Chapter 3: Using Maintenance & Troubleshooting Tools and Applications

CCNP TSHOOT: Maintaining and Troubleshooting IP Networks



Chapter 3 Objectives

- Use Cisco IOS commands to gather information in support of diagnostic processes.
- Identify tools used for specific maintenance and troubleshooting processes.

Using Cisco IOS Software for **Maintenance and** Troubleshooting

Filtering show ip route command output

```
R1# show ip route 10.1.193.2
Routing entry for 10.1.193.0/30
  Known via "connected", distance 0, metric 0 (connected, via
interface)
 Redistributing via eigrp 1
  Routing Descriptor Blocks:
  * directly connected, via Serial0/0/1
      Route metric is 0, traffic share count is 1
R1# show ip route 10.1.193.10
% subnet not in table
```


Using the longer-prefixes keyword with show ip route

R1# show ip route 10.1.193.0 255.255.255.0 longer-prefixes							
< output omitted >							
Gateway of last resort .	is not set						
10.0.0.0/8 is varia	ably subnetted, 46 subnets, 6 masks						
C 10.1.193.2/32 i	s directly connected, Serial0/0/1						
C 10.1.193.0/30 i	s directly connected, Serial0/0/1						
D 10.1.193.6/32 [90/20517120] via 10.1.192.9, 2d01h, Fast	tEthernet0/1					
[90/20517120] via 10.1.192.1, 2d01h, Fast	tEthernet0/0					
D 10.1.193.4/30 [90/20517120] via 10.1.192.9, 2d01h, Fast	tEthernet0/1					
[90/20517120] via 10.1.192.1, 2d01h, Fast	tEthernet0/0					
D 10.1.193.5/32 [90/41024000] via 10.1.194.6, 2d01h, Ser	ial0/0/0.122					

Using pipes with include, exclude and begin

```
R1# show processes cpu | include IP Input
        3149172 7922812 397 0.24% 0.15% 0.05% 0 IP Input
  71
S1# show ip interface brief | exclude unassigned
Interface
                   IP-Address OK? Method Status
                                                            Protocol
                   10.1.156.1 YES NVRAM up
Vlan128
                                                               up
S1# show running-config | begin line vty
line vty 0 4
transport input telnet ssh
line vty 5 15
transport input telnet ssh
!
End
R1# show processes cpu| include IP Input
% Invalid input detected at '^' marker.
```


Using pipes with section and ^

```
R1# show running-config | section router eigrp
router eigrp 1
network 10.1.192.2 0.0.0.0
network 10.1.192.10 0.0.0.0
network 10.1.193.1 0.0.0.0
no auto-summary
```

R1# show processes cpu | include ^CPU|IP Input
CPU utilization for five seconds: 1%/0%; one minute: 1%; five minutes: 1%
71 3149424 7923898 397 0.24% 0.04% 0.00% 0 IP Input

Using the redirect and tee options

R1# show tech-support redirect tftp://192.168.37.2/show-tech.txt						
R1# show ip interface brief tee flash:show-int-brief.txt						
Interface Protocol	IP-Address	OK? Method Status				
FastEthernet0/0	10.1.192.2	YES manual up	up			
FastEthernet0/1	10.1.192.10	YES manual up	up			
Loopback0	10.1.220.1	YES manual up	up			
R1# dir flash:						
Directory of flash:/	000 16.25.54 00	00 = 1041 odvince 1042	h i n			
		:00 c1841-advipservicesk9mz.1243. :00 show-int-brief.txt	ΠΤΟ			

Using the **append** option and the **more** command

R1# show version | append flash:show-commands.txt R1# show ip interface brief | append flash:show-commands.txt R1# more flash:show-commands.txt Cisco IOS Software, 1841 Software (C1841-ADVIPSERVICESK9-M), Version 12.4(23), RELEASE SOFTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2008 by Cisco Systems, Inc. Compiled Sat 08-Nov-08 20:07 by prod rel team ROM: System Bootstrap, Version 12.3(8r)T9, RELEASE SOFTWARE (fc1) R1 uptime is 3 days, 1 hour, 22 minutes < output omitted > Interface IP-Address OK? Method Status Protocol FastEthernet0/0 10.1.192.2 YES manual up up 10.1.192.10 YES manual up FastEthernet0/1 up

Collecting and Filtering Information Using IOS ping and Telnet Commands

Router#

ping ip-address | hostname [repeat repeat-count size
datagram-size source [address | interface] df-bit]

Parameter	Description
repeat repeat- count	Number of ping packets that are sent to the destination address. The default is 5.
size datagram-size	Size of the ping packet (in bytes). Default: 100 bytes.
source [address interface]	The interface or IP address of the router to use as a source address for the probes.

Using the ping extended option: source

R1# ping 10.1.156.1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.156.1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms R1# ping 10.1.156.1 source FastEthernet 0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.156.1, timeout is 2 seconds: Packet sent with a source address of 10.1.192.2 Success rate is 0 percent (0/5)

Explanation of ping results characters

- Each exclamation point indicates receipt of a reply.
- •. Each period indicates a timeout waiting for a reply.
- **U** A destination unreachable ICMP message was received.
- **Q** Source quench (destination too busy).
- **M** Could not fragment (MTU related).
- •? Unknown packet type.
- **&** Packet lifetime exceeded

Using the ping extended prompt mode

```
R1# ping
Protocol [ip]:
Target IP address: 10.1.221.1
Repeat count [5]: 1
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface:
Type of service [0]:
Set DF bit in IP header? [no]: yes
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]: y
Sweep min size [36]: 1400
Sweep max size [18024]: 1500
Sweep interval [1]:
Type escape sequence to abort.
Sending 101, [1400..1500]-byte ICMP Echos to 10.1.221.1, timeout is 2 seconds:
<output omitted>
```


Using Telnet to test the Transport and Application Layer

R1# telnet 192.168.37.2 80
Trying 192.168.37.2, 80 ... Open
GET
<html><body><h1>It works!</h1></body></html>
[Connection to 192.168.37.2 closed by foreign host]

R1# telnet 192.168.37.2 25 Trying 192.168.37.2, 25 ... % Connection refused by remote host

Collecting Real-time Information Using Cisco IOS debug Commands

- Remember, because debugging output is assigned high priority in the CPU process, it can render the system unusable.
- Use debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco techn support staff.

Collecting Real-time Information Using Cisco IOS debug Commands

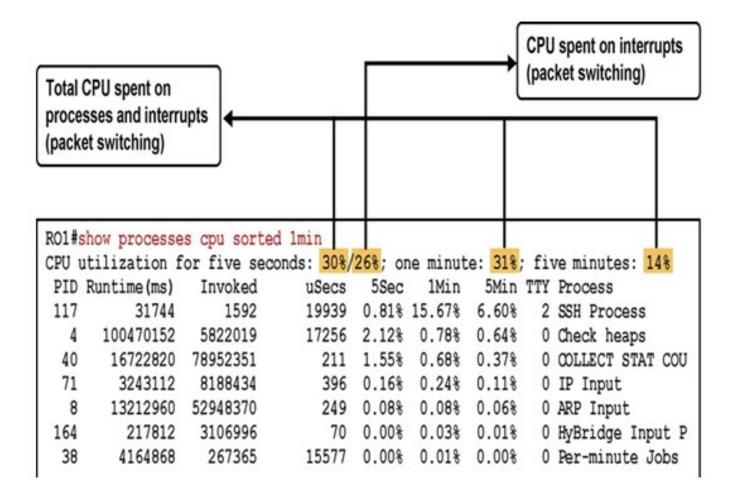
The debug ip packet command output

```
R1# debug ip packet
IP: s=172.69.13.44 (Fddi0), d=10.125.254.1 (Serial2), g=172.69.16.2,
forward
IP: s=172.69.1.57 (Ethernet4), d=10.36.125.2 (Serial2),
q=172.69.16.2, forward
IP: s=172.69.1.6 (Ethernet4), d=255.255.255.255, rcvd 2
IP: s=172.69.1.55 (Ethernet4), d=172.69.2.42 (Fddi0), g=172.69.13.6,
forward
IP: s=172.69.89.33 (Ethernet2), d=10.130.2.156 (Serial2),
q=172.69.16.2, forward
IP: s=172.69.1.27 (Ethernet4), d=172.69.43.126 (Fddi1),
q=172.69.23.5, forward
IP: s=172.69.1.27 (Ethernet4), d=172.69.43.126 (Fddi0),
q=172.69.13.6, forward
IP: s=172.69.20.32 (Ethernet2), d=255.255.255.255, rcvd 2
IP: s=172.69.1.57 (Ethernet4), d=10.36.125.2 (Serial2),
g=172.69.16.2, access denied
```


Collecting Real-time Information Using Cisco IOS debug Commands – Cont.

The debug ip rip command output

```
R1# debug ip rip
RIP: received v2 update from 10.1.1.2 on Serial0/0/0
      30.0.0/8 via 0.0.0.0 in 1 hops
RIP: sending v2 update to 224.0.0.9 via FastEthernet0/0 (20.1.1.1)
RIP: build update entries
      10.0.0/8 via 0.0.0.0, metric 1, tag 0
      30.0.0.0/8 via 0.0.0.0, metric 2, tag 0
RIP: sending v2 update to 224.0.0.9 via Serial0/0/0 (10.1.1.1)
RIP: build update entries
      20.0.0/8 via 0.0.0.0, metric 1, tag 0
RIP: received v2 update from 10.1.1.2 on Serial0/0/0
      30.0.0/8 via 0.0.0.0 in 1 hops
RIP: sending v2 update to 224.0.0.9 via FastEthernet0/0 (20.1.1.1)
```



Diagnosing Hardware Issues Using Cisco IOS Commands

- The three main categories of failure causes in a network are as follows: hardware failures, software failures (bugs), and configuration errors.
- Performance problems could be a fourth category, but performance problems are symptoms rather than failure causes.

Diagnosing Hardware Issues Using Cisco IOS Commands – Cont.

Checking CPU utilization with show processes cpu

Diagnosing Hardware Issues Using Cisco IOS Commands – Cont.

Checking memory utilization with the **show memory** command

R1# show memory								
	Head	Total(b)	Used(b)	Free(b)	Lowest(b)	Largest(b)		
Processor	820B1DB4	26534476	19686964	6847512	6288260	6712884		
I/O	3A00000	6291456	3702900	2588556	2511168	2577468		

Diagnosing Hardware Issues Using Cisco IOS Commands – Cont.

Checking interfaces with the **show** interfaces command

```
R1# show interfaces FastEthernet 0/0
FastEthernet0/0 is up, line protocol is up
<output omitted>
  Last input 00:00:00, output 00:00:01, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/1120/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 2000 bits/sec, 3 packets/sec
  5 minute output rate 0 bits/sec, 1 packets/sec
     110834589 packets input, 1698341767 bytes
     Received 61734527 broadcasts, 0 runts, 0 giants, 565 throttles
     30 input errors, 5 CRC, 1 frame, 0 overrun, 25 ignored
     0 watchdog
     0 input packets with dribble condition detected
     35616938 packets output, 526385834 bytes, 0 underruns
     0 output errors, 0 collisions, 1 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
```


Diagnosing Hardware Issues Using Cisco IOS Commands – Cont.

Additional hardware commands and tools:

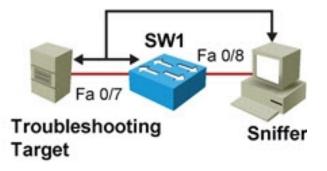
- show controllers
- show platform
- show inventory
- show diag
- Generic Online Diagnostics (GOLD)
- Time Domain Reflectometer

Using Specialized Maintenance and Troubleshooting Tools

Using Traffic Capturing Tools

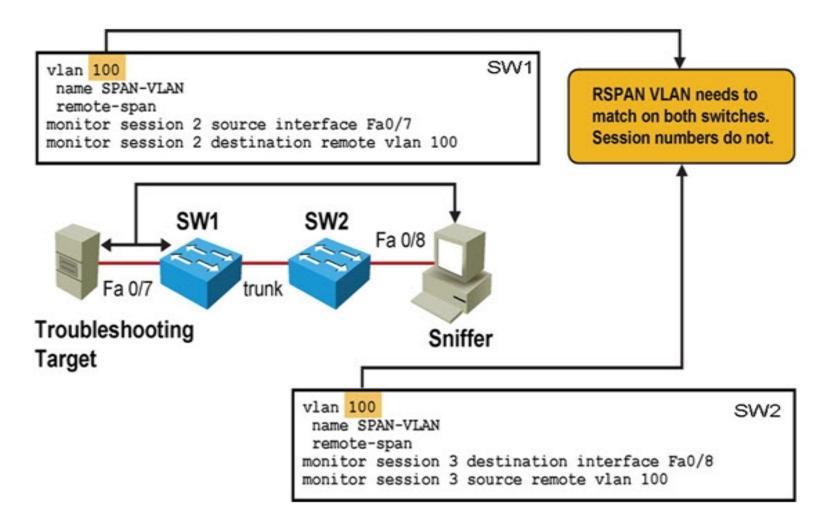
Sample screen shot from a protocol analyzer

EK i ⊠Ek	1	🖗 🖻 🔀 X 🕄	🚔 🔍 🐳 🗭 🥺	🌴 🛃 🔲 💽 🔍 🔍 🔍 🗹 📓 🎆 🕅 🕵 % 🔰
No	Time	Source	Destination	Protocol Info
]	0.000000	0.0.0.0	255.255.255.255	DHCP DHCP Discover - Transaction ID 0x611ca31b
2	0.007990	192.168.37.1	192.168.37.3	DHCP DHCP Offer - Transaction ID 0x611ca31b
3	0.023609	0.0.0.0	255.255.255.255	DHCP DHCP Request - Transaction ID 0x611ca31b
4	0.031527	192.168.37.1	192.168.37.3	DHCP DHCP ACK - Transaction ID 0x611ca31b
5	0.036872	00:0d:54:9c:4d:5d	ff:ff:ff:ff:ff:ff	ARP Gratuitous ARP for 192.168.37.3 (Request)
6	0.684875	00:0d:54:9c:4d:5d	ff:ff:ff:ff:ff:ff	ARP Gratuitous ARP for 192.168.37.3 (Request)
7	1.686321	00:0d:54:9c:4d:5d	ff:ff:ff:ff:ff:ff	ARP Gratuitous ARP for 192.168.37.3 (Request)

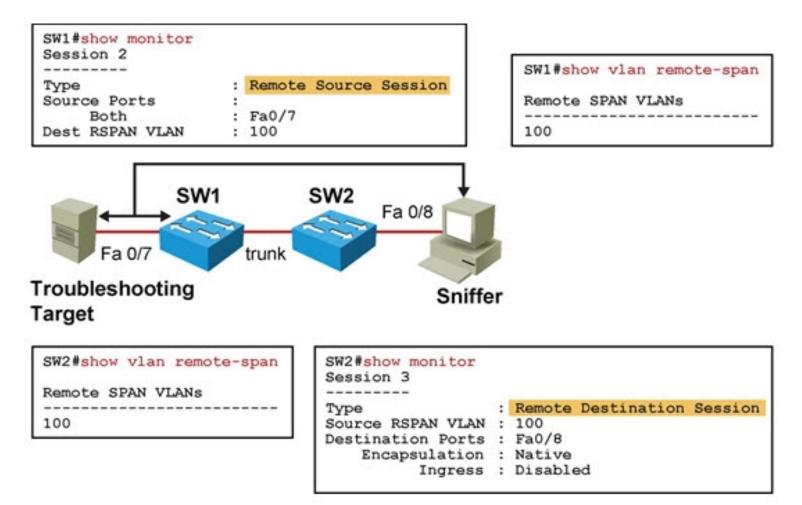

101010-0110-0

Using Traffic Capturing Tools – Cont.

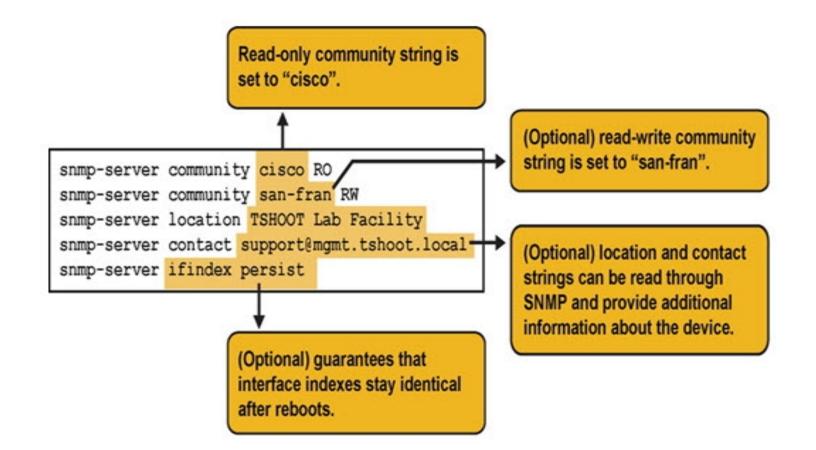
Switched Port Analyzer (SPAN)



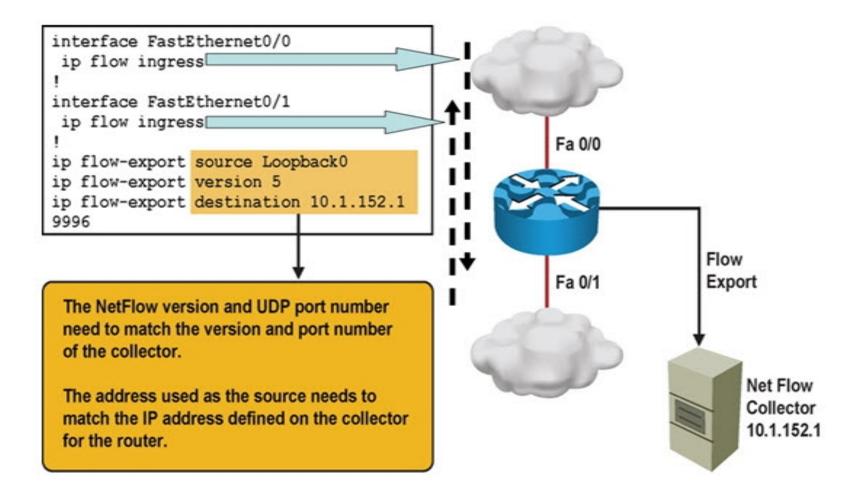
Using Traffic Capturing Tools – Cont.


Remote Switched Port Analyzer (RSPAN)

Using Traffic Capturing Tools – Cont.


Remote Switched Port Analyzer (RSPAN) – Cont.

Gathering Information with SNMP


A Simple SNMP Configuration Example

Gathering Information with NetFlow

A Simple NetFlow Configuration Example

Gathering Information with NetFlow

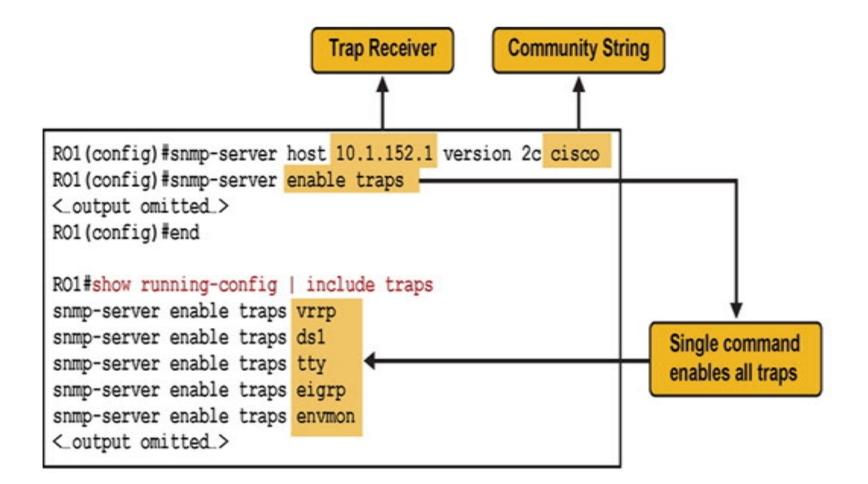
show ip cache flow command output

R1# show ip cache flow								
<output omitted=""></output>								
SrcIf	SrcIPaddress	DstIF	DstIPaddress	Pr	SrcP	DstP	Pkts	
Se0/0/0.121	10.1.194.10	Null	224.0.0.10	58	0000	0000	27	
Se0/0/0.121	10.1.194.14	Null	224.0.0.10	58	0000	0000	28	
Fa0/0	10.1.192.5	Null	224.0.0.10	58	0000	0000	28	
Fa0/1	10.1.192.13	Null	224.0.0.10	58	0000	0000	27	
Fa0/1	10.1.152.1	Local	10.1.220.2	01	0000	0303	1	
Se0/0/1	10.1.193.6	Null	224.0.0.10	58	0000	0000	28	
Fa0/1	10.1.152.1	Se0/0/1	10.1.163.193	11	0666	E75E	1906	
Se0/0/1	10.1.163.193	Fa0/0	10.1.152.1	11	E75E	0666	1905	

SNMP and NetFlow Comparison

- Both are used to gather statistics from Cisco switches and routers.
- SNMP's focus is primarily on the collection of various statistics from components within network devices.
- A NetFlow enabled device collects information about the IP traffic flowing through the device.
- NetFlow uses a "push" based model devices send data to a collector.
- SNMP is considered pull-based the NMS queries SNMP Agents.
- NetFlow only gathers traffic statistics.
- SNMP can also collect many other performance indicators such as interface errors, CPU usage, and memory usage.
- Statistics collected using NetFlow have more granularity.
- NetFlow is currently supported on most Cisco IOS routers but only the 4500 and 6500 series switches

Enabling Network Event Notification


- A key element of a proactive network management strategy is fault notification.
- SNMP and syslog
- Embedded Event Manager (EEM)

32

Enabling Network Event Notification – SNMP

Enabling SNMP trap notification

Enabling Network Event Notification – Embedded Event Manager (EEM)

- Enables custom policies that trigger actions based on events:
 - syslog messages
 - Cisco IOS counter changes
 - SNMP MIB object changes
 - SNMP traps
 - CLI command execution
 - Timers and many other options

Actions can consist of:

- Sending SNMP traps or syslog messages
- Executing CLI commands
- Sending email
- Running tool command language (TCL) scripts

Enabling Network Event Notification – EEM

A sample EEM Configuration

R1(config) # event manager applet CONFIG-STARTED

R1(config-applet)# event cli pattern "configure terminal" sync no skip no
occurs 1

R1(config-applet)# action 1.0 syslog priority critical msg "Configuration mode was entered"

R1(config-applet) # action 2.0 syslog priority informational msg "Change control policies apply. Authorized access only."

Enabling Network Event Notification – EEM

A sample EEM policy result

R1# conf t Enter configuration commands, one per line. End with CNTL/Z. R1(config)# Jul 13 03:24:41.473 PDT: %HA_EM-2-LOG: CONFIG-STARTED: Configuration mode was entered Jul 13 03:24:41.473 PDT: %HA_EM-6-LOG: CONFIG-STARTED: Change control policies apply. Authorized access only

For more information, visit http://cisco.com/go/instrumentation

Cisco | Networking Academy[®] Mind Wide Open[™]