nf a7/”77/

5 ©

The/Art of Léaks: -
The Return of -HEap Feng Shql

> ’\“’5

v \'
<A
g

Galois @
(@NSFOCUS Security Labs

Agenda

Who am 1

Abstract

Background

Heap Feng Shut 1n jscript9
UAF->Arbitrary Address Write

Summary

Q&A

Who am 1

* Security researcher @NSFOCUS Security Labs
since April/2011
— The security of browser and flash player
— Vulnerability discovery
— Exploit technique

— APT/0 day attacks detection

* oalois@weibo&twitter; heyoungart(@gmail.com
* http://hi.baidu.com/galois

http://hi.baidu.com/ga1ois

Abstract

Using the vulnerability of allocating the large heap
without randomness, we can leak any object
address allocated in jscript9 custom heap, and

bypass ASLR 1n Internet Explorer on Windows
7/8/8.1.

I]

Background

5, OBA(Out of Bounds Access) vulnerability

Timeline:

Attack: Pwn2own 2010 exploit @WTFuzz

Defense: MicroSoft kill BSTR allocated by
substr/substring in jscript9
Attack: Find other BSTR path to complete heap layout

— Using BSTR in jscript(@yuange1975) and in
vbscript(@K33n Team)

— Using Element Attribute in cve-2013-0003(@VUPEN)
Detense ?

Background

IE UAF(Use After Free) vulnerability Timeline:

* ASLR Bypass Apocalypse in Recent Zero-Day Exploits —
Xiaobo Chen/ @FireEye

— Flash vector
* A browser 1s only as strong as its weakest byte — Part 2 - Peter

Vreugdenhil / @WTFuzz
— Element Attribute (0x80000) allocated in custom heap
* Exploiting Internet Explorer 11 64-bit on Windows 8.1
Preview — Ivan Fratric/ @Google
— P2 = [pl + OxOFFFFFFS]; inc [p2 + offset]
— Spray array pointer and Inc the capacity of array
* Problem not solved
— Crash from UAF to Arbitrary Address Write
— Arbitrary Address Write opcode is not inc [address]
— Write what?

Why I was here?

[HRARAAG A S

Why I was herer

* Alignment problem in custom heap in jscript9

— IE ArrayData 1n jscript9 has the alignment problem

when I did research in the process of writing the
exploit of IE GC infoleak vulnerability in Aug/2013.

— To counter the exploit technique of OBA, some
important object(string/array/typed array)
management structure 1s allocated in custom heap.

* The bad guys Peter and Ivan©

Heap Feng Shut 1n jscript9
Memory structure of array in Jscript
Var a = new Array(0x3d00) //0x3d00 * 4 = 0xf400 aligned 0x10000
array object allocated in process heap in jscript
Three-step-index: ArrayObj(003bd730) >
CIndexedNameList(003bda80) > ArrayDataList(034c3718) >
ArrayDatali]

00003d00

Heap Feng Shut 1n jscript9

Memory structure of array in Jscript
CindexedNameList: Contain some pointers and first 8§ ArrayData]i]

034c3718

Yellow

Heap Feng Shut 1n jscript9
Memory structure of array in Jscript
ArrayDatalList: one unit store 8 Arraydata(0x20*8=0x100)

Heap Feng Shut 1n jscript9

Why array in jscript don’t have alighment problem?

* All objects(data and management structure) are
allocated in process heap and randomized at every
allocation.

* Big alignment data is sliced into pieces(0x204,
0x404, 0x804, 0x1004, 0x2004, 0x4004) referenced
by ArrayDatal.ist and allocated in process heap.

* Process heap insert the random size block when
allocating the same size big block many times, and
avoid the problem of big alignment heap block

linear increasing,

Heap Feng Shut 1n jscript9

Memory structure of array in Jscript9
Var a = new Array(0x3bf8) //0x3bf8 * 4 = Oxefe(+ 0x20(head) =
0x£000

array object allocated in IE custom heap in jscript9

One-step-index: ArrayObj(0329¢120) > ArrayData(0d380010)

0d380010

Heap Feng Shut 1n jscript9

Memory structure of array in Jscript9
Var a = new Array(0x3bf8) //0x3bf8 * 4 = Oxefe0 + 0x20(head)

= 0xf000
ArrayData object also allocated in IE custom heap in jscript9

0d39ff90

Yellow

Heap Feng Shut 1n jscript9

Memory map of ArrayData in Jscript9
Var a = new Array(0x3bf8) //allocate many times
ArrayData object allocated in IE custom heap has the aligned problem

Heap Feng Shut 1n jscript9
Why array in jscript9 have aligned problem?
ArrayData object allocated in IE custom heap, and IE custom heap

is not randomized!
The stack trace of allocating the ArrayData

Heap Feng Shut 1n jscript9
Why array in jscript9 have aligned problem?
The disasembly code of jscript9!Segment::Initialize function

LPAddress = VirtualAlloc(0, *(_DWORD *)(PageSegment + 12) << 12, a2 | 0x2000, 4u);
*(_DWORD *)(PageSegment + 8) = LPAddress;

Heap Feng Shut 1n jscript9
Why array in jscript9 have aligned problem?
The return address(0x0d3b0000[size:0x20000]) of VirtualAlloc is linear
increasing and directly stored in PageSegment structure.

ArrayData(size:0x10000) use half size of block 0x0d3b0000 per allocation
and the IE custom heap don’t randomize the heap address.

Heap Feng Shut 1n jscript9

We can leak any object
address allocated in jscript9
custom heap!

Heap Feng Shut 1n jscript9

How do we leak any object address allocated in jscript9 custom heap?

Why 0x3bf8?

0x10000 = 0x1000 + Oxefe0 + 0x20 =

Int32ArraySize(0x30)*0x55 + 0x10(align) + 0x3bf8*4 + 0x20(ArrayDataHead)

Heap Feng Shut 1n jscript9

Heap Feng Shui in Jscript9
Memory map per 0x10000

Leak the object address at
xxxxf000(example: 0x0c0af000)

Heap Feng Shut 1n jscript9

Leak what?

Management structure of
string /array/typed array?

Heap Feng Shut 1n jscript9

I leak int32Array at address 0x0c0af000.

0251b280

Yellow

Heap Feng Shut 1n jscript9

Why we leak the address of int32Array?

* Write only one byte to get the capacity of read and
write the int32 after the Int32ArrayButter heap.

O=z0=f000 50 b4 == 6b 00 53 a9 02 o0 oo
OcOaf00a OO0 OO0 OO0 oo
O=0=£014 00 OO0 OO0 b2
Ocz0af0le 51 02 el oo
OcOaf0d5 00 OO 00 00 00 DD oo oo oo oo
O=0=2f032 00 OO0 OO0 00 00 00 00 OO0 oo oo

* We can control the size of int32ArrayButfer
allocated 1n jscript9 process heap.

— Var int32Arrbuf = new ArrayBuffer(0x68);

Heap Feng Shut 1n jscript9
Write one byte -> read/write the whole process memory.

Read/write what?
LargeHeapBlock is allocated in jscript9 process heap.(0x68/iell, 0x58/ie10)

Heap Feng Shut 1n jscript9
Write one byte -> read/write the whole process memory.

Read/write what?

Heaplayout int32ArrayBuffer between largeHeapBlock to read the
vtable and the address of largeHeapBlock.

Heap Feng Shut 1n jscript9

Heap layout of Int32ArrayBuffer and
LargeHeapBlock

Memory

Virtual: 06flelal

[Br

DEphyfcrmat|LDng

Hex

v||

D6fle=el38
D6fl=l4d
Defl=l158
D6flel6B
Defl=el?8
Defle=el88

& = 0
Defl=e228
D6fle238
D6fl=e24d
Defl=e258
D6fleZ268
Defl=e278
Defle288
D6fl=e238
Defl=e2al
D6fle2bi8
06fledch
Defl=e2d8
DefleZel

|6bbc99f8|

Oe420000
goooooao
gooooool
0410000
oooooond

goooooao
oooooonn
goooooao

goooooao
goooooao

0e440000
oooooonn
gooooool
0430000
nooooond

0450000
goooooao
oooooonl
0440000
oooooood

0e410000
ooonoonl
Oefl=e218
goooooao
gooooool
goooooao
oooooonl

goooooao
oooooonn
goooooao
goooooao
goooooao

gooooool
Nefle=e288
oooooonn
gooooool
goooooao
gooooool
0440000
goooooal
Oefle2f8
goooooao
oooooonl
goooooao
ooooooaol

00d9czf 20
oooooond
goooooao
goooooao
goooooao
goooaoao
233e=7 79

goooooao
oooooonn
goooooao
goooooao
goooaoao

ooooooo4d
goooooao
oooooonn
goooooao
goooaoao
233e=71d
00d9cz£58
gooooood
goooooao
goooooao
oooooonn
goooaoao
233e=713

ooooooas
0641£020
goooooao
Neflel38
goooooao
goooooao
88000002

goooooao
oooooonn
goooooao
goooooao
goooooao

Oe43£020
noooooan
06fl=edld
ooy
goooaoao
2800=234
ooooooasz
0e44£020
goooooao
Nefle=e288
oooooonn
goooaooao
8800=2f4

Heap Feng Shut 1n jscript9

Write one byte -> read/write the whole process
memory

Now we have:
* The leaked int32Array address 0x0c0af000.

* The address of int32ArrayBuffer.

— addr_int32ArrBuf = addr_LHB(0x06{1e218) —
0x68(int32ArtSize) — Ox8(LFHhead) = Ox06F1E1AS

And we can:

* Read/write the content of absolute address beyond the
int32ArrayBuffer address(OxO6F1E1AS)

— HeapArr[j][k][(0x0c0affO0 - addr_int32ArrBuf) / 4]

Heap Feng Shut 1n jscript9

Write one byte -> read/write the whole process memory
Modify the second int32Array’s count and buffer using the
first modified int32Array(0x0c0af000).

Read/write the whole process memory using the second
int32Array(0x0c0aff00).

0251b280

N\

00000000
Yellow

Heap Feng Shut 1n jscript9

JIT “Leak + ROP”?
Overwrite something interesting?
Something else you can imagine...

Heap Feng Shut 1n jscript9

I choose the old and usual one: leak + rop

* Read vtable of one of int32Array/
LargeHeapBlock to leak the base address of
jscript9 and ntdll.

* Write some junk above the first modified
Int32Array to heaplayout rop and shellcode.

* Write vtable of int32Array to control EIP.

Heap Feng Shut 1n jscript9

The whole process ot exploit:
* Heaplayout Int32ArrayBuffer and LargeHeapBlock.
* Leak the address of Int32Array.

* Get the capacity of reading/writing the relative
address of int32ArrayBuffer.(UAF->AAW)

* Reading/writing the absolute address beyond
int32 ArrayBuffer.

* Reading/writing the whole process memory.
* Leak + ROP or something else...

UAF -> Arbitrary Address Write

* UAF->Arbitrary address write is important.

— If we can transfer a UAF to arbitrary address write, we
can read/write the whole process memory.

* How we can transfer a UAF to arbitrary address
writer
— Type contusion.

* Controlling the argument of Use function(in UAF) by taking
room of the freed object using the user-controlled data and
change the execution route to the write-opcode

— inc [address] OR mov/add/or [address], reg/constant

UAF -> Arbitrary Address Write

* Some relative work in UAF->arbitrary address
write

— A browser is only as strong as its weakest byte —

Part 1 - Peter Vreugdenhil / @WTFuzz

— The info leak era on sotftware exploitation - Fermin]J.

Serna / @Google
* Difficulty in UAF->arbitrary address write

— Virtual call lead to crash in the transfer process

— Javascript control after Arbitrary Address Write

UAF -> Arbitrary Address Write

Virtual call lead to crash in the transfer process

eax points to a fake object overwritten by user-controlled data
eax = 0x12121212 or ->0x12121212

Type confuse the crashed virtual call to int32Array virtual call
Set eax = 0x0c0af000

6ca2b480

l

UAF -> Arbitrary Address Write

* Crash after Arbitrary Address Write sometimes

— Access exception caused by tainting of the user-
controlled data in the freed object

* Javascript control after Arbitrary Address Write

— Create the dead loop and make Use function not
return forever --- No Crash.

— Using javascript multi-thread.

UAF -> Arbitrary Address Write

* Javascript multi-thread

— Parent html:
window.open(‘child.html','t2"'"height=400,width=400
,;top=10,left=10";

— Child html:
setTimeout('window.opener.l.eakAndControlEip();,
5000);

Summary

* Good news©
©Work on most of UAF
©O0ne bypass all generally and stably

* Bad news®
®Not work in jscript(<=IES8)

Summary

* Essence

— The address of some object management structure can be
pre-estimated.

— The important member of some object management
structure can be modified.

e Defense

— Randomize IE custom heap and slice the big-size
management structure(element-attribute) into small pieces.

— Make the important member of some object management
structure cookied.

* BEftficiency VS Security

