

You make **possible**

Cisco Catalyst 3850 and 3650 Switching Architecture

Dimitar Hristov – Technical Marketing Engineer BRKARC-3438

Dimitar Hristov dhristov@cisco.com

I am a Technical Marketing Engineer (TME), and I have been with Cisco for 12 years.

As TME within Enterprise team, I work primary on increasing and innovating new Capabilities for Catalyst 3850 / 3650 and 9000 family.

I have a strong background in providing and troubleshooting customer solutions. @ CCIE#20505 R&S and Data Center

Is Your Network Ready for Digitization of Tomorrow?

Does the platform support new PoE devices efficiently? Does the platform make it easy to provision and scale? Does the platform support enough Programmability? Does the platform ensure secure network access? Does the platform let you adapt to new connectivity requirements?

Enterprise Trends Driving Digital Transformation

Fabric Enabled Wireless Multigigabit

CoAP / IoT Device profiling SD Bonjour Perpetual PoE AVB

256bit MACsec Trustworthy Systems Group based policy Full Netflow DevOps Toolkit NETCONF/RESTCONF Yang Models Streaming telemetry

"The goal of this session is to give you an in depth view of Catalyst 3850/3650 so you can understand its strength as well as its limitations ..."

Agenda

- Introduction to Catalyst 3850/3650 platform
- Platform and UADP ASIC architecture
- Packet walks
- High Availability using data and power stacks
- Resource scale
- Software innovations
- Conclusion

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 16, 2019.

cs.co/ciscolivebot# BRKARC-3438

Introduction to Catalyst 3850 and 3650

You make networking **possible**

Cisco MultiGigabit – Now IEEE 802.3bz

Cisco MultiGigabit enables various use cases

The Catalyst 3K Family

One Switch - Multiple Deployment scenarios

MultiGigabit

				-
1 18			******	
		******	******	
			And in case of the local division in which the local division in which the local division in the local divisio	
the second second second				-
	******	******		
		and the second		

1 Gigiagbit

Catalyst 3850 Copper

Copper SKUs Data and PoE/UPoE Switches

480G Stacking Capacity

MultiGigabit

Mini - Shallow Depth

Catalyst 3650 Copper

Copper SKUs Data and PoE/UPoE Switches

160G Stacking Capacity

Enterprise Class Access Layer

48 Port SFP+ Version No Stackwise 480

SFP+

SFP

Catalyst 3850 Fiber SFP Fiber SKUs SFP Versions Catalyst 3850 Fiber SFP+ Fiber SKUs SFP+ Versions

Smaller Core & Aggregation Option

Based on a Common ASIC and Software

Catalyst 3850/3650 Components

You make security **possible**

Uplink Network Module Options on Catalyst 3850

C3850-NM-4-1G	C3850-NM-2-10G	C3850-NM-4-10G	C3850-NM-2-40G	C3850-NM-8-10G	
4x1Gig	2x1Gig+2x10Gig	4x10Gig	2x40Gig	8x10Gig	
SFP	SFP/SFP+	SFP/SFP+	QSFP	SFP/SFP+	
		48 Ports or 12+ SFP+	For MultiGigabit and SFP+ Versions only		

Flexibility & Investment Protection

Fixed Uplink Options on Catalyst 3650

Make Uplink Decision at the time of Purchase

Line Rate – 640G Switching Capacity

Stack-Cables and Components

Catalyst 3850

3 lengths of cable, 0.5 1 and 3 Meters

Catalyst 3650

1 ring in 3650 vs 3 rings in 3850

Ciscolive

Catalyst 3850/3650 models

Similarities & Differences

Features / Scale	Catalyst 3850	Catalyst 3850 SFP	Catalyst 3850 MultiGigabit	Catalyst 3850 SFP+ (12,24 Ports)	Catalyst 3850 SFP+ (48Port)	Catalyst 3650	Catalyst 3650 Mini	Catalyst 3650 MultiGigabit
ASIC	UADP 1.0	UADP 1.0	UADP 1.1	UADP 1.1	UADP 1.1	UADP 1.0	UADP 1.1	UADP 1.1
Stacking BW	480G / 9	480G / 9	480G / 9	480G / 9	NA	160G / 9	160G / 9	160G / 9
Stack Power	Stackpower, XPS	Stackpower, XPS	Stackpower, XPS	Stackpower, XPS	No	No	No	No
Uplinks	Modular Uplinks	Modular Uplinks	Modular Uplinks	Modular Uplinks	Fixed Uplinks	Fixed uplinks	Fixed Uplinks	Fixed Uplinks
Wireless	100 AP max	100 AP max	100 AP max	100 AP max	100 AP max	50AP max	50AP max	100 AP max
Stacking Module	Built-in	Built-in	Built-in	Built-in	N/A	Optional	Optional	Optional
Memory/Flash	4GB /2GB	4GB /2GB	4GB /4GB	4GB /4GB	8GB /8GB	4GB /2GB	4GB /2GB	4GB / 4GB
Power	Dual (FRU)	Dual (FRU)	Dual (FRU)	Dual (FRU)	Dual (FRU)	Dual (FRU)	Single (Fixed), RPS 2300	Dual (FRU)
MACSEC	128 bit	128 bit	256 bit	256 bit	256bit	128 bit	256 bit	256 bit
НА	SSO	SSO	SSO	SSO, Stackwise Virtual	SSO, Stackwise Virtual	SSO	SSO	SSO

Looking Inside the Switch

You make the power of data possible

Catalyst 3850 / 3650: Under the Covers...

Ciscolive

ASICs are a Pillar of Cisco Innovation...

Traditional ASIC Pipeline

Traditional

ASIC

Fixed Pipeline

Cisco Custom ASIC Innovation

In 2013 Cisco Introduced a new family of switches called Catalyst 3850

Based on UADP ASIC (Unified Access Data Plane)

Future proofed for the technologies of tomorrow

Some of the Key Capabilities of UADP ASIC

No Compromise on Performance

#CLUS

UADP 1.0 and 1.1 ASIC Block Diagram

Stack Interface

#CLUS

Ciscolive!

LAN MASEC Support per Platform

	MA	CSEC	Cat 3650 *		Cat 3850*		
			SW	License SW			License
Switch to Switch	128	8 Bits SAP	3.7.0E	IPB +	3.7.0E		IPB +
	128	8 Bits MKA	3.7.1E	IPB +	3.7.1E		IPB +
	256	6 Bits MKA	16.3.3 +	IPB +	16.3.3 +		IPB +
	Ove	er L2 Hops	Roadmap		Roadmap		
Host to Switch	128	8 Bits MKA	3.7.1E	IPB +	3.7.1E		IPB +
	256 Bits MKA		16.3.3 +	IPB +	16.3.3 +		IPB +
		MACSEC		Cat 3650 *		Cat 3850 *	
Switch to		128 Bits SAP		Line Rate		Line Rate	
Switch		128 Bits MKA	Ą	Line Rate		Line Rate	
		256 Bits MKA		Line Rate		Line Rate	
Host to Switch		128 Bits MKA		Line Rate		Line Rate	
		256 Bits MKA		HW ready		HW ready	

* Only 3650 Minis and mGig support MACSEC 256 * Only 3850 mGig and 3850 48 SFP+ support MACSEC 256

IPB = IP Base

Lets take a look at the Programmable Pipelines

UADP Variants

You make multi-cloud possible

UADP 1.0

1G/10G Ethernet

240 Gbps Stacking Capacity

6MB Packet Buffer

....

Netflow Records

56 Gbps Bandwidth

Catalyst

First Generation of UADP ASIC

3850 Copper

First Programmable ASIC

Catalyst 3650 Mini

Catalyst 3650 Multigigabit

Enhanced Power & Security Capability

Enhanced Version of UADP 1.0 ASIC

IOS XE Evolution

Same Look & Feel, More Powerful Architecture

UADP ASIC & Open IOS-XE Enables...

Most Importantly : Software Defined - Access

Identity-based Policy & Segmentation

Decoupled security policy definition from VLAN and IP Address to enable rapid policy updates

Single Network Fabric

Automation across wired and wireless for optimized traffic flows, and workflow-based management provide consistency at scale

Analytics and insights into User and application behavior for proactive issue identification and resolution

Industry's first policy-based automation from the Edge to the Cloud

Catalyst 3850 / 3650 – Simplify network operations open-standards APIs

Plug in to operational in minutes

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 35

Catalyst 3650 with Cisco DNAC demo

Old car with a huge value

Ciscolive,

BRKARC-3438

37

Platform and ASIC Architecture, Packet Walk

You make networking **possible**

Catalyst 3850/3650–24 Port Layout

Catalyst 3850/3650-48 Port Layout

Catalyst 3850 MultiGigabit – 24 Port Layout

480 Gbps STACK INTERFACE

#CLUS

Ciscolive!

Catalyst 3850 MultiGigabit – 24 Port Layout

480 Gbps STACK INTERFACE

Ciscolive;

Catalyst 3850/3650 MultiGigabit-48 Port Layout

480 / 160 Gbps STACK INTERFACE

43 BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Catalyst 3850/3650 MultiGigabit-48 Port Layout

480 / 160 Gbps STACK INTERFACE

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 44 BRKARC-3438

Catalyst 3850 12XS Port Layout

Catalyst 3850 12XS Port Layout

Catalyst 3850 24XS Port Layout

Catalyst 3850 24XS Port Layout

Catalyst 3850 48XS Port Layout

480 Gbps STACK INTERFACE

#CLUS

Ciscolive,

Catalyst 3850 48XS Port Layout

480 Gbps STACK INTERFACE

#CLUS

Number of ASICs in different versions of Switches

Product Version	UADP Version	Number of ASIC / Total number Cores	Clock Speed	Total Bandwidth Available
24 Port 3850/3650	1.0	1 / 1	375 MHz	56 G
48 Port 3850/3650	1.0	2 / 1	375 MHz	112 G
12/24 Port 3850 SFP	1.0	1 / 1	375 MHz	56 G
12 Port 10G 3850	1.1	1 / 1	500 MHz	160 G
24/48 Port mGig 3850s	1.1	2 / 4	500 MHz	320 G
24 Port mGig 3650	1.1	2 / 4	500 MHz	160 G
48 Port mGig 3650	1.1	2 / 4	500 MHz	320 G
24 Port 10G 3850	1.1	2 / 4	500 MHz	320 G
48 Port 10G 3850	1.1	4 / 8	500 MHz	640 G
. /				

Cisco

51 BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Port Mappings – Platform Level Command

Cat3850# show platform software fed switch active ifm mappings

Interface	IF_ID	Inst	Asic	Core	Port	SubPort	Мас	Cntx	LPN	GPN	туре	Active
TenGigabitEthernet2/0/1	0x8	3	3	0	7	0	7	0	1	97	NIF	Y
TenGigabitEthernet2/0/2	0x9	3	3	0	6	0	6	0	2	98	NIF	Y
TenGigabitEthernet2/0/3	0xa	3	3	0	5	0	5	0	3	99	NIF	Y
TenGigabitEthernet2/0/4	0xb	3	3	0	4	0	4	0	4	100	NIF	Y
TenGigabitEthernet2/0/5	0xc	2	2	0	4	0	4	0	5	101	NIF	Y
TenGigabitEthernet2/0/6	0xd	2	2	0	5	0	5	0	6	102	NIF	Y
TenGigabitEthernet2/0/7	0xe	2	2	0	6	0	6	0	7	103	NIF	Y
TenGigabitEthernet2/0/8	0xf	2	2	0	7	0	7	0	8	104	NIF	Y
TenGigabitEthernet2/0/9	0x10	3	3	0	0	0	0	0	9	105	NIF	Y
TenGigabitEthernet2/0/10	0x11	3	3	0	1	0	1	0	10	106	NIF	Y
TenGigabitEthernet2/0/11	0x12	3	3	0	2	0	2	0	11	107	NIF	Y
		\square										
<snip></snip>												
Cat3850#												
		-										

#CLUS

Cisco

Packet Walks

You make security **possible**

Unicast - within ASIC

#CLUS

Ciscolive,

Unicast - Across ASICs on Input

Stack Interface

#CLUS

Ciscolive!

Unicast - Across ASICs on Output

f Stack Interface

#CLUS

Ciscolive,

#CLUS

Ciscolive!

Future Proofed for 802.11ac and beyond

Catalyst 3850 / 3650 – UADP Performance – 500 MHz Clock Speed

Future Proofed for 802.11ac and beyond

#CLUS

Stacking Architecture

You make the power of data possible

The Stack Ring

480 Gbps capacity

Stack Interface of UADP ASIC

- 6 rings in total
- 3 rings go East
- 3 rings go West
- Each ring is 40Gbps
- 240Gbps uni-direction
- Spatial Reuse= 480Gbps

Assuming 4 x 24-port 3850 Switches

Unicast Packet Path on the Stack Ring

- Packet segmented into 256 bytes
- Packet travels half the ring for unicast traffic
- Segments reordered at destination stack port
- Destination strips the packet off the stack ring

Stack Ring Spatial Reuse

- Credit based system on the Stack Ring
- Multiple stack ports grab the ring that is free and they have credits on to transmit

Stack Ring Spatial Reuse

- Unicast flows use only part of the Ring
- Increases the stack ring bandwidth to 480Gbps

Multicast Packet Path on Stack Ring

- One copy of the source packet is placed on the rings
- Interested Stack Ports grab the segments when they see them
- Packet segments travel the whole ring back to source
- The source strips these segments off the ring (Source Stripping)
- Results in efficient replication of multicast traffic for multiple Stack Port receivers

Resiliency – StackWise-160

- Modular Stacking (Optional)
 - New stack adapters
 - New connectors and copper cables
- Stack Bandwidth

#CLUS

- 80 Gbps uni-directional
- 160 Gbps with spatial reuse
- Stateful Switch Over (SSO)
 - Faster Convergence (vs 3750-X)
 - Active-Standby model
 - Improved Central synchronization on Active Switch for Wired+Wireless
 - Tunnel SSO ensures AP, MA-MC connectivity during failover

How many Can I stack together?

Continuint .
•
•

Enforced by Software

Ciscolive!

Did you learn all parts?

Image Source: newatlas.com

High Availability – Data and Power Stacks

You make networking possible

Catalyst 3850 Stack vs. Catalyst 6500

- Active and Standby Members run IOSd, etc.
- Synchronize information
- Active controls Data plane programing for all members
- Member switches act as Line cards connected via the Stack Cable

- Active and Standby Supervisors
- Run IOS on Supervisors
- Synchronize information
- Active programs all DFCs
- DFCs run a subset of IOS for LCs

#CLUS

Catalyst StackWise Architecture

Ciscolive,

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 71

Stack Discovery

- Stack Interfaces brought online
- Infra and LC Domains boot in parallel
- Stack Discovery Protocol discovers Stack topology – broadcast, followed by neighborcast
- In full ring, discovery exits after all members are found.
- In half ring, system waits for 2mins
- Active Election begins after Discovery exits

Stack port 1 cable is connected and the link is up
Stack port 2 cable is connected and the link is up
Waiting for 120 seconds for other switches to boot
%IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_START: Switch 3 is starting stack discovery.
##All switches in the stack have been discovered

Switch number is 3

%IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_DONE: Switch 3 has finished stack discovery. %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-SWITCH_ADDED: Switch 3 has been added to the stack.
Stack Active Election

- The stack (or switch) whose member has the higher user configurable priority 1–15
- 2) The switch or stack whose member has the **lowest MAC address**

%IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-ACTIVE ELECTED: Switch 3 has been elected ACTIVE.

Stack Initialization

- Active starts RP Domain (IOSd, WCM, etc) locally
- Programs hardware on all LC Domains
- Traffic resumes once hardware is programmed
- Starts 2min Timer to elect Standby in parallel
- Active elects Standby
- Standby starts RP Domain locally
- Starts Bulk Sync with Active RP
- Standby reaches "Standby Hot"

%STACKMGR-1-STANDBY_ELECTED: 3 stack-mgr: Switch 2
has been elected STANDBY.

Switch#show switch

Switch/Stack Mac Address : 2037.0652.a580 - Local Mac Address Mac persistency wait time: Indefinite

Switch#	Role	Mac Address	Priority	H/W Version	Current State
1	Member	2037.0653.ca80	5	P6A	Ready
2	Standby	2037.0653.db00	10	P6A	HA sync in progress
*3	Active	2037.0652.a580	15	V01	Ready

HA Best Practices & Recommendations

- Power up the first Switch that you want to make it as Active
- Configure Priority of the switch (1-15) 1 by default – the higher the better
- Power up the second member that you want to make as Standby & then power up rest of the members
- To add a member to an existing stack plug in the stack cable first, then power up the switch
- Avoid stack Merge & Stack split if possible

Stack Split - Double Failure - Scenario #1

- Stack speed is reduced by half because of the half ring
- The top side of the split remains stable, Active initiating Clean up for the members data
- Lower Side of the Stack reboots Active election is held on the lower side of the split
- Active starts RP domain locally and programs local hardware as well as that of the member
- Active elects Standby (after 2 min timer), and signals Standby to start its RP Domain
- Active and Standby perform Bulk Sync as part of HA – where lower member is Standby-Hot

Stack Merge – Two Active members in one Stack

- Full ring is restored
- Stack Discovery runs to build Stack topology with broadcast and neighbor cast packets
- HA detects there are two Active switches (1 and 2) in Stack
- Whole Stack reboots
- Stack initialization happens as before
- Configuration of the Active elected is downloaded on all members

Stack Member Addition

- Stack discovery initiated and completed
- Plug in the member, completing full ring
- Power up the member
- Stack Discovery process runs and completes immediately after discovery happens
- Active detects the new addition, and programs the hardware of the member
- Active is not pre-empted by powering on another member even if it was High Priority

Stack Member Deletion

- Stack discovery initiated and completed
- Active detects member removal and Clean up process is initiated
- Clean-up involves removing TCAM entries referencing removed member, MAC addresses, CDP tables – more like all ports on the member are shutdown
- Configuration is moved to Pre-Provisioned state

Stackwise Virtual

You make security **possible**

StackWise Virtual Architecture

- Cisco StackWise Virtual extends proven back-panel technology over front-panel network ports
- Unified control and management
 plane architecture
- Fully distributed forwarding architecture
- Multi-Chassis EtherChannels (MEC)
- StackWise Virtual is supported on 3850-12XS / 24XS / 48XS
- Similar to Cat 6500 VSS

Stack Power

You make the power of data possible

StackPower - Overview "Zero-Footprint" RPS deployment

- Provides RPS functionality with Zero RPS Footprint
- Pay-as-you-grow architecture similar to the Data Stack
- 1+N Redundancy with Inline Power
- · Up to 4 Switches in a StackPower Ring
- Multiple StackPower Possible within one Data Stack
- Up to 9 Switches in a star topology with XPS

Power Budget Modes

Power Sharing Mode

2530W - 30W

- The Default Mode Pools Power from All PS
- Total POE Budget = Sum of All PS 30W

Redundant Mode

2530W-**1100W** - 30W

- User Configurable Reserves the Largest PS
- Total POE Budget = Sum of All PS Largest PS 30W

How StackPower Works? Power Sharing Mode – Default Mode

WS-C3850-24U# show st	ack-powe	r						
Power Stack	Stack	Stack	Total	Rsvd	Alloc	Unused	Num	Num
Name	Mode	торојду	Pwr(W)	Pwr(W)	Pwr(W)	Pwr(W)	SW	PS
MDF	SP- <mark>PS</mark>	Ring	5115	55	1010	4050	4	5

#CLUS

Ciscolive,

How StackPower Works? Redundant Mode

3850(config)# stack-power stack MDF
3850(config-stackpower)# mode redundant

MDF	SP- <mark>R</mark>	Ring	5115	1135	1010	2970	4	5
Power Stack Name	Stack Mode	Stack Topolgy	Total Pwr(W)	Rs∨d Pwr(W)	Alloc Pwr(W)	Unused Pwr(W)	Num SW	Num PS
WS-C3850-24U# s	how stack-powe	er detail						

Enforcement Modes

Strict & Loose Modes Control The Behavior of Load Shed

- Loose mode allows for a negative power budget
- Strict mode sheds load as soon as the power budget goes below the Allocated power level

Power Supplies

Catalyst 3850 Catalyst 3650 titte 350WAC 440WDC 715WAC 1100WAC 250WAC 640WAC 640WDC 1025WAC Wider Than 3850/3750-X PSs Same as 3750-X— **Different Watts Capacity** Interchangeable New PIDs MultiGigabit SKUs Same PS as 3850s Ciscolive 715WAC 1100WAC 88 BRKARC-3438

System Power Reserved

- 30~60W StackPower Reserve
- System Power is Reserved based on different PIDs

Catalyst 3850/3650 Version	System Power Reserved	Catalyst3850/3650 Version	System Power Reserved
24 Port 3850 Copper (Data/PoE/PoE+/UPoE)	200	48 Port 3850 Fiber SFP+	280
48 Port 3850 Copper (Data/PoE/PoE+/UPoE)	280	24 Port 3850 mGig	520
12 Port 3850 Fiber SFP	200	48 Port 3850 mGig	470
24 Port 3850 Fiber SFP	200	24 Port 3650	200
12 Port 3850 Fiber SFP+	300	48 Port 3650	280
24 Port 3850 Fiber SFP+	410		

LOW BATTERY

NEED CAFFEINE

Image Source: pinterest.com

Image Source: teecentury.com

BRK.

You make networking **possible**

UADP ASIC Block Diagram

Stack Interface

#CLUS

Ciscolive,

TCAM and SRAM Resource Usage

Cat3850# show platform hardware fed switch active fwd-asic resource tcam utilization					
Table	Max Values	Used Values			
Unicast MAC addresses	32768/512	18/22			
L3 Multicast entries	4096/512	0/7			
L2 Multicast entries	4096/512	0/9			
Directly or indirectly connected routes	16384/7168	2/19			
QoS Access Control Entries	2560	620			
Security Access Control Entries	3072	150			
Netflow ACEs	768	15			
Policy Based Routing ACEs	1024	9			
Flow SPAN ACES	512	5			
Output Flow SPAN ACES	512	8			
Control Plane Entries	512	230			
Tunnels	256	17			
Lisp Instance Mapping Entries	256	3			
Input Security Associations	256	4			
Output Security Associations and Policies	256	5			
SGT_DGT	4096/512	0/1			
CLIENT_LE	4096/256	0/0			
INPUT_GROUP_LE	6144	0			
OUTPUT_GROUP_LE	6144	0			
MACsec SPD	256	2			

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 93

Catalyst 3850 - TCAM & ACL Scale

ACL Res	ources	TAQs 3 & 4 Reserved for Security ACLs	(TTT-
IPv4 Entries	3000 Entries	RACL Region	
IPv6 Entries	Half the IPv4		
One type of IPv4 ACL (RACL PACL, VACL, GACL*)	, 1500 Entries	Region	
L4OPs/Label	8 L4OPs	VACL Region	
Ingress VCUs	196	GACL	
Egress VCUs	92	Region	

• GACL (Group Client ACL) – Any dot1x client attached features like dACL, QoS, Filter ID, Per User ACLs are in GACL region

- Order of Processing : GACL \rightarrow PACL \rightarrow VACL \rightarrow RACL
- TAQ ACL TQD (TCAM Quads)
- VCU = Value Comparison Unit

for IPv6 Entries)

Regions are flexible BUT cannot span across TAQs

Е

Catalyst 3850 - Netflow Scale

Configuring FNF involves 4 major steps:

Flow Record	Flow Exporter	Flow Monitor	Application
What data do I want to meter?	Where do I want to send the flow data?	How do I want to cache information?	Which interface / VLAN to monitor?

#CLUS

FnF fully integrated in the ASIC - NO performance impact

Ingress & Egress FnF supported on all ports, VLANs & SSIDs

System Scalability: 24K flows / ASIC. 1.0 and 2 x 24k / ASIC 1.1

IPv4 & IPv6 capable

You make the power of data **possible**

Catalyst 3850/3650 - QoS Fundamental Actions

Catalyst 3650/3850 Campus QoS Design Wired Port Egress Queuing (2P6Q3T with WTD) Model

#CLUS

Bandwidth Remaining WTD = Weighted Tail Drop

6MB Packet Buffer

Dynamic Threshold Scale (DTS)

- Shared buffer is good for burst absorption.
- Dedicated buffer is good for predicated performance for each port.
- Buffer management is flexible: Dedicated plus shared.
- Configurable dedicated
 threshold per port/queue
- Configurable global maximum shared threshold
- Automatically adjusted depends
 on the available shared pool

DTS – Dynamic Fair Buffer Sharing

Policing

1 Rate 2 Color

2 Rate 3 Color

Catalyst 3850 - QoS Scale

QoS Scale Numbers					
Class-maps (Ingress)	1024				
Class-maps (egress)	512				
Table-maps (ingress)	16				
Table-maps (egress)	16				
Aggregate Policers	2000				
Wired Queues/port	8 queues				
Wireless Queues/port	4 queues				
Buffer per ASIC Core	6 MB				

Ciscolivi

Key Differences – Catalyst 3850/3650 vs 3750-X/E

Catalyst 3850

- MQC
- Trust by Default
- 8 Queues 1P7Q3T OR 2P6Q3T
- 6 MB Buffer per ASIC or ASIC Core
- HQoS 2 Level Hierarchical Policy

	 	-
		 - server.

Catalyst 3750-X

- MLS QoS
- Untrust by Default
- 4 Queues Per Port 1P3Q3T
- 2 MB Buffer per ASIC
- No HQoS

Reference: https://www.cisco.com/c/en/us/support/docs/switches/catalyst-3850-series-switches/118629-technote-gos-00.html

#CLUS

Ciscolive

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 104

Catalyst 3850 - SD-Access Scale

Fabric Constructs	Maximum Supported				
Fabric Edge Relevant Scale					
Virtual Networks	64				
Groups (SGTs)	4096 / 255 DGT				
SGACLs (Security ACEs)	1350				
Fabric Border Relevant Scale					
Virtual Networks	64				
Groups (SGTs)	4096				
SGACLs (Security ACEs)	1350				
Fabric Control Plane Entries	4096				
IPv4 Routes	8K				
IPv4 Host Entries	16K				

Cisco

Need to Copy yourself to do more?

Ciscolive,

Image Source: gcn.com

Software Innovations

You make networking **possible**

Trustworthy Systems

You make multi-cloud **possible**

Cisco Catalyst 3850 / 3650 Trustworthy Systems

Cisco[®] trustworthy systems use industry best practices to help ensure full development lifecycle integrity and end-to-end security

REAL WORLD: Converted 3750-X 24 to 48 Ports

Cisco Secure Boot and Trust Anchor Module Validating the Authenticity of Software Followed by Hardware

The first instructions that run on a CPU are either stored in immutable hardware so that they cannot be tampered with or are validated by the hardware

Hardware authenticity check

High Availability

You make customer experience possible

Fast Software Upgrade (16.8) Regular Upgrade Vs Fast Software Upgrade Process

BRKARC-3438

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Fast Software Upgrade Supported and Unsupported Designs

Layer 2 Access Layer Designs- FSU Supported

Unsupported Designs

Software Maintenance Upgrades (SMU)

Software Upgrades are Challenging

Cost

- Expensive Upgrades Business Loss
- Each device upgrade causes Network outage

Time

- Reduced IT staff slows software roll out
- Physical presence required

Scope

New Code requires bug analysis, certification

Install of COLD SMU will require a system reload

COLD

SMU

Cisco Catalyst 3850 12/24/48XS ISSU workflow

Programmability

You make networking **possible**

Model-driven telemetry

- Support for any YANG subtree
- Structured data
- XML/JSON encoding
- Periodic or on change
- Reduced CPU load

Export enriched, consistent, and concise data with context from devices for a better user and operator experience

Software Defined – Open, Programmable, Flexible Scaled operations

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 119

Network Subscription over NETCONF

A subscription is a contract between a subscription service and a subscriber that specifies the type of data to be published.

Periodic subscription

Counters / Measures

Periodic subscription RPC

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <establish-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications" xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<stream>yp:yang-push</stream>

<yp:xpath-filter>/mdt-oper:mdt-oper-data/mdt-subscriptions</yp:xpath-filter>
<yp:period>1000</yp:period>

</establish-subscription>

</rpc>

- Xpath-filter:
 - XML Xpath filter defining the data object to which you want to subscribe.
- Period:
 - The time period, in centiseconds (100th of a second), between push updates containing the subscribed information

On-change subscription

State / Configuration / Identifiers

On-change subscription RPC

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <establish-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications" xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<stream>yp:yang-push</stream>

<yp:xpath-filter> /cdp-ios-xe-oper:cdp-neighbour-details/cdp-neighbour-detail</yp:xpath-filter>
<yp:dampening-period>0</yp:dampening-period>

</establish-subscription>

</rpc>

CDP-neighbor with XPath and Dampening period

NETCO kibana	NF Periodic RF	PC Demo	
🛩 cpu-5secs			
	Average five-s	econds 8,000,000	Aver Aver
	~ telnet 172.26.197.3 2034	~ — kafka@ott-kafka-1: ~ — ssh kafka@172.26.197.105	
4 - [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650# [C3650#		6	
C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650# C3650#			
@ti	imestamp per 30 seconds	@timestamp per 30 seconds	

Candidate Config Datastore

 Prior to Polaris 16.8, a NETCONF client would modify the Running config by directly sending an edit-config RPC to the Running in CDB, which will then be synced to the Running config in IOS

 Polaris 16.9 has introduced Candidate Data store functionality, which let's a user "stage" his/her configuration before pushing it to the device

© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

How does it effect device configuration?

 Configuration comparison between device configuration through "Running" config versus "Candidate" config

Switch(config)#netconf-yang feature candidate-datastore

netconf-yang and/or restconf is transitioning from running to candidate netconf-yang and/or restconf will now be restarted, and any sessions in progress will be terminated.

#CLUS

Image source: medium.com

Ciscolive,

Audio Video Bridging

You make security **possible**

Audio Video Bridging Convergence of AV on Ethernet with Cisco Catalyst Switches

Cisco Catalyst family of switches are now Avnu-certified

The Avnu Alliance (www.avnu.org) is a community creating an interoperable ecosystem servicing the precise timing and low latency requirements of diverse applications using open standards through certification

Supported Platforms (standalone)

Open Standards

#CLUS

IEEE 802.1BA: Audio Video Bridging IEEE 802.1AS: Generalized PTP IEEE 802.1Qat: Stream Reservation Protocol IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams IEEE 1588v2: PTP Support

Ecosystem Partners

Meyer

Power over Ethernet

You make the power of data **possible**

Cisco POE Innovations

2-event classification	 Fast power negotiation without LLDP Physical layer negotiation < 1s (config-if)#power inline port 2-event
Perpetual POE	 Uninterrupted POE power during control plane reboot (config-if)#power inline port poe-ha
Fast POE	 Bypasses IOS control plane boot Restores power to PD within 30sec of power restore (config-if)#power inline port poe-ha

Delivering robust and resilient power infrastructure

ACL Hitless Update

You make multi-cloud possible

ACL Update Sequence

#CLUS

- In case of ACL change event, all traffic is dropped until the changes are applied
- In case of the new changes cannot fit the TCAM the traffic is also dropped until rollback is completed

*ACE – Access-list Entry

Hitless ACL Update - After 16.8 Sequence

Application Visibility and Control

You make customer experience possible

Challenges of Today's Network

Today's Applications

Enabling and Monitoring AVC - CLI

CLI

switch# show run int g1/0/23

Building configuration...

interface GigabitEthernet1/0/23 switchport access vlan 193 **ip nbar protocol-discovery** end

switch#	show	ip	nbar	protocol-discovery	top-n
---------	------	----	------	--------------------	-------

GigabitEthernet1/0/23

	Input	Output
Protocol	Packet Count	Packet Count
	Byte Count	Byte Count
	5min Bit Rate (b	ps) 5min Bit Rate (bps)
	5min Max Bit Ra	ate (bps) 5min Max Bit Rate
voutube	356	187
	264713	25603
	0	0
	6000	3000
bing	2741	2384
	493258	423925
	0	0
	3000	3000

WebUI – Monitoring AVC

- Filter Monitoring Over Ingress/Egress interfaces and direction
- Identify Top Talkers
- Monitor Data over 2, 24 or 48 hours
- Monitor percentage Bandwidth usage

AVC with WEBUI Demo

Cisco (ive,

MPLS

You make the power of data **possible**

MPLS Enables Network Segmentation in Campus

Conclusion

You make networking **possible**

Do you feel you know the Car in and out Now?

Image Source: www.ebay.co.uk

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 144
Catalyst 3850/3650 is built on Robust Architecture

The Combination of UADP and IOS-XE 16.x Makes your Network Ready and Future proofed

Future proofed for the technologies of tomorrow

BRKARC-3438 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 146

Catalyst 3850 / 3650 Related Sessions

BRKARC-3146 – Troubleshooting Cisco Catalyst 3650 / 3850 Series Switches

BRKARC-3190 – Troubleshooting Cisco Catalyst 3650, 3850 and 9000 Series Switches

CTHARC-2025 – Cat9300/C3850 Stacking – Tips and tricks

BRKCRS-2901 – Cisco Silicon – The Importance of Hardware in a Software-Defined World

Cisco Catalyst 9000 family switching transitions

Greater flexibility from the branch to business-critical, mission-critical campus core

BRKARC-2035 – The Catalyst 9000 Switch Family - An Architectural View

BRKARC-3863 – Catalyst 9300 Switching Architecture

BRKARC-3873 – Cisco Catalyst 9400 Switch Architecture

BRKARC-2007 – Cisco Catalyst 9500 Switch Architectures

BRKARC-3873 – Cisco Catalyst 9600 Architecture

Complete your online session evaluation

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live water bottle.
- All surveys can be taken in the Cisco Live Mobile App or by logging in to the Session Catalog on <u>ciscolive.cisco.com/us</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.cisco.com</u>.

Continue your education

151

NDA Roadmap Sessions at Cisco Live Customer Connection Member Exclusive

Join Cisco's online user group to ...

Connect online with 29,000 peer and Cisco experts in private community forums

Learn from experts and stay informed about product roadmaps

- Roadmap sessions at Cisco Live
- Monthly NDA briefings

Give feedback to Cisco product teams

- Product enhancement ideas
- Early adopter trials
- User experience insights

Join online: www.cisco.com/go/ccp

	NETWORKING ROADMAPS	SESSION ID	DAY / TIME
	Roadmap: SD-WAN and Routing	CCP-1200	Mon 8:30 - 10:00
	Roadmap: Machine Learning and Artificial Intelligence	CCP-1201	Tues 3:30 - 5:00
	Roadmap: Wireless and Mobility	CCP-1202	Thurs 10:30 - 12:00

Join at the Customer Connection Booth (in the Cisco Showcase)

Member Perks at Cisco Live

- Attend NDA Roadmap Sessions
- Customer Connection Jacket
- Member Lounge

Thank you

You make possible