

Catalyst C9500X and C9600X Deep Dive

Ninad Diwakar and Sai Zeya C9K Technical Marketing Team April 1, 2022

Digital trends shaping the future of business

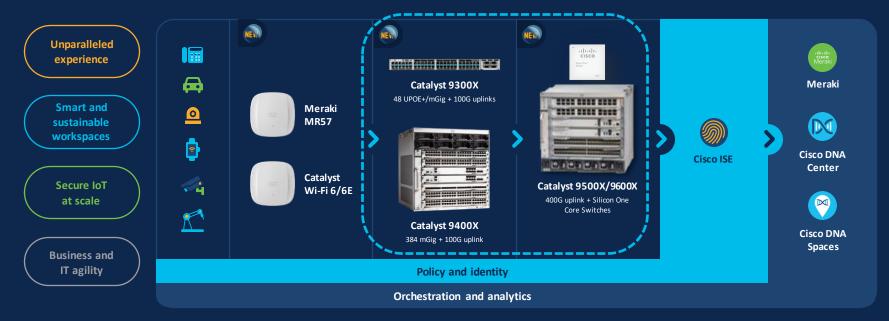
Hybrid work

Work from home | Work from anywhere | Work from office

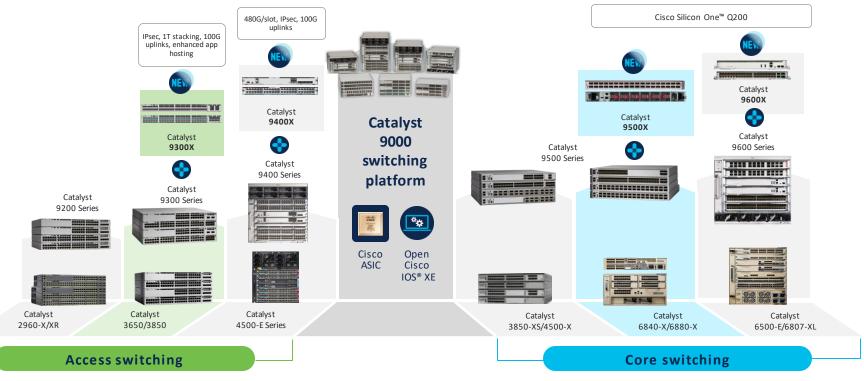
Industry 4.0

Wireless | Automation | Internet of Things | AI/ML

Hybrid cloud


Private cloud | Hybrid cloud | Public cloud

and the network is the core engine of hybrid work


Cisco Wi-Fi 6E and Catalyst 9000X

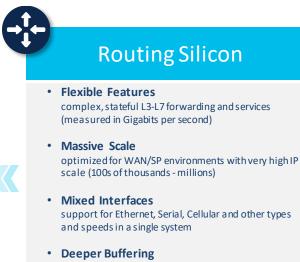
Enabling better business outcomes end-to-end with simplicity and choice

Cisco access networking stack

Catalyst 9000X – Expanding industry leadership Adding the "X factor" to the industry's leading switching family

Introducing Cisco Silicon One[™]

Cisco Silicon One[™]

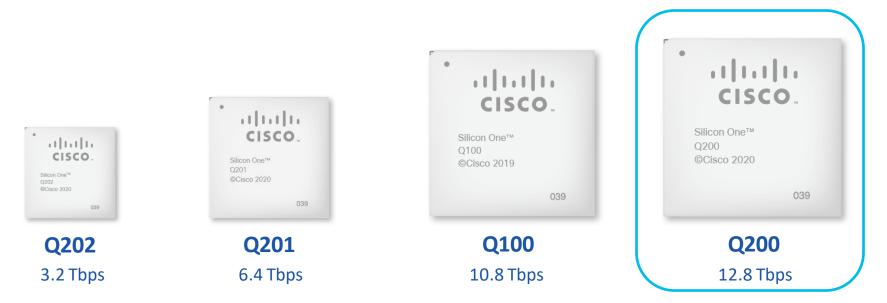


 Low Latency extremely low hardware-based system latency (measured in Nanoseconds & Microseconds)

Streamlined Buffering

shallow buffering systems to reduce latency, with very high throughput $% \mathcal{A}_{\mathrm{red}}$

deep buffers to accommodate different speeds, bursts and different flow patterns


Cisco Silicon One Bringing Switching and Routing convergence

Introducing Cisco Silicon One[™]

One architecture, multiple devices

www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html

- First network silicon to break the 10 Tbps barrier
- Comprehensive routing, with switching efficiency
- Flexible P4 NPL Programmable packet processing

- Multiple functions: system-on-chip, line card or fabric
- Multiple form-factors: fixed or modular
- Multiple segments: enterprise and service provider

Cisco Silicon One[™] Q200

Industry leading Switching and Routing Silicon

12.8T BW

10M IPv4

or 5M IPv6

route scale

8G HBM for deep buffers

Fully P4 Programmable Pipeline

8.1 Bpps

Cisco Silicon ONE Q200

Industry Leading 12.8T System on Chip

First 7nm ASIC providing lowest watts/GE power consumption


Fully P4 programmable enabling feature velocity

Multi slice architecture for flexibility and scale

Routing Capabilities with Switching Power and Performance

Catalyst 9000 Series – Common Building Blocks

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

* C9200 us es IOS XE Lite

Extending Cisco Catalyst 9500 & 9600 Series

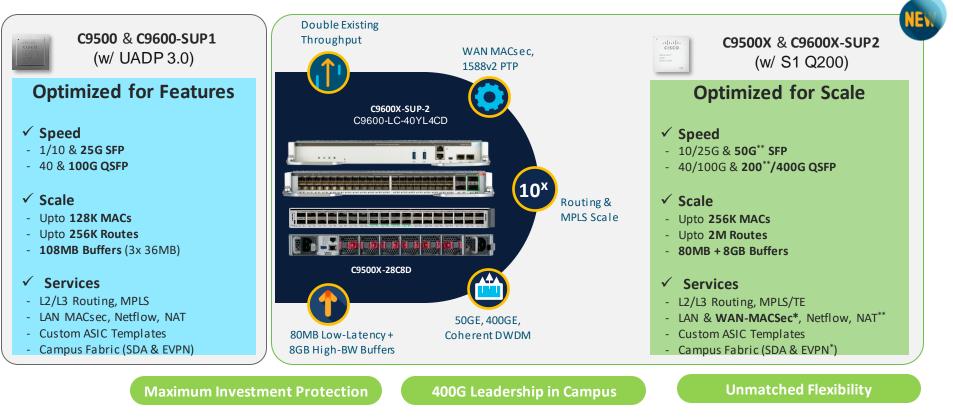
Powered by Cisco Silicon One[™] Q200 ASIC

C9500 & C9600-SUP1 (w/ UADP 3.0)

Optimized for Features

- ✓ Speed
- 1/10 & **25G SFP**
- 40 & 100G QSFP

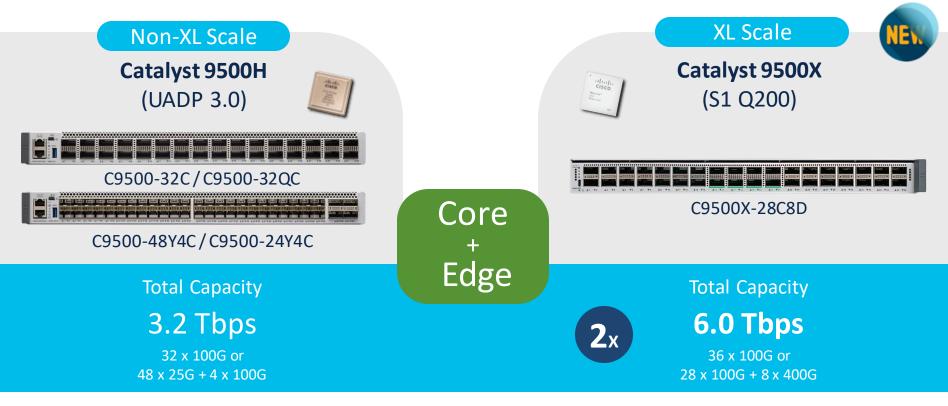
✓ Scale


- Upto 128K MACs
- Upto 256K Routes
- 108MB Buffers (3x 36MB)

✓ Services

- L2/L3 Routing, MPLS
- LAN MACsec, Netflow, NAT
- Custom ASIC Templates
- Campus Fabric (SDA & EVPN)

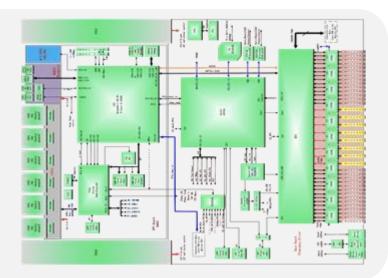
Extending Cisco Catalyst 9500 & 9600 Series


Powered by Cisco Silicon One[™] Q200 ASIC

Introducing Catalyst 9500X

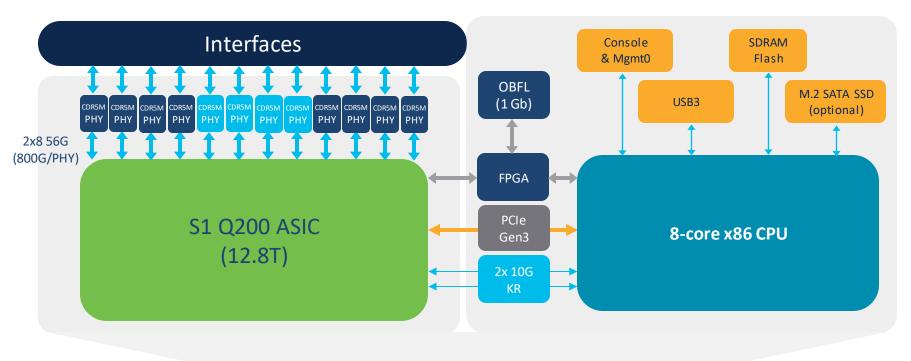
Catalyst 9500 Series

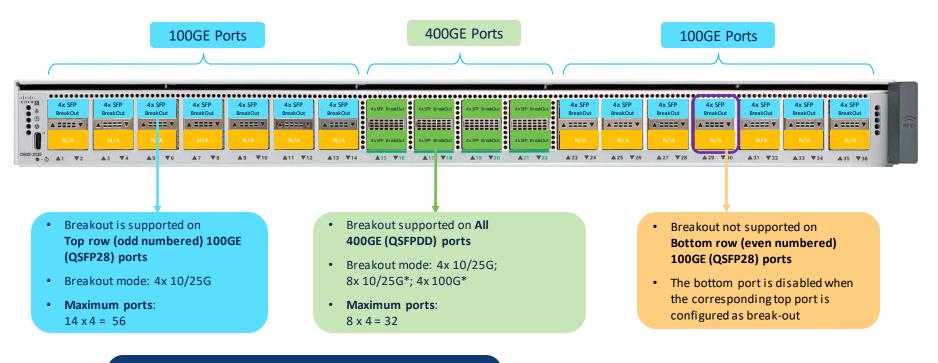
Extending the Catalyst 9500 High-Performance Fixed Core



C9500X-28C8D

Gen2 Fixed 1RU QSFP Switch - 36x 100G / 28x 100G + 8x 400G


- 1x Cisco SiliconOne Q200 ASIC
 - 6.0 Tbps System Throughput
 - 28x QSFP28 ports 40/100GE
 - 8x QSFPDD ports 100/200*/400GE
- 1x 8C 2.4GHz x86 CPU with 2x 16GB (32GB) DDR4 DRAM
- 16GB Flash; Optional SSD (480G, 960G)
- 12x CDR5M PHYs
 - MACSec, WAN-MACSec, ClearTag v3.4
 - IEEE 1588 & PTPv2*
- Various SFP Breakout & QSA support^{*}


C9500X-28C8D Block Diagram

SFP Breakout & QSA* Support

Maximum ports with breakout at FCS: 88 (56+32)

* Roadmap (not committed). System can support up to 120x 10G/25G

C9500X – Reversible Airflow

Back to Front Port-side Exhaust

0 0

- Color of Fan Unit handle/latch represents direction of airflow
- Different Fan PIDs for different airflow directions
 - Royal Blue Back to Front
 - Burgundy Front to Back
- All Fans must be the same color (direction) to work correctly

Single **1500W AC/DC PSU** with **Cisco Grey** latch for both airflow directions

Front to Back Port-side Intake

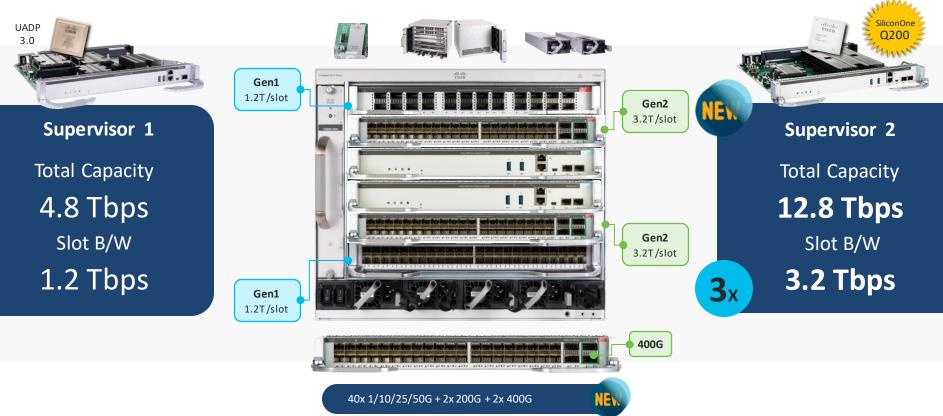
© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

C9500X and C9500 - Physical

· de de

Cisco C9500X (S1 Q200)		Cisco C9500 (UADP 3)			
	28C8D	24Y4C	48Y4C	32QC	32C
Height ^(1.75" RU)	1RU		1	ิรูป	
CPU ^(number)	2.7GHz 8C Intel (BDW-NS)	2.0GHz 8C Intel (BDW)			
DRAM ^(type)	32GB (DDR4)	16GB (DDR4)			
ASIC ^(number)	Q200 (1x)	UADP3 ^(1x) UADP3		UADP3 ^(2x)	
Capacity	6.0T	1.2T	1.6T	1.6T	3.2T
10G max	120 *^ (88 @ FCS)	24	48	16^	16^
25G max	120 *^(88 @ FCS)	24	48	16^	16^
50G max	120 *^				
40G max	28 + 32 ^{^*} (36 @ FCS)	4	4	32	32
100G max	28 + 32 ^{^*} (36 @ FCS)	4	4	16	32
400G max	8				

C9500X and C9500 – Features and Scales

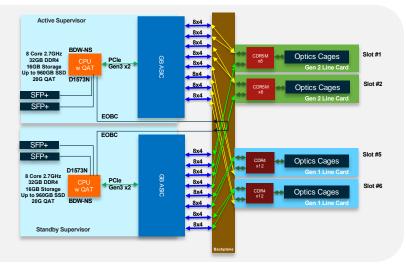

	Cisco C9500X (S1 Q200)		Cisco C9500 (UADP 3)	
	Default	Maximum ^(Custom)	Default	Maximum ^(Custom)
MAC Addresses	128K	256К	80K	128К
IP Host Routes	128K	256К	80K	128К
Multicast L2 groups	16K	64K*	16K	48K
Multicast L3 routes	32К	64K*	32К	48K
IP LPM Routes	2M	2M	212К	256K
MPLS Labels	256K	512К	32К	64К
SGT/OG Labels	32К	64К	32К	64К
NAT* Sessions	16K*	128K*	ЗК	16K
Sec ACL Entries	8K	10K*	12K	27К
QoS ACL Entries	8K	10K*	8К	21К
PBR* ACL Entries	8K*	10K*	ЗК	16K

22

Introducing Catalyst 9600X

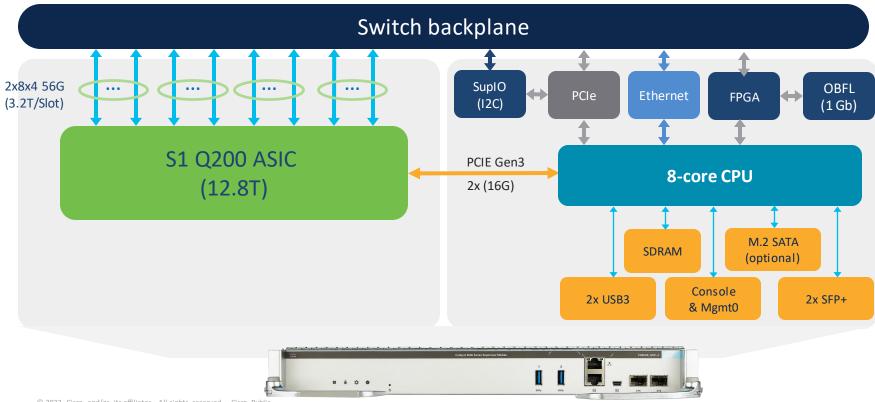
Catalyst 9600 Series

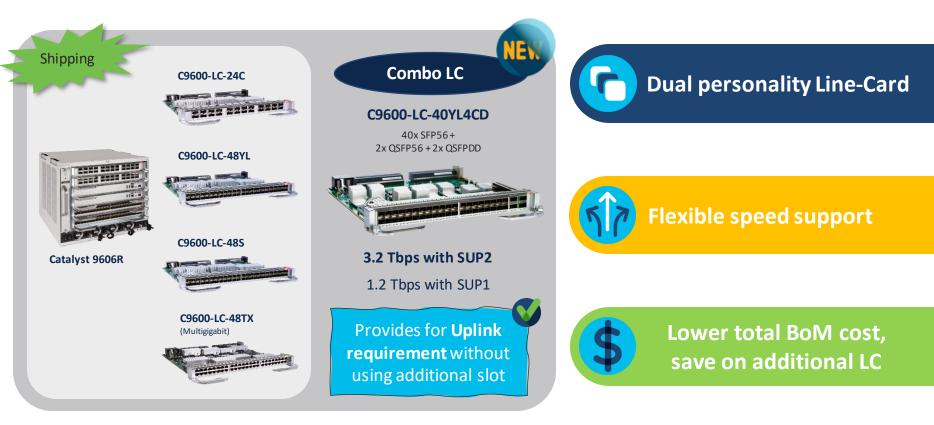
Extending Modular Core with a Performance-Optimized Supervisor 2



C9600X-SUP-2

Gen2 Supervisor Module with Silicon One™ Q200

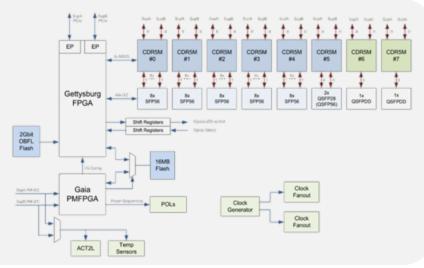

- 1x Cisco SiliconOne Q200 ASIC (12.8Tbps)
 - 3.2Tbps per Slot
 - Optimized for 10G to 400G
- 1x x86 2.7GHz CPU with 2x 16GB (32GB) DDR4 DRAM
- Management
 - 2x 10G SFP+ Mgmt ports to CPU (App Hosting)
 - 1x 10/100/1000M RJ45 Mgmt0 port
 - 1x RJ45 Console port, USB Type-B-Mini port
- Storage
 - 2x USB3.0 Type-A SSD ports
 - 480-960GB M.2 SATA Drive (optional)



C9600X-SUP-2 Block Diagram

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

C9600X: Introducing 1st 400G Line-Card in Campus

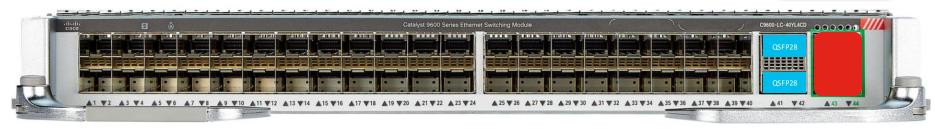



C9600-LC-40YL4CD

Gen2 Combo Line-Card – 40xSFP56 + 2xQSFP56 + 2xQSFPDD

- 3.2 Tbps With Gen2 Sup
 - 40x SFP56 ports 10/25/50*GE
 - 2x QSFP56 ports 40/100/200*GE
 - 2x QSFPDD ports 40/100/200*/400GE
- 1.2 Tbps With Gen1 Sup
 - 40x SFP28 ports 1/10/25GE
 - 2x QSFP28 ports 40/100GE
- 8x CDR5M PHYs
 - MACSec, WAN-MACSec, ClearTag v3.4
 - IEEE 1588 & PTPv2*
 - Hitless MUX (HMUX)
- Various Breakout & QSA support (QSFP ports)*

C9600-LC-40YL4CD Ports and Speeds Support



40x 10/25/50^{*}GE + **2**x 40/100/200^{*}GE + **2**x 40/100/200^{*}/400GE

40× 1/10/25GE + **2**× 40/100GE

* Roadmap (not committed).

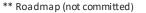
IOS-XE 17.7.1

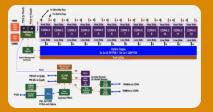
IOS-XE 17.8.1

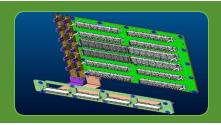
Gen1 Line-Cards Support with SUP2

Centralized Architecture

- Gen1 Line-Cards supported^{*}
- Only PHYs on the Line-Cards
- All forwarding on the Supervisor (ASIC)


Additional Bandwidth 🙂


- C9606 backplane traces support up to 56G PAM4
- Gen1 Line Cards now support up to 2.4T per Slot
 - 24 x 100G QSFP on LC-24C
 - 48 x 50G** SFP on LC-48YL


No MACsec support ⊗

- Q200 does not have onboard Crypto engine
 - Gen2 LCs use newer CDR5M PHY for MACsec
- UADP has onboard MACsec engine
 - Gen1 LCs use older CDR4 PHY (not MACsec capable)

Supervisor

Line Card

C9600 Line Card – Supervisor Support Matrix

	SUP 1	SUP 2
C9600-LC-24C	2 4x 40G or 12x 100G	24x 40G & 100G (No MACsec)
C9600-LC-48YL	√ 48x 1/10 & 25G	48x 10/25 & 50G * (No MACsec, No 1G)
C9600-LC-48TX	48x 1/2.5/5 & 10G (mGig) 48x 1/2.5/5 & 10G (mGig)	
C9600-LC-48S	48 × 1G SFP	×
C9600-LC-40YL4CD	40x 1/10 & 25G + 2x 40 & 100G	40x 10/25 & 50G * + 2x 40/100 & 200G * + 2x 40/100 /200 * & 400G MACsec & WAN-MACsec (No 1G)

TIP

SUP2 does not support 1GE or below speeds

If 1GE downlinks are required, position SUP1

C9600X and C9600 - Physical

	Cisco C9600X (S1 Q200)	Cisco C9600 (UADP 3)
	Sup2	Sup1
CPU ^(number)	2.7GHz 8C Intel (BDW-NS)	2.4GHz 8C Intel (BDW)
DRAM ^(type)	32 GB (DDR4)	16 GB (DDR4)
ASIC ^(number)	Q200 ^(1x)	UADP3 ^(3x)
Capacity ^(chassis)	12.8 Tbps (full-duplex)	4.8 Tbps ^(full-duplex)
Capacity (perslot)	3.2 Tbps (full-duplex)	1.2 Tbps ^(full-duplex)
10G max	256 (40x4 + 24x4^*)	192 ^(48x4)
25G max	256 (40x4 + 24x4^*)	192 ^(48x4)
50G max	256 (40x4 + 24x4^*)	
40G max	96 (Sup2 can support 128)	96 ^(24x4)
100G max	96 (Sup2 can support 128)	48 ^(12x4)
400G max	8 (4x2)	

C9600X and C9600 – Features and Scales

	Cisco C9600X (S1 Q200)		Cisco C9600 (UADP 3)	
	Default	Maximum ^(Custom)	Default	Maximum ^(Custom)
MAC Addresses	128К	256К	80K	128К
IP Host Routes	128К	256К	80K	128К
Multicast L2 groups	16K	64K*	16K	48K
Multicast L3 routes	32К	64K*	32К	48K
IP LPM Routes	2M	2M	212К	256К
MPLS Labels	256К	512К	32К	64K
SGT/OG Labels	32К	64К	32К	64K
NAT* Sessions	16K*	128K*	ЗК	16K
Sec ACL Entries	8К	10K*	12K	27К
QoS ACL Entries	8К	10K*	8К	21К
PBR* ACL Entries	8K*	10K*	ЗК	16K

33

C9600 and C6800 Scale

Features	C9600– Sup2	C6K-Sup6T-XL	C9600– Sup1	C6K-Sup6T
Switching capacity	12.8T	6T	9.6T	6Т
Forwarding rate (IPv4/IPv6)	8 Bpps 8 Bpps	780Mpps 390Mpps	3 Bpps 3 Bpps	780Mpps 390Mpps
MAC addresses	256,000*	128,000	82,000*	128,000
LPM/host routes (IPv4/IPv6)	2,000,000* 1,000,000*	1,000,000 500,000	212,000* 212,000*	256,000 128,000
Multicast routes	64,000*	128,000	32,000*	128,000
Security ACLs	Shared with QoS & PBR 10,000*	Shared with QoS 256,000	27,000*	Shared with QoS 64,000
QOS ACLs	Shared with Security & PBR 10,000*	Shared with Security 256,000	16,000*	Shared with Security 64,000
Flexible NetFlow (per ASIC)	2,000,000 (Sampled)	1,000,000/ASIC	96,000*	512,000
VLAN ID	4,000	4,000	4,000	4,000
Spanning Tree instances	4,000	4,000	4,000*	4,000

* Depends on SDM template

Customizable SDM Template

Switch Database Management (SDM) template

Default template

Maximizes system resources for Layer 3 unicast and multicast **routes** **User-customizable template** Allows customizable ACL TCAM resources

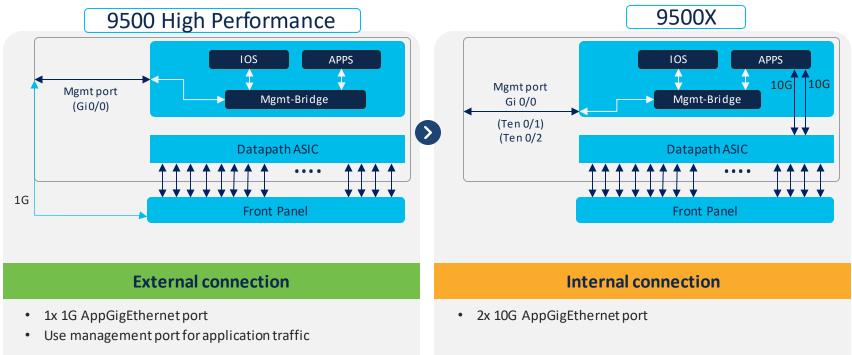
Custom template

Provide flexibility for customizing TCAM space for specific requirements

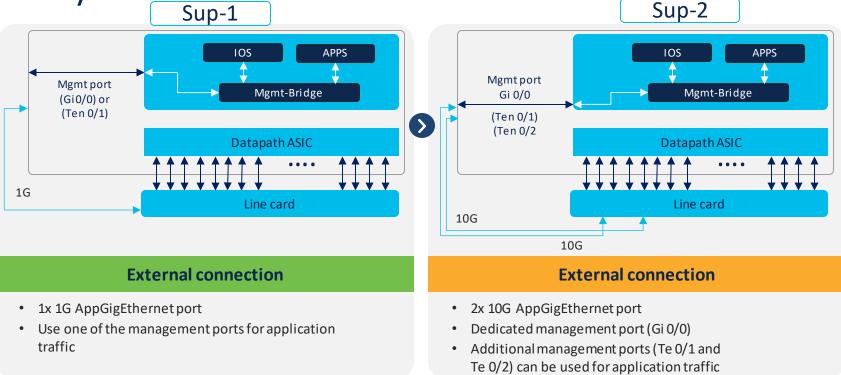
Silicon One Q200 SDM template – 17.7.1

Features	Customizable	DEFAULT (core + edge)	Custom (min to	max @ step)
MAC addresses	0	128,000	32,000 to 256,000	@ 1000 step
Host routes (ARP/NDP)	0	128,000/64,000	32,000 to 256,000	@ 1000 step
Layer 2 multicast entries (IGMP/MLD)	FCS+	16,000/8000	0 to 64,000	@ 1000 step
Layer 3 multicast routes (IPv4/IPv6)	FCS+	32,000/16,000	0 to 64,000	@ 1000 step
ACL compression (SGT, DGT, OGID/v6)	۵	32,000/16,000	0 to 64,000	@ 1000 step
MPLS labels		256,000	0 to 512,000	@ 1000 step
Reserved (PBR/NAT)	FCS+	16,000/8,000	0 to 256,000	@ 1000 step
	CEM	608,000 (288,000 for LPM)		
Layer 3 unicast routes (IPv4/IPv6)	FCS+	2 million/ 1 million	1 million to 2 million	@ 1 million step
Features	Customizable	DEFAULT (core + edge)	Custom (min to max @ step)	
Security ACL (IPv4/IPv6)	FCS+	8000/4000 shared*	0 to 11,000/5000	@ 1 step
Quality of service (IPv4/IPv6)	FCS+	8000/4000 shared*	0 to 11,000/5000	@ 1 step
Policy-based routing (IPv4/IPv6)	FCS+	8000/4000 shared*	0 to 11,000/5000	@ 1 step
Lawful intercept (IPv4/IPv6)	FCS+	1000 (2x 512) reserved	1000 to 5000/2500	@ 1 tap (2 ACE)
LPTS, EPC, FSPAN, NFL (IPv4/IPv6)	FCS+	1000 (2x 512) reserved	1000	@ 1 step
	TCAM	10,000 ^(2000 for LPM)		

* Shared is an unreserved space, first come, first served per feature.

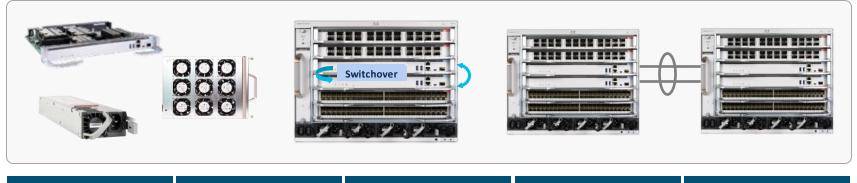

FIB Allocation Examples

Feature	Customer 1 (L2 focus)	Customer 2 (L3 focus)
MAC addresses	256К	32К
Host routes (ARP/NDP)	32К	256К
Layer 2 multicast entries (IGMP/MLD)	64К	16K
Layer 3 multicast routes (IPv4/IPv6)	16K	64K
ACL compression (SGT, DGT, OGID/v6)	64К	64K
MPLS labels	32К	128К
Reserved (PBR/NAT)	15К	48K
Total Resources	6	08K


Layer 3 unicast routes (IPv4/IPv6)	1M/500K	2M/1M
------------------------------------	---------	-------

Application Hosting

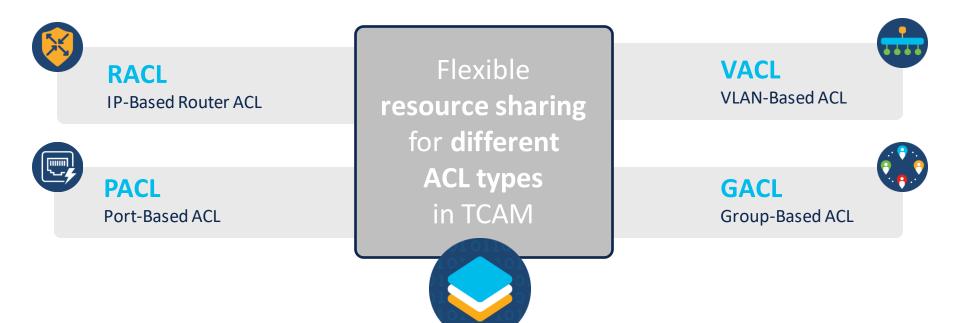
Enhanced app-hosting infrastructure on Catalyst 9500



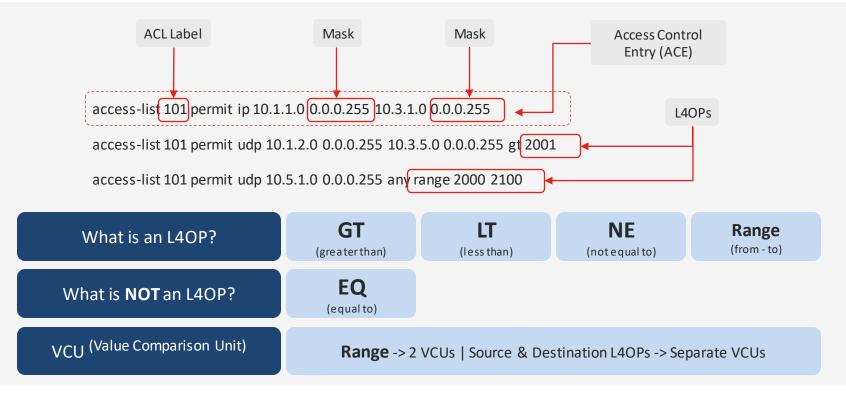
Enhanced app-hosting infrastructure on Catalyst 9600

High Availability

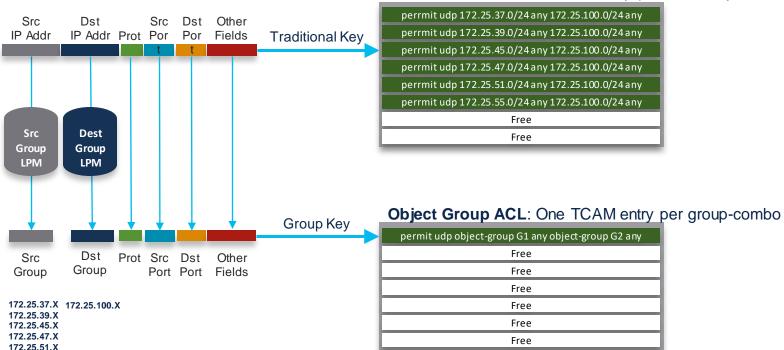
High availability Protect business continuity


Physical redundancy	Stateful Switchover (SSO)	Non-Stop Forwarding (NSF)	In-Service Software Upgrade (ISSU)	StackWise®-Virtual*
Redundant hardware	Sub-second failover	Resilient L3 topologies	Minimize upgrade downtime	Infrastructure resilience
 Redundant power supplies Redundant fan in the 	 Between supervisors within chassis (<5ms) Between chassis with 	• NSF support for OSPF, EIGRP, ISIS, BGP	• SMU • ISSU* • GIR*	 Multi-chassis EtherChannel (MEC) provides hardware- based failover
fan tray • Redundant supervisors	StackWise-Virtual*			

Security & ACL


Security Access Control List (ACL)

Hardware Pattern Matching

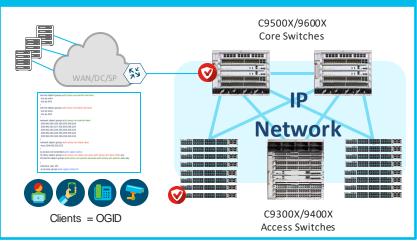


Access Control List Terminology

Traditional ACL vs Group-Based ACL

Traditional ACL: One TCAM entry per ACL entry

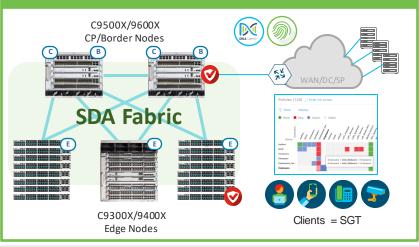
Free


© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

172.25.55.X

Why OGACL/SGACL in Campus Core?

Object-Group ACLs for IP

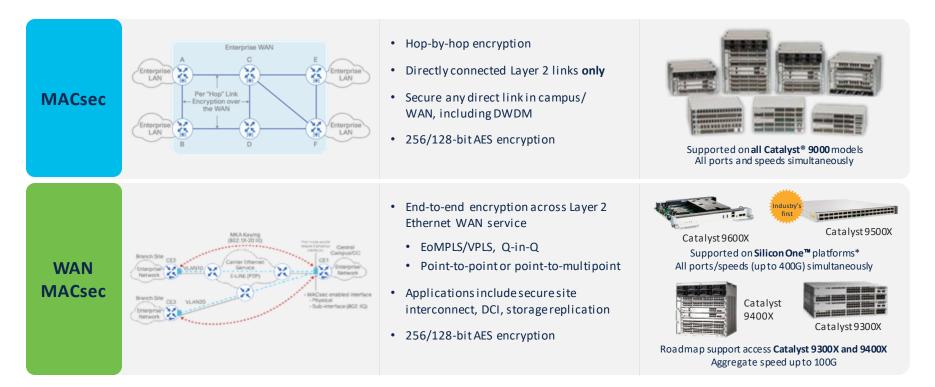

Object-Groups map IP/mask to Labels in CEM

- User defines IP/masks to simple OG name
- OGID labels are stored in Exact Match table

OGACL ACEs take minimal space in ACL TCAM

- Only the Permit/Deny ACEs in TCAM
- OGACLs with same ACEs can reuse entries

Scalable-Groups for SDA


Scalable-Groups map IP/mask to Labels in CEM

- ISE/DNAC defines IP/masks to simple SG name
- SGT labels are stored in Exact Match table

SGACL ACEs take minimal space in ACL TCAM

- Only the Permit/Deny ACEs in TCAM
- SGACLs with same ACEs can reuse entries

WAN MACsec overview and use cases Enabled in hardware on Catalyst 9000 Switches

Catalyst 9000 Series

QoS & Buffering Technologies

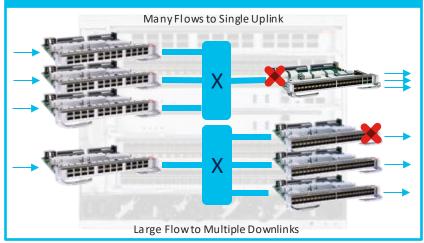
QoS Features

- Trust / Conditional Trust
- Classify Traffic
- Police Traffic
- Mark / Conditional Remark

Queuing Features

- Prioritize strict traffic (SPQ)
- Schedule traffic based on weight (WRR)
- Shape the traffic rate (SRR)
- Manage congestion (WRED/WTD)
- Extra buffering for traffic bursts

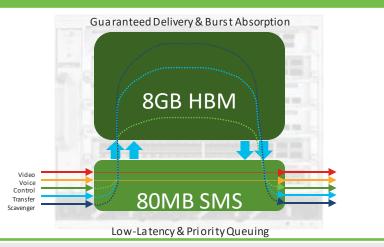
S VoQ A:C Ingress 1: Traffic Ingress IngressA: Traffic Egress 1 Egress C W 100% of traffic goes to Egress 100% of traffic goes to Egress 1 1 Virtual Queues Т Traffic from Ingress 2 potentially dropped due to congestion С Η F А В VoQ B:D Ingress 2: Traffic Ingress B: Traffic R 50% of traffic goes to Egress 1 and 50% goes to Egress 2 50% of traffic goes to Egress 1 and 50% goes to Egress 2 С Backpressure due to congestion on Egress 1 causes Egress 2 to also drop traffic from Ingress 2


VoQ Architecture

Head of line blocking

Why VoQ QoS in Campus Core?

No Head-of-Line Blocking


Many Flows to a Single Uplink

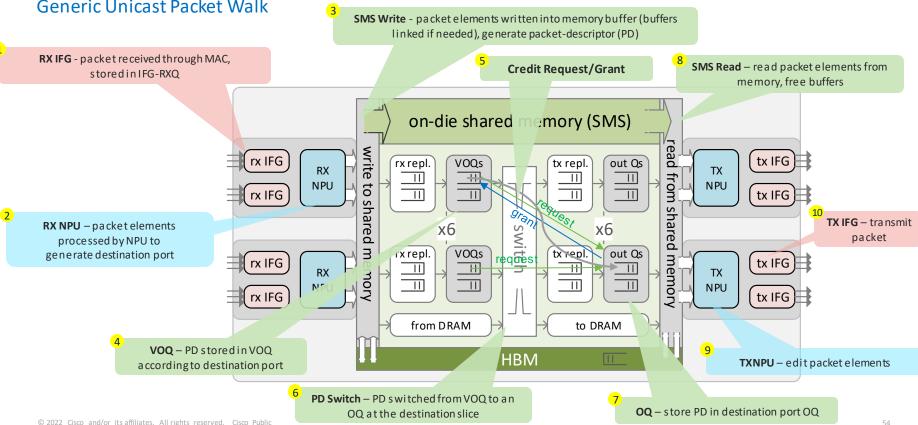
- Common on (expensive) WAN/Edge uplinks
- Even if bandwidth available, buffers can fill up

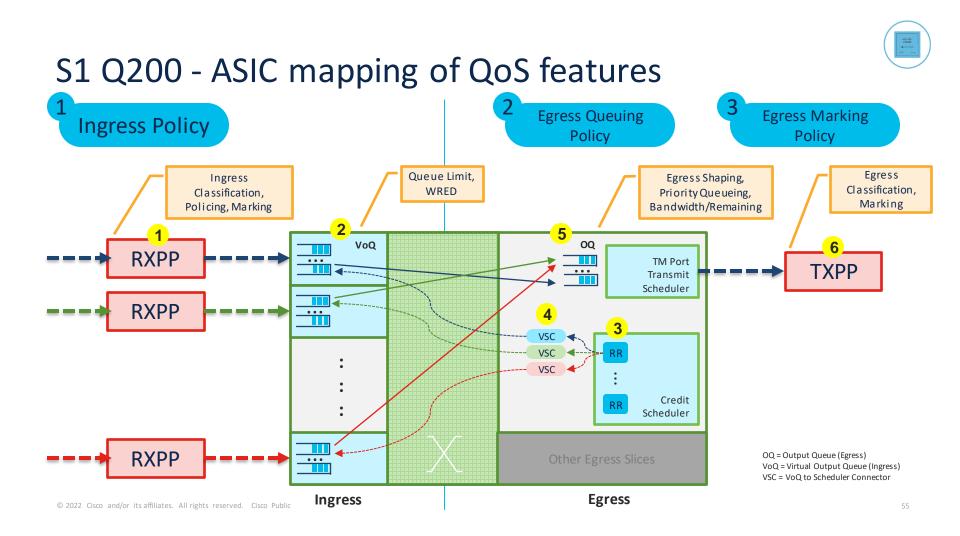
Large Flow to Multiple Downlinks

- Common for Multicast & Broadcast traffic
- One slow receiver can penalize other ports

Local vs. HBM Buffers

Low-Latency Local Shared Memory Buffers


- Voice & Video are very latency-sensitive
- Multiple levels of Strict Priority Queuing


Deep High-Bandwidth Memory Buffers

- Guarantee delivery of session-oriented flows
- Reserve buffers to absorb occasional bursts

S1 Q200 - Standalone SOC Architecture

Generic Unicast Packet Walk

Netflow

Silicon One vs UADP

Capabilities

Limitations vs UADP

• Filtering of traffic to be sampled

- Random sampling and selection of one out of N filtered packets
- Mirroring of the selected packets along with their NPU context to CP CPU.
- 1 dedicated CPU core for Netflow.

• UADP builds and updates flow records in H/W cache.

- Entries moved from H/W to S/W cache for aggregation.
- Aggregated entries exports to collector.

S1 Netflow Sampled Netflow. ASIC samples packets on configured interfaces. Selected packet passed to CP CPU for parsing. Parsed data populated in flow cache and exported in required format.

S1 Q200 - Sampled FNF Collection

Flexible NetFlow data collection happens at configurable "sampling rate"

- Sampling rate:
 - 1 out of (2-16384). Default is 1:1024
 - Balance of Accuracy vs. CPU Load
- Sampling mode:
 - Deterministic a fixed packet within sample (e.g., always 10th)
 - Random a random packet within sample (e.g., 4, 13, 67, etc.)

Each flow checked during packet parsing

• Is it a new flow? If not new - within sample rate?

S1 Q200 sends a copy of the packet to a **dedicated X86 CPU Core**

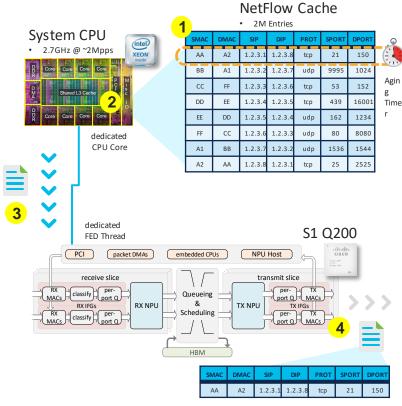
IOSXE (CPP) software builds a FNF cache entry

FNF sampler rate 1:1024 @ ~10Tbps of 512B packets = ~2Mpps

S1 Q200 - Sampled FNF Export

NetFlow data export is based on aging timers

Dedicated X86 CPU Core builds UDP packets for the FNF records that are aged-out


- Active timer
- Inactive timer

Dedicated X86 CPU Core sends the UDP packets to the configured Export IP address

- Up to 4 FNF flow exporters
- Support for NFv9 or IPFIX format
- Support for IPv4 or IPv6 exports

Same export process/method on all platforms!

Silicon One sFlow

Overview

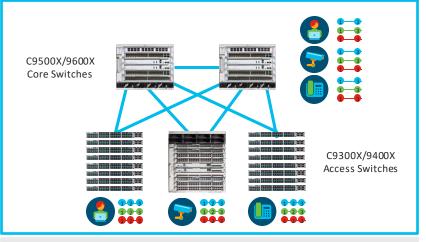
- Added capability on Catalyst 9500X and 9600X in addition to Sampled Netflow.
- Like Sampled Netflow, sFlow randomly samples one packet out of N packets on target interface.
- No cache associated with sFlow.
- Packet header for sampled packet along with packet metadata encoded into a datagram and sent collectors.
- Supported with DNA Advantage License

Netflow Advantages

- Per flow export.
- Consumes less data packet data parsed and sent.
- More options for configuration.
- Less load on collectors.

sFlow disadvantages

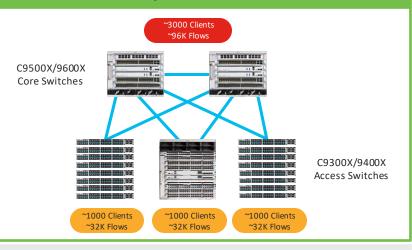
- Per packet export.
- Consumes more data full packet headers sent.
- Limited configurable options.
- More load on collectors.



Catalyst 9500X and 9600X will be the first IOS-XE based platforms to support sFlow

Why Sampled FNF in Campus Core?

ID @ Access – Monitor @ Core


Detailed (1:1) flow identification at the Access

- Better to ID flows as they enter the network
- Full accounting of every client/flow (ETA/AVC)

Aggregate (1:1K) monitoring of flows at the Core

- Just need to monitor the overall network usage
- Adjust sample rates to balance scale & load

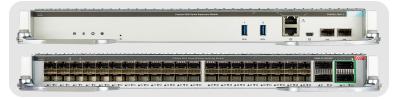
Campus-wide Scale

Low-Moderate scale at the Access

- Fewer number of connected clients/flows
- Average ~1K clients x ~32K flows per Access

Medium-High scale at the Core

- Need to aggregate all clients/flows (# Access x 32K)
- Adjust cache aging to increase overall scale


Catalyst 9500X & 9600X **Summary**

Catalyst 9500X & 9600X – Things to know

C9600X-SUP-2 + LC-40YL4CD

C9500X-28C8D

	Technology	Brief Description	Diffs from UADP 3.0	
V	Large LPM Table	 Up to 2M IPv4 or 1M IPv6 (hash efficiency is about 80%) Dedicated Memory for LPM 	 Up to 256K IPv4/IPv6 with Custom SDM template LPM and other features share 416K ASIC memory 	
V	Large MAC Table	 Up to 256K MAC entries Custom SDM template. Shared with other features 	 Up to 128K MAC entries with Custom SDM template MAC shared with LPM, etc. in same 416K ASIC memory 	
Ý	VoQ QoS + HBM	 Q200 has 80MB local (low-latency) + 8GB HBM (High Bandwidth Memory) buffer memory. Q200 uses a Virtual Output Queue (VoQ) architecture. All queuing and policing policies applied on Ingress. 	 Max 36MB unified buffer memory per ASIC Supports both Ingress/Egress queuing & policing 	
Ý	OGACL& SGACL	 8K IPv4, 4K IPv6 ACL TCAM entries. Object-Group & Security-Group ACLs use CEM to map IP-to-Group label, TCAM only uses L4 ACEs. (OG/SG ACL design is optimal for layer 3 environment). 	 64K ACL TCAM entries per ASIC Object-group expand into the TCAM space	
Ý	LAN & WAN-MACsec*	 Q200 does not have built-in crypto engine. C9500X & C9600X-LC uses new CDR5M PHY (400Gbps Full-Duplex). CDR5M provides line-rate (8x 400G = 3.2T) 802.1ae (LAN) MACsec and WAN-MACsec. 	 UADP3 has built-in MACsec crypto (speed of ASIC) UADP3 only supports LAN MACsec (no WAN-MACsec) 	
V	Flexible NetFlow*	 Q200 does not have built-in Flow Cache memory (no hardware-based Netflow). C9500X & C9600X uses new Software-based FNF (≤ 2M entries), with a dedicated CPU core (~2Mpps). FNF sampler rate 1:1000, ~10Tbps of 512-Byte packets = ~2Mpps. 	 UADP3 has built-in (HW) FNF, max 64K entries per ASIC FNF shared with LPM, etc. in same 416K ASIC memory 	

Catalyst 9500 & 9600 Series Core Positioning

Next Generation Core + Edge Switching with Silicon One™ Q200

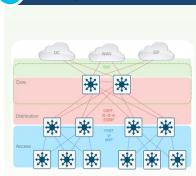
Feature Optimized C9500 & C9600-SUP-1

C9600-SUP-1

C9500

- ✓ Best-in-class Enterprise Core feature set
- ✓ Low speeds (1G 40G) and port density
- ✓ Comprehensive MPLS, EVPN and SDA
- ✓ Ideal for Campus Core, Collapsed Core + Agg

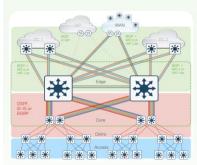
Ideal for C6K non-XL deployment migration

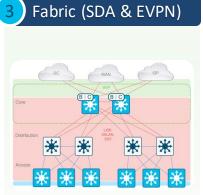

C9600X-SUP-2

C9500X

- ✓ Unmatched forwarding scale and performance
- ✓ High speeds (10G 400G) and port density
- ✓ Scaled MPLS and SDA, WAN-MACsec
- ✓ Ideal for Campus Core + Edge, or Centralized WLC

Ideal for C6K XL deployment migration


C9600/X C9500/X - Place In Network (PIN)

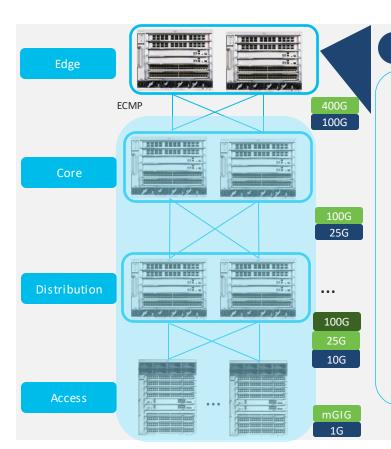

Layer 3 Core

- Base L3 Routing
- High-BW, Port Density
- Simple ACL
- Simple QoS

Layer 3 Core + Edge

- L3 Core + Edge Services
- DCI, WAN, Internet
- Edge Security, VPN & OGAC
- Complex H-QoS

- L3 Core + VXLAN Fabric*
- Border, Edge, CP/RR
- L2 & L3 VNI & SGACL
- App-based QoS


- L3 Core + Distribution
- L2 Services to Access
- First Hop Security
- Access QoS & AVC

3

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public

Campus + Edge Design

Edge Catalyst[®] C9600X and 9500X for campus Edge. High-Scale Routing: Support for full IPv4 and IPv6 Internet + LAN + VRF routing Port speeds: Support port speed up to 400G **Flexible Transport Options :** Support for MPLS-VPN, SD-Access and BGP-EVPN* with 4K VRFs Low-Latency: Support for local optimized low-latency shared memory **Deep buffer:** Support large buffers for micro-burst & congestion

Catalyst 9000 Switching – New and Upcoming Features

Reference

SECURE

IOS XE 17.7.1 Available on CCO

Enhanced Security Controls

- Single policy a pproach for Dynamic PVLAN
- IPSEC PBR Support
- ✤ AAA cache for dot1x for Catalyst 9000

Platform/Infra

- ✤ GIR on 9500H/9600
- xFSU Support for 9300X
- Increased virtual port scale (upto 30K) on 9400
- ✤ AES67 timing profile
- PTPv2/gPTP on 9600 w/o SSO
- Interface template cli Loop Detection Guard

Flexibile Network Segmentation

- Data MDT Support for L3 TRM- IPv4
- EVPN to Global IP Route Leaking
- Interface template based secure on boarding of devices from extended node

Programmability

- gNOI reset
- Leaflevel filtering for telemetry

IOS XE 17.8.1 Mar '22

Enhanced Security Controls

- Transparently pass MKA BPDUs on non-MACSEC interfaces
- VRF Aware Centralized Web Authentication (CWA)*

Platform/Infra

- G8275.x Timing profile
- Catalyst 9300/9400: Dynamic Power consumption reporting

Flexible Network Segmentation

- EVPN-VxLAN over IPSEC
- IPSEC Multicast over SVTI
- Layer 2 IPv4/IPV6 TRM support with External RP

AUTOMATE

Programmability

- ZTP config through YANG
- Native CLI to XPATH conversion

SECURE

CONNECT

The bridge to possible