computer Attacks and Effective Defenses

Summary

As computer attack tools and techniques continue to advance, we will likely
see major, life-impacting events in the near future. Eventually, however, we
will create a much more secure world, with risk managed down to an
acceptable level. To get there, we have to build security into our systems
from the start, and conduct thorough security testing throughout the life
cycle of a computer system.

To keep up to speed on the various attack tools and other events in the
computer underground, you should read a variety of Web sites and mailing
lists. My favorites include Security Focus, U.S. CERT, and Bugtraq.
Additionally, several conferences are very helpful in understanding the
computer underground and security professionals, including DEFCON and
SANS.

Finally, don't get discouraged by the number and power of computer attack
tools today, as we live in the Golden Age of Information Security. The
defenses we've discussed throughout the book can be implemented and
maintained. Although they are often not easy, they do add a good deal of job

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

security for effective system administrators, network managers, and security
personnel.

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

802.11 family of protocols 2nd [See also NetStumbler; War driving.]
 and ARP
 and MAC
 modes (independent/peer-to-peer and infrastructure/access-point)
 popular/important members
 supported frame types
 vulnerabilities
/etc/group file
/etc/psswd file

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Access (maintaining) 2nd [See also Backdoors; Trojan horse backdoor genre;
Trojan horses.]
Access/application and operating system levels 2nd
 exploits available on the Web
 sophisticated attacker techniques
 trolling (script kiddies) 2nd
Access/network level
 attacks 2nd
Access point hijacking attacks
Account harvesting [See Web application attacks.]
Achilles 2nd 3rd
ACK storm 2nd
Active Directory 2nd 3rd
 change to domain controllers
 protection
 tree structure 2nd
Active Ports
Active Whois Browser
ActiveX
 controlling access to 2nd
 and use for shipping remote-control backdoors
Ad-Aware, and imposters
Address Resolution Protocol 2nd
Adore-ng rootkit
Advanced Intrusion Detection Engine (AIDE)
AFX File Lace
AFX Windows Rootkit 2nd
AirDefense
AirJack toolkit 2nd
AirMagnet
AirSnort tool 2nd
AIX (IBM)
Albitz, Paul
Aleph One

Alice (scenario cast member)
American Registry for Internet Numbers (ARIN)
Anatomy of attacks
 scenarios depicting pragmatism of attackers 2nd [See also Crouching Wi-
Fi, Hidden Dragon scenario; Death of a Telecommuter scenario; The
Manchurian Contractor scenario.]
Antivirus and antispyware tools
Apache Web servers
Aphex 2nd
Aplus.net
Application-level security for TCP/IP-based networks 2nd
Application-level Trojan horse backdoor tools 2nd [See also Bots; Phishing
attacks; Remote-control backdoors; Spyware; URL/obfuscation.]
 defenses against
 antivirus and antispyware tools
 identify unusual TCP and UDP ports
 identify your software
 user education
 identifying victims
AppShield (Watchfire)
Arkin, Ofir
arpspoof tool 2nd 3rd 4th

Asia Pacific Network Information Center (APNIC)
Asterisk (Linux)
Atkins, Steve
Attack tools [See also Computer attacks; Underlying technologies and
platforms.]
 genres of
 security information
 security information/conferences
 Black Hat Briefings
 DEFCON
 SANS Institute
 security information/mailing lists
 Bugtraq
 Crypto-Gram
 U.S. Computer Emergency Readiness Team (CERT)
 security information/Web sites
 Counter Hack

 Honeynet Web site

 Internet Storm Center (ISC) 2nd
 Metasploit Web site
 Packet Storm Security 2nd
 SearchSecurity Web site (TechTarget)
 Security Focus
 study of 2nd
 controlled environment/lab for experimentation 2nd
 hidden dangers 2nd
 limitations and permissions
Attacker Tool Kit (ATK)
Attackers 2nd [See also "Bad guy,"; Computer attacks; Scenario cast
members.]
 categorization of
 business competitors
 governments
 hactivists
 "hired guns,"
 insider threats
 organized crime
 terrorists
 youthful offenders
 communication channels of
 contractors/temps/consultants
 "Owned" systems and backdoors
 skill level
 elite attackers
 medium-level attackers
 script kiddies
 targets
 terminology 2nd
Attacks [See Anatomy of attacks; Phases of attacks.]
AttacPortal.net

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Back Orifice, 2000
Backdoors 2nd [See also Netcat/as backdoor on UNIX systems; Trojan horse
backdoor genre.]
 and "Owned" systems
Backward compatibility
"Bad guy," 2nd
Bagle
BGP (Border Gateway Protocol)
Binders
"Black hat," 2nd
Black Hat Briefings
Blacklight
BO2K
Bob (scenario cast member)
Bofra worm
Bonk 2nd
Border Gateway Protocol (BGP) attack
Bots 2nd 3rd
 bot-nets 2nd
 IRC control
 distribution (worm-bot feedback loop)
 functionality 2nd
 future communication directions
 history of
 variations
Brin, Sergey
Brutus 2nd
Buffer overflow exploits 2nd [See also Heap; Stack.]
 defenses 2nd
 at software developer level
 at system administrator/security personnel level
 exploitation engines [See also Metasploit.]
 heap-based overflow attacks 2nd
 stack-based buffer overflow attacks 2nd 3rd

 exploit ("sploit") structure
 exploitation of
 smashed stack 2nd
 typical attack code
 vulnerability-identification techniques
 vulnerable code 2nd
Bugtraq
 Archives (Security Focus)
 mailing list
Bulba

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Cain and Abel tools 2nd
 capabilities
 integrated sniffer (Cain) 2nd
 password cracker functions (Cain) 2nd 3rd
 configuration options 2nd
 non-Windows systems
 Windows
Caller ID spoofing 2nd
 defenses against
 and in-house voice mailboxes
 and Voice over IP (VoIP) services
Camophone 2nd
Canary functionality
CANVAS tool (Immunity)
Car hacking
Cell phones, widespread use of
CERIAS wordlist collection
Certificates
Cheops-ng 2nd 3rd
Chief Information Security Officer (CISO)/Chief Information Officer (CIO)
 and exploit frameworks
 and permissions to study attacks
chkconfig command
Chkrootkit tool
chmod command
Cisco
 defense against renegade access points
 Secure IDS
 Security Agent (CSA)
Claerhout, Brecht
Classless Inter-Domain Routing (CIDR) notation
 and netmasks [See also Smurf attacks.]
Comer, Douglas
Competitors (in business), and computer attacks

Computer attacks [See also Phases of attacks.]
 frequency of
 future directions 2nd 3rd
 probable merging of two scenarios
 security will become a priority among vendors and users
 vulnerabilities continue to be discovered/exploited
Computer technology
 dependency on
 expansion of uses
 hackability of
Consultants
 as security researchers/defenders
 and presentation of threats
 and use of virtual machines
 as source of attack 2nd
Controlled environment/experimentation lab 2nd
Cookies
 and e-commerce
 persistent and nonpersistent
 SYN cookies 2nd
Counter Hack Web site
Counterpane Internet Security, Inc.
Covering tracks/hiding 2nd 3rd [See also Covert channels; Steganography.]
 altering event logs
 altering event logs (defenses) 2nd
 activate logging
 encrypted log file
 log file append only (Linux and some UNIX systems)
 log file on write-once media
 separate logging server
 setting permissions
 event log in Windows 2nd
 attacks
 hidden files/directories attack technique
 defenses
 UNIX
 Windows 2nd 3rd
 system logs in Linux and UNIX 2nd
 altering accounting entry files
 altering shell history file

Covert Channel Tunneling Tool (CCTT)
Covert channels 2nd
 defenses against 2nd
 installation techniques
 and malware
 tools [See also Covert_TCP; Loki; Nushu; Reverse WWW Shell tool.]
 tunneling
 using HTTP
 using ICMP 2nd
Covert_TCP
 bounce operations 2nd
 benefits (attacker's viewpoint)
 steps
 vulnerable header components 2nd
"Crackers,"
cron
Crouching Wi-Fi, Hidden Dragon scenario
 access point search (passive wireless monitoring) 2nd 3rd
 credit card theft (attacker's goal)
 port scan
 reconnaissance steps
 scanning phase/scanning tools 2nd
 security vulnerabilities of target 2nd 3rd
 target selection criteria
 using Metasploit 2nd
 using Nmap 2nd
 using Paros Proxy tool 2nd
 VNC access to additional locations 2nd
 VNC access of victim's server 2nd
CrucialAds
Cryptcat

Cutler, David N.

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Da_Doc
daemon9 2nd
Dameware
Data Encryption Standard (DES)
Data Link Layer (2) of OSI Reference Model [See also LANs.]
 and ARP
Data Sentinel (Ionx)
Death of a Telecommuter scenario
 Netcat redirector
 scan for target files using cracked passwords 2nd
 scanning for employee e-mail addresses
 search for vulnerable system for hiding 2nd
 stealing software (attack goal)
 Trojan horse backdoor program activation/password hashes dump and e-
mailing 2nd
 using e-mail addresses and sending links to custom Trojan horse backdoor
tool 2nd
 victim identification (attack target) 2nd
 victim vulnerability
 password underprotection
 public newsgroups and mailing lists
 underprotected telecommuting machines 2nd
Declerk, Carl
DEFCON
Defenses against cyber siege
Defensive techniques, reasons for
DejaNews Web site
Denial-of-service (DoS) attacks
 categories 2nd
 locally exhausting resources 2nd
 defenses
 locally stopping services 2nd
 defenses
 methods

 filling communications link
 filling file system
 filling process table
 process crashing
 process killing
 system reconfiguration
 remotely exhausting resources 2nd [See also Distributed Denial-of-Service
(DDoS) attacks; Smurf attacks; SYN flood.]
 remotely stopping services 2nd 3rd 4th
 defenses
DEP (Data Execution Prevention)/Windows 2nd
Deraison, Renaud
DiamondCS
Digital Equipment Corporation (DEC), and Windows NT technology
Digital fingerprints/signature 2nd 3rd
Directed broadcast attacks [See Smurf attacks.]
Distributed Denial-of-Service (DDoS) attacks 2nd 3rd 4th [See also Tribe
Flood Network 2000 (TFN2K) tool.]
 architecture
 defenses
 future directions
 high-profile attacks
 reflected DDoS attacks 2nd
DNS and BIND
DNS (Domain Name System) 2nd 3rd
 hierarchy and root DNS servers 2nd
 other information available 2nd
 resolving process 2nd
 record types
 split DNS technique 2nd
Domains By Proxy
Dotted-quad notation 2nd
Downloading attack tools [See also Controlled environment/experimentation
lab.]
 risks involved in
 safety precautions
Download.Ject flaw (Internet Explorer)
Dsniff 2nd
 additional tools 2nd 3rd
 DNS spoofing attack 2nd

 HTTPS and SSH sniffing capabilities
 confusing messages (attack alert) 2nd 3rd
 monkey-in-the-middle attack example 2nd
 protocol varieties
 sniffing methods (switched LAN)
 floods
 spoofed ARP messages 2nd
 traffic manipulation tools
Dumpster diving
 defenses against
Dynamic Link Libraries (DLLs)

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

e-commerce [See also Web application attacks.]
 and browser-flaws exploitations
 and cookies
e-mail
 mass (distribution mechanism for malicious code)
 mass-mailing worm with a bot 2nd
 precautions/education about
 protocols 2nd
2nd
Elite-level attack skills, dual purposes
EliteWrap
Encryption, of passwords
Engarde Systems
Entercept (McAfee)
enum
ESSID-Jack 2nd
EtherARP test
Ethereal 2nd
Ethernet 2nd
 ARP 2nd
 hubs 2nd
 vulnerability to attack [See also Sniffing/passive.]
 MAC address
 switches 2nd 3rd
 types
Etherping test
Ettercap
 monkey-in-the-middle attack
 port stealing 2nd
 session hijacking tool 2nd
Eve (scenario cast member)
Execution redirection
Exploit frameworks [See also Metasploit.]
 advantages for attackers

 as defensive tools

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

FIN scan
Firefox (Mozilla) 2nd
Firewalk
 defenses
 input and phases 2nd 3rd
 output uses
 packet filters focus
 use against layered filtering
Firewalls 2nd 3rd [See also Firewalk; Intrusion Prevention Systems (IPSs);
Packet filters (stateful); Packet filters (traditional); Proxy-based firewalls
approach.]
 technology selection criteria 2nd
 usage
Flawfinder
Floods
Foundstone (McAfee) 2nd
 Foundscan
Fport
Fraggle
Fragments
 use of in attacks at network level
 case example 2nd 3rd
FragRouter and FragRoute 2nd 3rd 4th
FreeBSD (Berkeley Software Distribution)
French Security Incident Response Team (Fr-SIRT)
FTP (file transfer protocol)
 Bounce scans 2nd
 and TCP
 port
FU rootkit
Function calls [See Stack/and function calls.]
Fyodor

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Gast, Matthew S.
"Get Out of Jail Free Card" (GOOJFC)
Gnu Privacy Guard (GnuPG) 2nd
Golden Age of Hacking 2nd 3rd
 and Golden Age of Information Security
Google
 attack use for 2nd 3rd
 example
 target document harvesting
 -bombing
 elements
 Google API
 Google bots
 Google cache
 Google index
 Hacking DataBase (GHDB) 2nd
 markers for removing data (defensive technique)
 search directives 2nd
 search scraping
 search tips
 search tools 2nd
 useful searches 2nd
Governments, as cyber attackers
Gray World Net Team
"Grey hats,"

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Hacker Defender 2nd 3rd
The Hacker's Choice group
"Hackers,"
Hactivists
Heap 2nd [See also Buffer overflow exploits.]
 vulnerable program example 2nd
Helix
Heyne, Frank
"Hired guns," as computer attackers
Hobbit
"holy father,"
Honeynet Project Web site
Honeypot 2nd
Hping2 tool
HP-UX (Hewlett Packard)
HTTP (Hypertext Transfer Protocol) [See also Dsniff; Reverse WWW Shell
tool.]
 floods 2nd
 TCP port
Huegen, Craig A.
Hunt 2nd
hxdef [See Hacker Defender.]
Hypertext Transfer Protocol (HTTP), and TCP

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

"I hack stuff" guy
IBM, IDS
Idle scans 2nd 3rd
IDS (Intrusion Detection System)
IDS and IPS evasion [See also Fragments; FragRouter and FragRoute; Nikto;
Whisker.]
 defenses against 2nd
 detection-avoidance techniques
 application level
 network level
 tools (operation of) 2nd
IDTR (Interrupt Descriptor Table Register), and the Red Pill
IFRAME flaw (Internet Explorer)
ifstatus tool
IMPACT tool (Core Security Technologies)
inetd
iNetTools

init
Insider threats/attackers
 business partners
 customers
 employees (disgruntled/clueless)
 suppliers
 vendors
Intellectual property, misleading abbreviation
Interactive TCP Relay

InterDo (Kavado)
International Organization for Standardization (ISO), and Open System
Interconnection (OSI) Reference Model
Internet [See also DNS (Domain Name System).]
 and NAT
 as source of hacking information

 exploit trolling sites
 Web-based reconnaissance tools 2nd 3rd
 widespread use of
Internet Assigned Numbers Authority (IANA), and port numbers
Internet Control Message Protocol (ICMP) 2nd
 message types
Internet Corporation for Assigned Names and Numbers (ICANN)
Internet Explorer
 vulnerabilities
 warning messages 2nd
Internet Network Information Center (InterNIC) 2nd 3rd
Internet Protocol (IP) [See also LANs; Routers.]
 addresses [See also Network mapping.]
 header 2nd [See also Tracerouting.]
 Destination IP Address
 Flags
 Fragment Offset
 Header Checksum
 host address
 IHL/Internet Header Length field
 IP identification field
 network address
 Options
 Padding
 Protocol
 Source IP Address
 Time-to-Live/TTL field
 Total Length field
 Type of Service field
 Version field
 netmasks 2nd
 packet fragmentation
Internet Scanner (IISS)
Internet Storm Center/ISC (SANS Institute) 2nd
Internet surfing, safety precautions

Intrusion Prevention Systems (IPSs) [See also Firewalls.]
 network-based
IP address spoofing 2nd
 attacking predictable TCP sequence numbers 2nd 3rd 4th

 changing IP address 2nd
 defenses
 difficult-to-predict sequence numbers
 install antispoof packet filters 2nd
 no source-routed packets through network gateways
 replace r-commands
 spoofing with source routing 2nd
IP [See Internet Protocol (IP).]
IP Watcher
ipconfig /displaydns
IPS (Intrusion Prevention System) [See also IDS and IPS evasion.]
IPSec 2nd 3rd 4th
 Authentication Header (AH) 2nd 3rd
 Encapsulating Security Payload (ESP) 2nd 3rd
 future capabilities
IRIX (sgi)
Island-hopping attacks 2nd
ITS4

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

John the Ripper
 configuration
 operation modes
 password cracking
 retrieving encrypted UNIX password
Jolt2
Juggernaut

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Kernel-mode rootkits 2nd 3rd
 defending against
 antivirus tools
 automated checkers
 control kernel access
 dangers of preemption
 file integrity checkers
 hand checking
 incident handling/forensics CD
 prevent attackers from gaining superuser access
 examples
 execution redirection
 file hiding
 network hiding
 process hiding
Kernel mode/Windows
 Executive subsystems [See also Security Reference Monitor.]
 Hardware Abstraction Layer (HAL)
 Object Manager
Kershaw, Mike
Kil3r
kill command
Kim, Gene
Kismet
Knoppix-STD
Kra

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

L0phtCrack
LADS (List Alternate Data Streams) tool
Land 2nd
LANguard Network Security Scanner (GFI)
LANguard System Integrity Monitor (GFI)
LANs 2nd [See also 802.11 family of protocols; Ethernet.]
 and Data Link and Physical Layers of protocol stack
Latierra
Latin American and Caribbean Internet Address Registry (LACNIC)
LC5
Linux
 distribution ("distro")
 kernel

Linux and UNIX (common) network services [See also Domain name
services; E-mail protocols; FTP (file transfer protocol); HTTP (Hypertext
Transfer Protocol); Network File System (NFS); r-commands; SSH (Secure
Shell) tool; Telnet; X Window System/X11.]
Linux and UNIX operating systems 2nd
 command-line orientation
 sources of information about
Linux and UNIX operating systems accounts and groups 2nd
 /etc/group file
 /etc/psswd file
 root ("god"/super-user) account
Linux and UNIX operating systems architecture
 automatically starting up processes 2nd 3rd
 cron
 inetd
 init
 xinetd
 file system structure 2nd
 directories 2nd
 interacting with processes

 kill command
 lsof command
 ps command
 TERM signal
 kernel and processes 2nd
 manually starting processes
 dangers of using current working directory
Linux and UNIX operating systems permissions 2nd 3rd 4th 5th
 chmod command
 octal formats 2nd
 SetUID programs
 vulnerability of
Linux and UNIX trust relationships
 logs and auditing 2nd
 scenario example 2nd
Liu, Cricket
Local Security Authority Subsystem Service (LSASS)
Logic bomb
Logs and auditing [See also Covering tracks/hiding.]
 in Linux and UNIX 2nd 3rd
Loki 2nd
Long, Johnny
lrk6 (Linux RootKit 6)
lsof command 2nd 3rd
Lynn, Mike

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

MAC (Media Access Control) address
MacOS (Apple Computer)
 Mac OS X
Malware, and covert channels
The Manchurian Contractor scenario
 DDoS diversion
 file modification
 malicious company insider attacker 2nd
 malicious intent (attack goal)
 Metasploit for control of victim's machine 2nd
 Nessus tool to look for system vulnerabilities 2nd
 track covering 2nd
 use of bots (diversionary tactics)
 use of Cain tool 2nd
 using Nessus
 vulnerability of company
 easy to crack passwords 2nd
 incorrectly assigned permissions
 omitting encryption on critical data
MasterRat
2nd 3rd
 example of execution redirection
Megasecurity Web site 2nd
Mendex
Message Digest 2nd
Message Digest 5 (MD5) algorithm 2nd 3rd 4th
Metasploit 2nd 3rd
 advantages to attackers
 benefits to security professionals
 components 2nd
 customization tools
 payloads
 user interface options 2nd
 Web site

Microsoft [See also ActiveX; Internet Explorer vulnerabilities; Windows ; .]
 as attack target 2nd 3rd
 upgrades and fixes
 "Black Tuesdays,"
 hotfixes
 patches
 Service Packs (SPs)
Microsoft Baseline Security Analyzer (MBSA) tool
Milner, Marius
MiniStumbler
mIRC bot family
mitm (Monkey in the Middle) attack
Mitnick, Kevin 2nd
Mixter 2nd
Moby wordlist
Modem policy, as war dialing defense 2nd
Montoro, Massimiliano
Moore, H. D.
Morris Worm
Moser, Max
MSNShell tool
MyDoom

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Nemesis
Nessus 2nd
 advantages
 architecture 2nd
 configuration via GUI
 and Nmap
 plug-ins
 "dangerous plug-ins," 2nd
 and user-written features
 results reporting tool 2nd
 uses for
 vulnerability scanning risk of detection
Netcat 2nd
 actively push a backdoor command shell 2nd
 as backdoor on UNIX systems 2nd 3rd 4th
 client and listening modes
 connecting to open ports
 defenses
 file transfer use 2nd 3rd
 passive backdoor command-shell creation
 persistent listeners/"listen harder,"
 and honeypot
 port scanning
 traffic relaying 2nd 3rd 4th
 vulnerability scanning
NetDude
Netmasks 2nd
 and Classless Inter-Domain Routing (CIDR) notation
NetScan Tools Pro
Netsky
netstat command 2nd
netstat -na
NetStumbler 2nd
Network Address Translation (NAT) 2nd 3rd

 gateway function
Network File System (NFS) 2nd
 danger
Network Layer (3) of OSI Reference Model 2nd 3rd 4th
Network mapping 2nd
 defenses
 and IP addresses
 sweeping
 tools 2nd
 tracerouting 2nd 3rd 4th
Network Solutions, Inc.
 registration proxy service
 whois lookup 2nd
Networking [See also TCP/IP (Transmission Control Protocol/Internet
Protocol).]
 basic functions
 LANs 2nd
 other network-level functions/issues [See also Firewalls.]
 Network Address Translation (NAT)
 network-based intrusion prevention systems (IPS)
 routing packets
 protocols (other than TCP/IP)
 SS7
 X.25
 research resources
 routers 2nd
Nevo tool (Tenable Network Security)
Newsgroups
Newtear
Nikto 2nd
 IDS and IPS evasion tactics
Nmap 2nd 3rd [See also Nessus.]
 fragmentation support
 inserting spoofed decoy source addresses in scans
 in
 operating system fingerprinting
 scan types supported
 FTP Bounce scans 2nd
 Idle scans 2nd 3rd
 Ping scan

 RPC programs scans 2nd
 scans violating protocol spec
 TCP ACK scans 2nd 3rd
 TCP Connect
 TCP SYN scans
 UDP scans
 Version-scan feature
 scanning option
 setting source ports for scanning 2nd 3rd
 timing options
No Operation (NOP) instructions/NOP sled 2nd
Novell Netware
nslookup command 2nd
Null scan
Nushu 2nd 3rd 4th

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Object Manager (Windows)
Olphart
Open-Ports
Open Web Application Security Project (OWASP)
OpenBSD (Berkeley Software Distribution) 2nd
Organized crime attackers
Ornaghi, Alberto
OSI (Open System Interconnection) Reference Model
 layers of 2nd
 Network (Layer 3) and Transport (Layer 4) and TCP/IP 2nd 3rd
 protocol layering 2nd
Osiris
OSPF (Open Shortest Path First) protocol

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

P0f2
Packet-capture tool, multiple purposes of
Packet filters (stateful)
 and Application-Specific Integrated Circuit (ASIC) chips
 dynamic state table 2nd
 function of
 security implications of 2nd
Packet filters (traditional)
 Access Control Lists (ACLs)/rules 2nd
 information sources for decision-making
 limitations of
Packet Storm Security 2nd
Page, Lawrence
Pandora
Papasmurf
Paros Proxy 2nd 3rd
Passive operating system fingerprinting
Passive vulnerability scanning [See Sniffing.]
Password attacks 2nd
 guessing default passwords 2nd
 limitations of
 via login attacks 2nd
 password-cracking defenses 2nd
 additional authentication tools
 file protection for encrypted and hashed password files
 password-cracking tests
 password filtering software
 password policy
 user awareness
 password storage (and encryption)
 password-cracking tools 2nd [See also Cain and Abel tools; John the
Ripper.]
Password Guardian
Perlman, Radia

Personal Video Recorders (PVRs)
PFW (Personal Firewall Software)
Phases of attacks 2nd [See also Access (maintaining); Access/application
and operating system levels; Access/network level; Covering tracks/hiding;
Denial-of-service (DoS) attacks; Reconnaissance ("recon"); Scanning.]
phatbot family 2nd
Phenoelit hacking group, default passwords database 2nd
Phishing attacks
 education about
Phrack 2nd
Physical break-in
 defenses against
Physical Layer (1) of OSI Reference Model [See also LANs.]
PID
Ping
 scan
Ping of Death 2nd
Pluggable authentication module (PAM)
Port scanning 2nd
 defenses
 find openings before attackers
 stateful packet filters or proxies
 system hardening 2nd 3rd
 tools [See also Firewalk; Nmap; Xprobe2.]
 potential for crashing target systems
Ports [See also Netcat; TCP port numbers.]
 open/closed
 port stealing
 stealing 2nd
 well-known numbers
Post Office Protocol (POP), and TCP
Postel, John
Pretty Good Privacy (PGP)
PromiscDetect
Promqry/PromaryUI (Microsoft tools)
Protocol layering 2nd
 in OSI Reference model
 in TCP/IP (scenario example) 2nd 3rd
Provos, Niels
Proxy-based firewalls approach 2nd

ps command
PUPs (Potentially Unwanted Programs)

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

QualysGuard

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

r-commands 2nd [See also SSH (Secure Shell) tool.]
 in IP address spoofing attack
Rain Forest Puppy
RainbowCrack
RATS (Rough Auditing Tool for Security)
Rbone tool
Real Data Player (Audio/Video), UDP port
RealSecure (ISS)
Reconnaissance ("recon") 2nd
 of DNS servers (zone transfers) 2nd
 defense from 2nd
 low-technology 2nd [See also Caller ID spoofing; Dumpster diving; Physical
break-in; Social engineering.]
 search engine and Web-based 2nd [See also Google; Newsgroups; Web
site searching (of organization being attacked).]
 defenses against
 Excel and Microsoft PowerPoint files
 long-term caches
 tools (general purpose) 2nd [See also Sam Spade.]
 tools (Web-based) 2nd
 whois databases
 defense against whois searches
 other sources of target information
 researching .com/.net/.org/.edu domain names 2nd 3rd
 researching other top-level domains
 utilizing registrar data
Red Pill
Remote-control backdoors [See also Application-level Trojan horse backdoor
tools.]
 architecture 2nd
 functionality 2nd 3rd
 goals of
 installation approaches
 mass e-mailing

 wrappers and binders
 shipping via the Web
 similarities to legitimate commercial tools
 tools
 victim identification
Request for Comments (RFCs) documents (TCP/IP)
Réseaux IP Européens Network Coordination Centre (RIPE NCC)
RESET (spoofed packet attack)
Reverse WWW Shell tool 2nd
Rhoades, David
RIP (Routing Information Protocol)
Ritter, Jordan
Roamer
Roesch, Martin
Rootkit Hunter
Rootkit Revealer
Rootkit tools [See also Adore-ng; FU; Hacker Defender; Kernel-mode rootkits;
User-mode rootkits.]
Rose 2nd
Routers 2nd 3rd [See also Packet filters (traditional).]
Routing 2nd
 dynamic
 protocols
 source
 static
Rowland, Craig H.
RPC programs scans 2nd
Rutkowska, Joanna

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

SAM database 2nd
 NT hash
Sam Spade 2nd 3rd
 capabilities
SANS Institute
SaranWrap
Scanning 2nd 3rd [See also IDS and IPS evasion; Network mapping; Port
scanning; Vulnerability-scanning tools; War dialing; War driving.]
 attacker-knowledge and tools
Scenarios [See also Anatomy of attacks.]
 cast members 2nd
Schneier, Bruce
Script kiddies
 trolling
sdbot family
Search scraping
SearchSecurity Web site
Secure Hash Algorithm 1 (SHA–1) 2nd
Secure/Multipurpose Internet Mail Extensions (S/MIME) 2nd
Secure Sockets Layer (SSL)/Transport Layer Security (TLS) 2nd 3rd [See
also Web application attacks.]
 and authenticated/encrypted communication 2nd 3rd
 certificates 2nd
 usage
Security Focus Web site
Security information [See Attack tools.]
Security Reference Monitor 2nd
Segerdahl, Olle
Sentinel tool
Session hijacking 2nd [See also Ettercap/session hijacking tool; Hunt.]
 across the network example 2nd
 defenses
 host-based
 tools

 limitations of
 wireless access point attacks
Session IDs
Session tracking attacks [See Web application attacks.]
SetUID programs 2nd
 vulnerability of
Shipley, Peter
shv4 rootkit
Silk Rope
Simple Mail Transfer Protocol (SMTP), and TCP
Simple Network Management Protocol (SNMP), UDP port
Simple Nomad
SirMACsAlot tool
SiteDigger 2nd
"Smashing the Stack for Fun and Profit,"
SMTP, TCP port
Smurf amplifier
Smurf attacks 2nd 3rd
 defenses
 and netmasks
Sniffer [See also Cain and Abel tools; Packet-capture tool, multiple purposes
of.]
 interfaces
 and island-hopping attacks 2nd
Sniffing 2nd
 active (through a switch) 2nd 3rd [See also Dsniff; Ettercap.]
 data vulnerable to capture
 promiscuous/nonpromiscuous mode
 defenses 2nd
 hub elimination
 secure protocols
 sniffer-detection tools
 passive (through a hub) 2nd [See also Ethereal; Sniffit; Snort.]
 passive vulnerability scanning [See also Nevo tool (Tenable Network
Security); P0f2.]
 tools
Sniffit 2nd 3rd
Snort
Sobig
Social engineering

 defenses against
 pretexts (common)
Solar Designer 2nd 3rd
Solaris (Sun Microsystems)
Song, Dug 2nd 3rd
Sourcefire
 Intrusion Sensors
Spafford, Gene
Spencer, Mark
Spike
SPIProxy/WebInspect
Spitzner, Lance
2nd
Spoofing [See IP address spoofing.]
Spyware 2nd
 functionality
 installation methods
 bundling
 and Web browser vulnerabilities
SQL injection attacks [See Web application attacks.]
SS7
SSH (Secure Shell) tool [See also Dsniff.]
 and TCP
 port
 to replace r-commands
sshmitm (SSH Monkey in the Middle) attack 2nd 3rd
Stack 2nd [See also Buffer overflow exploits.]
 and function calls 2nd
 nonexecutable (defensive technique)
Stack Shield
StackGuard
Star38
STAT Scanner (Harris)
Stearns, Bill
Steganography 2nd
Stevens, W. Richard
STFW (Search the Fine Web) strategy
Strongpass
SubSeven 2nd
Sullo

Sweeping
SYN flood 2nd 3rd 4th 5th
 defenses
 queue/bandwidth sizes and redundant paths
 SYN cookies 2nd
 traffic shaping tools
 filling communications link
 filling connection queue
Syndrop

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Targa (Mixter) 2nd
TCP ACK scans 2nd 3rd
TCP Connect scans
TCP control bits (flags) 2nd
 (Acknowledgment) field
 (Congested Window Reduced) field
 (Explicit Congestion Notification Echo) field
 field
 (Push) function
 (Reset) function
 (Synchronize) sequence number function
 (Urgent) bit
 uses
 session-initiation scenario example
TCP port numbers [See also netstat command; Nmap.]
 destination port
 open port/closed port 2nd
 port zero
 source port
 TCP Port 21 (FTP)
 TCP Port 22 (SSH)
 TCP Port 23 (Telnet)
 TCP Port 25 (SMTP)
 TCP Port 80 (HTTP)
 TCP Port 6000 (X Window System/X11)
TCP Reset attacks
TCP SYN scans
TCP/CP

TCP/IP (Transmission Control Protocol/Internet Protocol) 2nd
 development of
 family of protocols 2nd 3rd [See also Internet Control Message Protocol
(ICMP); Internet Protocol (IP); Transmission Control Protocol (TCP); User
Datagram Protocol (UDP).]

 and Network Layer (3) and Transport Layer (4) of OSI Reference Model
2nd 3rd 4th
 Request for Comments (RFCs) documents
 resources
 security capabilities 2nd [See also Application-level security for TCP/IP-
based networks; IPSec; Secure Sockets Layer (SSL)/Transport Layer
Security (TLS).]
TCPView 2nd
Teardrop 2nd
Telespoof
Telnet
 TCP port
Tenable Network Security [See also Nessus.]
TERM signal
Terrorists, and cyber attacks
TFN2K [See Tribe Flood Network 2000 (TFN2K) tool.]
THC-Scan
Three-way handshake 2nd 3rd 4th
 scenario example of TCP session initiation
Timmingh, Roelof
Toast (Gridmark)
Torvalds, Linus
Tracerouting 2nd 3rd 4th
Traffic relaying 2nd 3rd 4th
Transmission Control Protocol (TCP)
 applications
 header 2nd [See also TCP control bits (flags); TCP port numbers.]
 session-initiation/three-way handshake (scenario example)
Transport Layer (4) of OSI Reference Model 2nd 3rd 4th
Tribe Flood Network 2000 (TFN2K) tool
 attack types
 client-zombie communication mechanism
 DDoS attack model
 simultaneous single arbitrary command feature
Tripwire 2nd
Trivial File Transfer Protocol (TFTP), UDP port
Trojan horse backdoor genre 2nd 3rd [See also Application-level Trojan horse
backdoor tools; Kernel-mode rootkits; User-mode rootkits.]
Trojan horses 2nd
Trojan Man

Tsutomu Shimomura
TTL field (IP header)
TTYSnoop
TTYWatcher
Tunneling [See also Loki.]

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

UDP [See User Datagram Protocol (UDP).]
Underlying technologies and platforms [See also Linux and UNIX operating
systems; Networking; Windows.]
UNIX [See also Linux and UNIX operating systems.]
 / ("slash") directory
 main lines
 tools, r-commands
 variants
URL
 obfuscation
 session tracking 2nd
U.S. Computer Emergency Readiness Team (CERT)
User Datagram Protocol (UDP) 2nd
 header 2nd
 ports
 Port 53/DNS
 Port 69/TFTP
 Port 161/SNMP
 Port 7070/Real Player Data
 scans
 security
User-mode rootkits 2nd 3rd
 defending against
 file integrity checkers
 preventing installation
 functions
 history of
 Linux/UNIX user-mode rootkits
 additional hiding techniques 2nd
 backdoors
 examples
 and hiding sniffer
 and password sniffing
 track covering

 recovery from attack
 Windows
 API hooking 2nd
 examples
 hiding strategies
 implementation
 tactics
User mode/Windows
 and APIs (Application Program Interfaces)
 Environment services
 Integral subsystems
 security-related functions in
 LM password representation
 NT hash
 password derivation
Uwhois Web site

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Vacuum
Valleri, Marco
van Hauser 2nd
Vandalism, archive of
Version-scan feature
Vidstrom, Arne
Virtual machines
 and Red Pill
 as research tools, and vulnerabilities of
Virtual Network Computing (VNC) tool
VoIP (Voice over IP) services, and spoofing caller ID
von Braun Consultants
VPN (Virtual Private Network)
Vulnerability-scanning tools 2nd [See also Nessus; Netcat.]
 commercially available scanners
 defenses
 closed ports and system patches
 use tools against your network
 limitations of
 operation of 2nd

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

War dialing
 defenses, modem policy
 modems/remote access products/naive users
 nudging function
 phone numbers (requirement)
 sources
 tools, THC-Scan 2nd 3rd
War driving [See also 802.11 family of protocols.]
 antennas
 defenses
 configuring access points/using wireless security protocols
 deploying a VPN
 detection
 physical protection
 setting ESSID
 ESSID (Extended Service Set Identifier) determination
 Methods [See also ESSID-Jack; Kismet; NetStumbler; Wellenreiter.]
 active scanning
 forcing deauthentication 2nd
 passive scanning
 tools
War Games
Watson, Paul
Wayback Machine 2nd
 session tracking attacks, defenses
Web application attacks 2nd
 account harvesting 2nd 3rd
 defenses
 browser-flaws exploitation 2nd
 attack examples
 defenses
 manipulation proxies 2nd
 session tracking attacks [See also Session IDs.]
 detection difficulties

 nonpersistent 2nd 3rd
 persistent cookies
 session ID manipulation
 SQL injection attacks 2nd 3rd 4th 5th
 defenses against [See also WebGoat.]
 SSL limitations
Web site searching (of organization being attacked)
Web Sleuth
WebGoat
 SQL injection attack example 2nd 3rd 4th
WebScarab
Wellenreiter 2nd
Wheeler, Dave
Whisker 2nd [See also Nikto.]
"White hat,"
 and presentations of threats
Widner, Michael R.
Wikto
Windows accounts 2nd
 default
 Administrator
 Guest
 security issues
 other
Windows auditing 2nd
Windows fundamental concepts [See also Windows underlying operating
system architecture.]
 domain 2nd
 Primary Domain Controller (PDC)
 domains,
 shares
Windows groups 2nd 3rd
 default 2nd
 other
Windows network security 2nd
 limitations/basic network protocols and APIs 2nd
 Common Internet File System (CIFS)
 Microsoft's Internet Information Service (IIS)
 NetBEUI (Network Basic Extended User Interface)
 NetBIOS (Network Basic Input/Output System)

 Service Message Block (SMB)
Windows NT 2nd
 history of 2nd
Windows object access control and permissions
 File Allocation Table (FAT)
 NTFS and permissions
 EVERYONE group limits
 Full Control permissions/dangers and limits
 Take Ownership right/dangers and limits
 ownership
 Share permissions
 weak default permissions and guides for hardening
Windows policies
 Account Policy 2nd
 Account Lockout
 User Properties settings
Windows privilege control
 and 2nd
Windows trust
Windows 2000 2nd 3rd [See also Active Directory.]
 accounts and groups
 architecture (and refinements over NT)
 auditing 2nd
 event logging (EventLog) 2nd
 altering
 new features
 domains deemphasis 2nd
 native vs. mixed mode 2nd
 and new security features
 object access control
 EFS (Encrypting File System) 2nd 3rd
 NTFS–5 2nd
 organizational units (OUs) 2nd 3rd
 physical security considerations
 policies
 Group Policy Objects (GPOs) 2nd
 privilege control (changes)
 rights 2nd 3rd
 RunAs 2nd
 Security Configuration Tools (templates and wizards)

 security considerations 2nd
 Active Directory protection
 stack
 trust
 Kerberos-based
Windows underlying operating system architecture 2nd [See also Windows
accounts; Windows auditing; Windows fundamental concepts; Windows
groups; Windows network security; Windows object access control and
permissions; Windows policies; Windows privilege control; Windows trust.]
 modes [See also Kernel mode/Windows; User mode/Windows.]
 security implications 2nd
Windows XP
WinFingerprint
Winnuke 2nd
WinZapper tool 2nd
Wireless Intrusion Detection Systems (IDSs)
Wireless Local Area Networks (WLANs) [See also 802.11 family of protocols;
War driving.]
 rfmon/monitor mode

World Wide Web (WWW) [See also Web application attacks.]
 source for information for attacker
Worm-bot feedback loop 2nd
Worms
 Morris Worm
Wrappers 2nd
2nd

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

X Window System/X11
 TCP port
X.25
xinetd 2nd
Xmas Tree scan
Xprobe2

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Yarochkin, Fyodor
ywindump

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T]
[U] [V] [W] [X] [Y] [Z]

Zalewski, Michael
Zeus Web servers
Zhu Shuanglei
Zombie software
Zombies
 avoiding
 pulsing 2nd
Zone-H Web site
Zone transfers 2nd
 limiting

Release from TeamUnknown

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6
Pages: 784
Slots: 2.0

Table of Contents | Index

"I finally get it! I used to hear words like
and and they just didn't make any sense. I
asked other people and they didn't seem to
know how these things work, or at least
they couldn't explain them in a way that I
could understand. is the clearest
explanation of these tools I have ever
seen. Thank you!"

"Ed Skoudis does it again! With this new
edition, Ed takes a phenomenal work to
the next level! This book is a 'must-have'
and a 'must-read' for anyone remotely
associated with computers and computer

Amazon.com
In defending your systems against intruders and other
meddlers, a little knowledge can be used to make the bad
guys--particularly the more casual among them--seek out
softer targets. Counter Hack aims to provide its readers with
enough knowledge to toughen their Unix and Microsoft
Windows systems against attacks in general, and with specific
knowledge of the more common sorts of attacks that can be

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

The New School of
Information Security

Security Metrics: Replacing
Fear, Uncertainty, and Doubt

The Tao of Network Security
Monitoring Beyond Intrusion
Detection

A+, Network+, Security+
Exams in a Nutshell

Fuzzing: Brute Force
Vulnerability Discovery

Top Level Categories

Safari IT Books

Sub Categories

Average Customer Rating: based on 43 reviews.
Another winner, 2008-06-14
Reviewer rating:
Nutshell review - Another great book by Ed Skoudis. Covers
all the popular attack vectors and a variety of possible
defence techniques. A solid book from which further study and
investigation can be undertaken. Management people should
read this too.
Excellent book for a broad overview of
Computer/Network Security, 2008-05-17
Reviewer rating:
Counter Hack Reloaded (CHR) is an excellent book for
someone looking for a broad overview of computer/network
security written in a very clear, logical, and even enjoyable
manner.

After CHR's Introductory chapter, the reader is given an
overview on Networking, Linux/Unix, and Windows. These
three chapters give the reader enough to be able to
understand the subsequent chapters which deal with specific
phases of an attack. These phases are, Reconnaissance,

Counter Hack Reloaded,
Second Edition: A Step-by-
Step Guide to Computer
Attacks and Effective
Defenses
By Ed Skoudis, Tom Liston
...
Publisher: Prentice Hall
Pub Date: December 23, 2005
Print ISBN-10: 0-13-148104-5
Print ISBN-13: 978-0-13-148104-6

http://www.informit.com/authors/author_bio.asp?ISBN=0131481045
http://www.informit.com/authors/author_bio.asp?ISBN=0131481045

Pages: 784
Slots: 2.0

http://www.informit.com/title/9780131481046
http://www.amazon.com/Counter-Hack-Reloaded-Step-Step/dp/0131481045%3FSubscriptionId%3D18F0HAA4KWCRBW7SEZG2%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0131481045

	Counter Hack Reloaded, Second Edition: A Step-by-Step Guide to Computer Attacks and Effective Defenses
	Copyright
	Praise for Counter Hack Reloaded
	The Radia Perlman Series in Computer Networking and Security Radia Perlman, Series Editor
	Foreword
	Preface Reloaded
	About the Authors
	Chapter 1. Introduction
	The Computer World and the Golden Age of Hacking
	Why This Book?
	The Threat: Never Underestimate Your Adversary
	A Note on Terminology and Iconography
	Caveat: These Tools Could Hurt You
	Organization of Rest of the Book
	Summary

	Chapter 2. Networking Overview: Pretty Much Everything You Need to Know About Networking to Follow the Rest of This Book
	The OSI Reference Model and Protocol Layering
	How Does TCP/IP Fit In?
	Understanding TCP/IP
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	Internet Protocol (IP) and Internet Control Message Protocol (ICMP)
	ICMP
	Other Network-Level Issues
	Don't Forget About the Data Link and Physical Layers!
	Security Solutions for the Internet
	Conclusion
	Summary

	Chapter 3. Linux and UNIX Overview: Pretty Much Everything You Need to Know About Linux and UNIX to Follow the Rest of This Book
	Introduction
	Architecture
	Accounts and Groups
	Linux and UNIX Permissions
	Linux and UNIX Trust Relationships
	Common Linux and UNIX Network Services
	Conclusion
	Summary

	Chapter 4. Windows NT/2000/XP/2003 Overview: Pretty Much Everything You Need to Know about Windows to Follow the Rest of This Book
	Introduction
	A Brief History of Time
	The Underlying Windows Operating System Architecture
	How Windows Password Representations Are Derived
	Kernel Mode
	From Service Packs and Hotfixes to Windows Update and Beyond
	Accounts and Groups
	Privilege Control
	Policies
	Trust
	Auditing
	Object Access Control and Permissions
	Network Security
	Windows 2000 and Beyond: Welcome to the New Millennium
	Conclusion
	Summary

	Chapter 5. Phase 1: Reconnaissance
	Low-Technology Reconnaissance: Social Engineering, Caller ID Spoofing, Physical Break-In, and Dumpster Diving
	Search the Fine Web (STFW)
	Whois Databases: Treasure Chests of Information
	The Domain Name System
	General-Purpose Reconnaissance Tools
	Conclusion
	Summary

	Chapter 6. Phase 2: Scanning
	War Driving: Finding Wireless Access Points
	War Dialing: Looking for Modems in All the Right Places
	Network Mapping
	Determining Open Ports Using Port Scanners
	Vulnerability-Scanning Tools
	Intrusion Detection System and Intrusion Prevention System Evasion
	Conclusion
	Summary

	Chapter 7. Phase 3: Gaining Access Using Application and Operating System Attacks
	Script Kiddie Exploit Trolling
	Pragmatism for More Sophisticated Attackers
	Buffer Overflow Exploits
	Password Attacks
	Web Application Attacks
	Exploiting Browser Flaws
	Conclusion
	Summary

	Chapter 8. Phase 3: Gaining Access Using Network Attacks
	Sniffing
	IP Address Spoofing
	Session Hijacking
	Netcat: A General-Purpose Network Tool
	Conclusion
	Summary

	Chapter 9. Phase 3: Denial-of-Service Attacks
	Locally Stopping Services
	Locally Exhausting Resources
	Remotely Stopping Services
	Remotely Exhausting Resources
	Conclusion
	Summary

	Chapter 10. Phase 4: Maintaining Access: Trojans, Backdoors, and Rootkits ... Oh My!
	Trojan Horses
	Backdoors
	The Devious Duo: Backdoors Melded into Trojan Horses
	Nasty: Application-Level Trojan Horse Backdoor Tools
	Also Nasty: The Rise of the Bots
	Additional Nastiness: Spyware Everywhere!
	Defenses Against Application-Level Trojan Horse Backdoors, Bots, and Spyware
	Even Nastier: User-Mode Rootkits
	Defending Against User-Mode Rootkits
	Nastiest: Kernel-Mode Rootkits
	Defending Against Kernel-Mode Rootkits
	Conclusion
	Summary

	Chapter 11. Phase 5: Covering Tracks and Hiding
	Hiding Evidence by Altering Event Logs
	Defenses Against Log and Accounting File Attacks
	Creating Difficult-to-Find Files and Directories
	Hiding Evidence on the Network: Covert Channels
	Defenses Against Covert Channels
	Conclusion
	Summary

	Chapter 12. Putting It All Together: Anatomy of an Attack
	Scenario 1: Crouching Wi-Fi, Hidden Dragon
	Scenario 2: Death of a Telecommuter
	Scenario 3: The Manchurian Contractor
	Conclusion
	Summary

	Chapter 13. The Future, References, and Conclusions
	Where Are We Heading?
	Keeping Up to Speed
	Final Thoughts ... Live Long and Prosper
	Summary

	Index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

