

You make **possible**

Catalyst 9500 Series Switch Architecture

Transitioning to 100-Gbps Networking

Mahesh Nagireddy Technical Marketing Engineer CCIE R&S BRKARC-2007

Agenda

- Need for Higher Speeds in Campus
- Catalyst 9500 High Performance Switch Portfolio
- Catalyst 9500 Switch Portfolio
- C9500 User Centric Platform Design
- Cisco UADP 3.0 Architecture
- Cisco 9500 Hardware Capabilities
- Cisco 9500 HA Capabilities
- Cisco 100G/40G/25G Optics

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Live Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Webex Teams will be moderated by the speaker until June 16, 2019.

cs.co/ciscolivebot# BRKARC-2007

Need for Higher Speeds in Campus Network Infrastructure ready?

802.11ax

4K Video

Virtual Reality Augmented Reality

Rapid Growth of Powerful Endpoints

Advanced wireless connectivity technologies such as 802.11ax

#CLUS

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 5

Newer Technologies Push Connectivity Requirements

Multiple links of 10G/40G

Higher Bandwidth 40G/100G

Challenges with 10G to 40G migration

MPO Assemblies for Short Reach 40G

• Significant costs (transceivers and cables)

- 10G X2/XFP presented a form factor conundrum
- SFP+ backward compatibility with 1G SFP and 100-Mbps SFP has enabled that speed transition

#CLUS

 Single-lane serial optics, providing a port density similar to that of 10G switches

Lower Port Densities

(H x W x D) 13.5 x 18.4 x 72.4 mm

(H x W x D): 8.5 x 13.4 x 56.5mm

QSFP+

SFP+

25GE - A better alternative Provides seamless migration path from 10GE

Reduced Capex through reuse of existing cabling

Single Lan serial optics providing port densities similar to 10G Switches

Gradual Migration options with support of Dual Rate Optics

Reduced OpEx through savings in power and cooling

#CLUS

Economics of 25G Optimized high-speed technologies

25G derived from 100G

Same port density as 10G for 25G

	10G	25G
Form factor	SFP+	SFP28
Modulation	NRZ	NRZ
Lane scheme	1x 10G	1x 25G

IEEE 25G standards					
Project	Interfaces	Description			
EEE P802.3by	25GBASE-CR	Passive copper cables up to 5 m			
	25GBASE-SR	Short reach over MMF (OM3/OM4)			
EEE P802.3cc	25GBASE-LR	Long reach 10 km over SMF			
	25GBASE-ER	Long reach 40 km over SMF			

#CLUS

Ciscolive,

Enabling Architectural Transformation

Campus-optimized distance with Speed transition

Speed migration with dual-rate optics

Ciscolive!

#CLUS

#CLUS

Cisco Catalyst 9500-32C High-level overview

With QSA adapte

Cisco Catalyst 9500-32C Environmental overview

Cisco

Cisco Catalyst 9500-32C Power supply redundancy and inputs

Power supply highlights:

- Maximum output is 1600W at 220V and 1000W at 110V
- More than 90% power efficiency at 50% to 100% of load
- Redundant load sharing (1+1) mode only
- Dual hot-swappable AC/DC/mixed power supplies supported
- Power hold-up time is ~20 ms at 100% load

C9K-PWR-1600WAC-RC9K-PWR-1600WDC-R

LED	Color	Status	Description
Green		OFF	No input
Green		Blinking	12V main off, 12V standby power ON
Green		Solid	12V main ON
Yellow		OFF	No warnings/error
Yellow		Blinking	Warning detected, 12V main
Yellow		Solid	Critical error detected

Cisco Catalyst 9500-32C Fan redundancy and airflow

Highlights:

- 5 variable-speed high-efficiency fans at rear of chassis
- Thermal sensor to detect ambient temperature and adjust fan speeds
- Can still operate with one fan unit failure
- Fans are hot-swappable
- Airflow: Front-to-back only

LED	Color	Status	Description
Fan		Solid	All fans OK
Fan	•	Solid	One fan faulty
Fan		Solid	One or more fans faulty Exceeded limit

Cisco Catalyst 9500-32C Block diagram

16 BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Cisco Catalyst 9500-32C Port-to-ASIC mapping

Command to verify the port-to-ASIC mapping:

show platform software fed active ifm mappings

C9500H-32C#show platform	software	fed ac	ctive	ifm n	mappi	ng						
Interface	IF_ID	Inst	Asic	Core	Port	SubPort	Mac	Cntx	LPN	GPN	Туре	Activ
HundredGigE1/0/1	0x6	1	0	1	16	0	16	2	1	101	NIF	Y
HundredGigE1/0/2	0x7	1	0	1	17	0	20	6	2	102	NIF	Y
HundredGigE1/0/3	0×8	1	0	1	18	0	24	10	3	103	NIF	Y
HundredGigE1/0/4	0x9	1	0	1	19	0	28	14	4	104	NIF	Y
HundredGigE1/0/5	0xa	1	0	1	0	0	0	2	5	105	NIF	Y
HundredGigE1/0/6	0xb	1	0	1	1	0	4	6	6	106	NIF	Y
HundredGigE1/0/7	0xc	1	0	1	2	0	8	10	7	107	NIF	Y
HundredGigE1/0/8	0xd	1	0	1	3	0	12	14	8	108	NIF	Y
HundredGigE1/0/9	0xe	0	0	0	16	0	28	2	9	109	NIF	Y
HundredGigE1/0/10	Øxf	0	0	0	17	0	24	6	10	110	NIF	Y
HundredGigE1/0/11	0x10	0	0	0	18	0	20	10	11	111	NIF	Y
HundredGigE1/0/12	0x11	0	0	0	19	0	16	14	12	112	NIF	Y
HundredGigE1/0/13	0x12	0	0	0	0	0	12	2	13	113	NIF	Y
HundredGigE1/0/14	0x13	0	0	0	1	0	8	6	14	114	NIF	Y
HundredGigE1/0/15	0x14	0	0	0	2	0	4	10	15	115	NIF	Y
HundredGigE1/0/16	0x15	0	0	0	3	0	0	14	16	116	NIF	Y
HundredGigE1/0/17	0x16	3	1	1	16	0	16	2	17	117	NIF	Y
HundredGigE1/0/18	0x17	3	1	1	17	0	20	6	18	118	NIF	Y
HundredGigE1/0/19	Øx18	3	1	1	18	0	24	10	19	119	NIF	Y
HundredGigE1/0/20	0x19	3	1	1	19	0	28	14	20	120	NIF	Y
HundredGigE1/0/21	0x1a	3	1	1	0	0	0	2	21	121	NIF	Y
HundredGigE1/0/22	0x1b	3	1	1	1	0	4	6	22	122	NIF	Υ
HundredGigE1/0/23	Øx1c	3	1	1	2	0	8	10	23	123	NIF	Y
HundredGigE1/0/24	0x1d	3	1	1	3	0	12	14	24	124	NIF	Y
HundredGigE1/0/25	0x1e	2	1	0	16	0	28	2	25	125	NIF	Y
HundredGigE1/0/26	0x1f	2	1	0	17	0	24	6	26	126	NIF	Y
HundredGigE1/0/27	0x20	2	1	0	18	0	20	10	27	127	NIF	Y
HundredGigE1/0/28	0x21	2	1	0	19	0	16	14	28	128	NIF	Y
HundredGigE1/0/29	0x22	2	1	0	0	0	12	2	29	129	NIF	Υ
HundredGigE1/0/30	0x23	2	1	0	1	0	8	6	30	130	NIF	Y
HundredGigE1/0/31	0x24	2	1	0	2	0	4	10	31	131	NIF	Y
HundredGigE1/0/32	0x25	2	1	0	3	0	0	14	32	132	NIF	Y

Cisco Catalyst 9500-32QC High-level overview

Cisco Catalyst 9500-32QC Configuration modes

24P 40G + 4P 100G - default configuration 40G 40G 📘 40G 40G 100G 100G 100G Ħ Ħ E В н В В В 40G

32P 40G

16P 100G

#CLUS

Note: Other configuration options are supported, including mix and match of speeds

Cisco Catalyst 9500-32QC Block diagram

Cisco Catalyst 9500-48Y4C / 9500-24Y4C High-level overview

Cisco Catalyst 9500-24Y4C High-level overview

Cisco Catalyst 9500-32QC/48Y4C/9500-24Y4C **Environmental overview**

Cisco Catalyst 9500-32QC/48Y4C/24Y4C Power supply redundancy and inputs

Power supply highlights:

- Dual hot-swappable AC/DC/mixed power supplies supported
- Maximum output 12V/650W at 220V/110V AC Input
- More than 90% power efficiency at 50% to 100% of load
- Power hold-up time is <20 ms at 90% load
- Redundant load sharing (1+1) mode only

C9K-PWR-650WAC-RC9K-PWR-930WDC-R

LED	Color	Status	Description
Green		OFF	No input
Green		Blinking	12V main off, 12V standby power ON
Green		Solid	12V main ON
Yellow		OFF	No warnings/error
Yellow		Blinking	Warning detected, 12V main
Yellow		Solid	Critical error detected

Ciscolive!

Cisco Catalyst 9500-32QC/48Y4C/9500-24Y4C Fan redundancy and airflow

Highlights:

- Dual variable-speed high-efficiency fan trays
- Thermal sensor to detect ambient temperature and adjust fan speeds
- Fan trays are hot-swappable
- Front-to-back airflow
- · Can still operate with individual fan tray failure

LED	Color	Status	Description
FAN		Solid	Fan tray OK
FAN		Solid	Fan tray fault

Cisco Catalyst 9500-48Y4C Block diagram

#CLUS

Cisco Catalyst 9500-24Y4C Block diagram

Ciscolive,

Cisco Catalyst 9500 Switches

You make networking **possible**

Cisco Catalyst 9500-24Q High-level overview

#CLUS

C;

Cisco Catalyst 9500-12Q High-level overview

#CLUS

Ciscolive,

Cisco Catalyst 9500-40X High-level overview

#CLUS

Ciscolive,

Cisco Catalyst 9500-16X High-level overview

#CLUS

Ciscolive,

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 32

Cisco Catalyst 9500 Network Modules

C9500-NM-2Q Cisco Catalyst 9500 Series Network Module 2-port 40 Gigabit Ethernet with QSFP+

Cisco Catalyst 9500 Series Network Module 8-port 1/10 Gigabit Ethernet with SFP/SFP+

- Uplink modules are supported on the C9500-40X and C9500-16X SKUs only •
- · Line-rate on every port with 10G single-flow traffic processing
- · Modules are automatically powered upon insertion
- OIR-capable
- ACT2 authenticated

· Speed is auto-negotiated depending on the optics inserted

Cisco Catalyst 9500 Environmental overview

Cisco Catalyst 9500-24Q/12Q/40x/16x Power supply redundancy and inputs

Power supply highlights:

- Dual hot-swappable AC/DC/mixed power supplies supported
- Maximum output 12V/950W at 220V/110V AC input
- More than 90% power efficiency at 50% to 100% of load
- Redundant load sharing (1+1) mode only
- 1 power supply sufficient to power up switch
- Single Bi-Color Led to indicate PSU Status
- · Variable Speed Fan with Inside to Outside/Front to Back airflow

PWR-C4-950WAC-R PWR-C4-950WDC-R

LED	Color	Status	Description
Green		Solid	PSU operating Normally, 12V main ON
Amber		Solid	PSU Input Loss
Red		Solid	PSU Output Failure

#CLUS

Cisco Catalyst 9500-24Q/12Q/40x/16x Fan redundancy and airflow

Highlights:

- N+1 variable-speed high-efficiency fans
- Thermal sensor to detect ambient temperature and adjust fan speeds
- Individual Fan are OIR capable up to 120 secs
- Front-to-back airflow
- Can still operate with individual fan tray failure

Color	Status	Description
	Off	The fan tray is not receiving power; the fans have stopped
	Solid	All Fans operating normally
•	Solid	One or more fans have encountered tachometer faults
	Solid	One or more fans' tachometer faults have exceeded the maximum limit

Cisco Catalyst 9500-24Q Block diagram

#CLUS

Cisco Catalyst 9500-24Q Port-to-ASIC mapping

Command to verify the port-to-ASIC mapping: show platform software fed switch active ifm mappings lpn C9500-240#sh platform software fed switch active ifm mappings lpn Mappings Table

PN	ASIC	Port	Interface	IF_ID	Active
	3	0	FortyGigabitEthernet1/0/1	0×00000007	Y
2	3	1	FortyGigabitEthernet1/0/2	0×00000008	Y
3	3	2	FortyGigabitEthernet1/0/3	0x00000009	Y
1	3	3	FortyGigabitEthernet1/0/4	0x0000000a	Y
5	3	4	FortyGigabitEthernet1/0/5	0x0000000b	Y
5	3	5	FortyGigabitEthernet1/0/6	0x0000000c	Y
7	2	6	FortyGigabitEthernet1/0/7	0x0000000d	Y
3	2	7	FortyGigabitEthernet1/0/8	0x0000000e	Y
)	2	8	FortyGigabitEthernet1/0/9	0x0000000f	Y
10	2	9	FortyGigabitEthernet1/0/10	0x00000010	Y
11	2	10	FortyGigabitEthernet1/0/11	0x00000011	Y
12	2	11	FortyGigabitEthernet1/0/12	0x00000012	Y
13	1	12	FortyGigabitEthernet1/0/13	0x00000013	Y
4	1	13	FortyGigabitEthernet1/0/14	0x00000014	Y
15	1	14	FortyGigabitEthernet1/0/15	0x00000015	Y
16	1	15	FortyGigabitEthernet1/0/16	0x00000016	Y
17	1	16	FortyGigabitEthernet1/0/17	0x00000017	Y
18	1	17	FortyGigabitEthernet1/0/18	0x00000018	Y
19	0	18	FortyGigabitEthernet1/0/19	0x00000019	Y
20	0	19	FortyGigabitEthernet1/0/20	0x0000001a	Y
21	0	20	FortyGigabitEthernet1/0/21	0x0000001b	Y
22	0	21	FortyGigabitEthernet1/0/22	0x0000001c	Y
23	0	22	FortyGigabitEthernet1/0/23	0x0000001d	Y
24	0	23	FortyGigabitEthernet1/0/24	0x0000001e	Y

38

Ciscolive!

Cisco Catalyst 9500-12Q Block diagram

#CLUS

Ciscolive,

Cisco Catalyst 9500-12Q Port-to-ASIC mapping

LPN	ASIC	Port	Interface	IF_ID	Active
 1	 1	0	FortvGiaabitEthernet1/0/1	 0x00000031	Y
2	1	1	FortyGigabitEthernet1/0/2	0x00000032	Ŷ
3	1	2	FortyGigabitEthernet1/0/3	0x0000000b	Y
4	1	3	FortyGigabitEthernet1/0/4	0x0000000c	Y
5	1	4	FortyGigabitEthernet1/0/5	0x00000033	Y
6	1	5	FortyGigabitEthernet1/0/6	0x0000000e	Y
7	0	6	FortyGigabitEthernet1/0/7	0x0000000f	Y
8	0	7	FortyGigabitEthernet1/0/8	0×00000010	Y
9	0	8	FortyGigabitEthernet1/0/9	0×00000011	Y
10	0	9	FortyGigabitEthernet1/0/10	0x00000012	Y
11	0	10	FortyGigabitEthernet1/0/11	0×00000013	Y
12	0	11	FortyGigabitEthernet1/0/12	0x00000014	Y

Command to verify the port-to-ASIC mapping:

show platform software fed switch active ifm mappings lpn

ciscolive!

Cisco Catalyst 9500-40X Block diagram

#CLUS

Ciscolive,

Cisco Catalyst 9500-40X Port-to-ASIC mapping

Command to verify the port-to-ASIC mapping:

show platform software fed switch active ifm mappings lpn

C9500-40X#show platform software fed switch active ifm mappings lpn Mappings Table

LPN	ASIC	Port	Interface	IF_ID	Active
1	1	0	TenGigabitEthernet1/0/1	0×00000009	Y
2	1	1	TenGigabitEthernet1/0/2	0x0000000a	Y
3	1	2	TenGigabitEthernet1/0/3	0x0000000b	Y
4	1	3	TenGigabitEthernet1/0/4	0x0000000c	Y
5	1	4	TenGigabitEthernet1/0/5	0x0000000dd	Y
6	1	5	TenGigabitEthernet1/0/6	0x0000000e	Y
7	1	6	TenGigabitEthernet1/0/7	0x0000000f	Y
8	1	7	TenGigabitEthernet1/0/8	0x00000010	Y
9	1	8	TenGigabitEthernet1/0/9	0×00000011	Y
10	1	9	TenGigabitEthernet1/0/10	0x00000012	Y
11	1	10	TenGigabitEthernet1/0/11	0x00000013	Y
12	1	11	TenGigabitEthernet1/0/12	0x00000014	Y
13	1	12	TenGigabitEthernet1/0/13	0x00000015	Y
14	1	13	TenGigabitEthernet1/0/14	0x00000016	Y
15	1	14	TenGiggbitEthernet1/0/15	0x00000017	Y
16	1	15	TenGiggbitEthernet1/0/16	0x00000018	Y
17	1	16	TenGiggbitEthernet1/0/17	0x00000019	Y
18	1	17	TenGiggbitEthernet1/0/18	0x0000001a	Y
19	1	18	TenGiggbitEthernet1/0/19	0x0000001b	Y
20	1	19	TenGiggbitEthernet1/0/20	0x00000001c	Y
21	1	20	TenGiggbitEthernet1/0/21	0x0000001d	Y
22	1	21	TenGiaghitEthernet1/0/22	0x00000001e	Y
23	1	22	TenGi anhi + Ethernet 1/0/23	0x000000016	Y
24	1	23	TenGi aghi tEthernet1/0/24	010000000000000000000000000000000000000	Y
25	a	24	TenGigabitEthernet1/0/25	0x00000020	Y
26	0	25	TenGigabitEthernet1/0/26	0x00000022	Y
27	0	26	TenGi aghi +Ethernet1/0/27	0x00000023	Y
28	0	27	TenGi aghi tEthernet1/0/28	0x00000024	Y
29	0	28	TenGi aphi +Ethernet1/0/29	0100000025	Y
30	0	29	TenGi aghi tEthernet1/0/30	0~00000025	Y
31	0	30	TenGi aghi +Ethernet1/0/31	0x000000027	Y
32	0	31	TenGi aghi tEthernet1/0/32	0x00000028	Y
33	0	32	TenGi aghi +Ethernet1/0/33	0x00000020	Ý
34	0	33	TenGi aghi +Ethernet1/0/34	0x00000025	÷
35	0	34	TenGi aghi +Ethernet1/0/35	0x00000026	Y
36	0	35	TenGigabitEthernet1/0/36	0x00000020	Y
37	0	36	TenGiaghitEthernet1/0/37	0x0000002C	Y
38	0	37	TenGi aghi +Ethernet1/0/38	0x00000020	Y
30	0	38	TenGi aghi +Ethernet1/0/39	0~00000025	
40	0	30	TenGi ophi +Ethernet1/0/40	0~00000021	
41	0	40	TenGigabitEthernet1/1/1	0~0000000000000000000000000000000000000	M
42	0	41	TenGigabitEthennet1/1/2	0-00000031	N
42	0	42	TenGigdbitEthernet1/1/2	0x00000032	N
45	0	42	TendigabitEthernet1/1/4	0x00000033	
44	0	45	TendigabitEthernet1/1/4	0x00000034	N
45	0	44	TendigabitEthernet1/1/5	0x00000035	N
40	0	45	TenGigabitEthernet1/1/6	0x00000036	N
40	0	40	TendigabitEthernet1/1/7	0x00000037	N
40	0	47	Forth Ciarbit Ethomati (1/1	0x00000038	N
49	0	40	Forty Gashit Ethomst 1/1/1	0x00000039	Ţ
50	0	49	FortyGigabitEthernet1/1/2	0X0000003a	Y

42

Cisco Catalyst 9500-16X Block diagram

Ciscolive,

Cisco Catalyst 9500-16X Port-to-ASIC mapping

Command to verify the port-to-ASIC mapping:

show platform software fed switch active ifm mappings lpn

C9500-16X#show platform software fed switch 1 ifm mappings lpn Mappings Table					
LPN	ASIC	Port	Interface	IF_ID	Active
1	0	0	TenGigabitEthernet1/0/1	0x00000025	Y
2	0	1	TenGigabitEthernet1/0/2	0x00000026	Y
3	0	2	TenGigabitEthernet1/0/3	0x00000027	Y
4	0	3	TenGigabitEthernet1/0/4	0x00000028	Y
5	0	4	TenGigabitEthernet1/0/5	0x00000029	Y
6	0	5	TenGigabitEthernet1/0/6	0x0000002a	Y
7	0	6	TenGigabitEthernet1/0/7	0x0000002b	Y
8	0	7	TenGigabitEthernet1/0/8	0x0000002c	Y
9	0	8	TenGigabitEthernet1/0/9	0x0000002d	Y
10	0	9	TenGigabitEthernet1/0/10	0x0000002e	Y
11	0	10	TenGigabitEthernet1/0/11	0x0000002f	Y
12	0	11	TenGigabitEthernet1/0/12	0x00000030	Y
13	0	12	TenGigabitEthernet1/0/13	0x00000031	Y
14	0	13	TenGigabitEthernet1/0/14	0x00000032	Y
15	0	14	TenGigabitEthernet1/0/15	0x00000033	Y
16	0	15	TenGigabitEthernet1/0/16	0x00000034	Y

Ciscolive,

Catalyst 9500 User Centric Platform Design

You make customer experience possible

Cisco Catalyst 9500 Series Blue beacon

- Blue beacon LED allows easy identification of the switch being accessed
- Color/state Solid Blue(ON)/Black(OFF)
- Blue beacon can be turned on using Exec mode CLI

Cisco Catalyst 9500 High Performance

C9500-32QC#hw-module beacon RP active? Off Turn off on Turn on status Slot Beacon Status

C9500-32QC#hw-module beacon RP active on *Jan 23 22:39:05.972: %PLATFORM_LED-6-BEACON_LED_TURNED: Slot 1 Beacon LED turned ON

C9500-32QC#hw-module beacon RP active status BLUE

C9500-32QC#hw-module beacon RP active off *Jan 23 22:40:39.660: %PLATFORM_LED-6-BEACON_LED_TURNED: Slot 1 Beacon LED turned OFF

C9500-32QC#hw-module beacon RP active status BLACK

C9500-32C#hw-module beacon ssd on

Cisco Catalyst 9500

C9500-24Q(config)#**hw-module beacon on switch 1** *Apr 4 23:59:36.610: %PLATFORM_LED-6-BEACON_LED_TURNED: Switch 1 Beacon LED turned ON

C9500-24Q #show hardware led | in BEACON BEACON: BLUE

C9500-24Q(config)#hw-module beacon off switch 1 *Apr 5 00:03:33.336: %PLATFORM_LED-6-BEACON_LED_TURNED: Switch 1 Beacon LED turned OFF

C9500-24Q #show hardware led | in BEACON BEACON: BLACK

#CLUS

Cisco Catalyst 9500 Series

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 47

Cisco Catalyst 9500 Storage options SSD storage

Cisco Catalyst 9500 High Performance

M2 SATA SSD

Capabilities					
Form factor	M2 SATA				
Capacity	240 GB, 480 GB or 960 GB				
Performance	300 MB/s read, 290 MB/s write				
Power write	4.5W				
Security	Hardware-based AES-256-bit				
Filesystem type	ext4				

Product ID	Release		
C9K-F1-SSD-240G			
C9K-F1-SSD-480G	16.8.1 - general- purpose storage only		
C9K-F1-SSD-960G			

Cisco Catalyst 9500

USB 3.0 120G SSD

Capabilities					
Form factor	USB 3.0				
Capacity	120 GB				
Performance	400 MB/s read, 140 MB/s write				
Power write	4.5W maximum				
Security	Hardware-based AES-256-bit & Password Authentication				
Filesystem type	ext4				

Product ID	Release	
SSD-120G / SSD-120G=	16.8.1 - general-purpose storage only	

Use Cases

- App hosting
- General-purpose storage
- Packet Captures
- GIR Snapshots
- SMU Files
- Logging local NetFlow record storage

Cisco Catalyst 9500 Series Power supply redundancy

Cisco UADP 3.0 Architecture

You make the power of data possible

Ciscolive,

UADP evolution UADP 2.0 vs. 3.0 per-ASIC capabilities

#CLUS

Ciscolive!

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 52

Cisco Catalyst 9500 Series UADP 3.0 - Under the covers

UADP 3.0 - Under the covers

Ciscolive,

Cisco Catalyst 9500 Series Unicast forwarding within ASIC (ingress and egress)

55 BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

Cisco Catalyst 9500 Series Unicast forwarding across ASIC (ingress and egress)

56 BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

ASIC Interconnects

C9500 High Performance

- 2x400G packet bandwidth P2P links
- Credit-based mechanism

• 2x360G independent rings

Cisco Catalyst 9500 Series ASIC comparison

Capabilities (per ASIC)	Cisco® Catalyst® 9500 Series (UADP 2.0)	Cisco Catalyst 9500 High Performance (UADP 3.0)
Switching and forwarding capacity	240 Gbps/360 Mpps	1.6 Tbps/1 Bpps
Stack/Backplane bandwidth	2x 360 Gbps	2x 400 Gbps
Buffer capability	2x 16 MB	36 MB shared buffer
Switch Database Management (SDM) template	Fixed templates	Customizable templates
NetFlow capabilities	Dedicated NetFlow table	Shared NetFlow table
v4 FIB scale	Total 228,000*	Total 412,000*
v4 and v6 scale	v6 reduced by half	v4 and v6 same scale

#CLUS

* Maximum ASIC Capability

System Management

You make the power of data possible

Cisco Catalyst 9500 Series Switching Database Manager (SDM) template

Core template Maximizes system resources for unicast and multicast routing and security (Default: C9500 High Performance)

SD-Access template Maximizes system resources for security to support fabric deployment User-customizable template Allows customizable* ACL TCAM resources

#CLUS

Distribution template Maximizes system resources for MAC and security (Default: C9500 Switches)

NAT template Maximizes the NAT configurations on the switch

* Cisco Catalyst 9500 High Performance Switch Security ACL TCAM only

Cisco Catalyst 9500 High Performance Series SDM templates and scale numbers

Feature		Distribution template	Core template (default)	SDA template	NAT template
Routes (IPv4/IPv6)		114K / 114K	212K/212K	212K / 212K	212K / 212K
Multicast routes (IPv4	1/IPv6)	16K / 16K	32K / 32K	32K / 32K	32K / 32K
MAC address table		82K	32K	32K	32K
Flexible netflow		98K	64K	64K	64K
SGT label		32K	32K	32K	32K
	Ingress	1:	2K	8K	12K
Security ACL **	Egress	15K		19K	8K
	Ingress	8	ЗК	8K	4K
QUSACL **	Egress	8	ЗК	8K	4K
	Ingress	1	К	1K	1K
Nettiow ACL 4%	Egress	1	К	1K	1K
	Ingress	0.5K		0.5K	0.5K
SPAN *	Egress	0.	5K	0.5K	0.5K
PBR/NAT		ЗК		2K	15.5K
СРР		1К		1K	1K
Tunnel termination and MACSEC		ЗК		ЗК	2K
LISP		1К		2K	1K

🔀 Customizable ACL TCAM resources

#CLUS

Cisco Catalyst 9500 Series SDM template - CLI

C9500-32C#sh sdm prefer Showing SDM Template Info

This is the Core template. Security Ingress IPv4 Access Control Entries*: Security Ingress Non-IPv4 Access Control Entries*: Security Egress IPv4 Access Control Entries*: Security Egress Non-IPv4 Access Control Entries*: QoS Ingress IPv4 Access Control Entries*: QoS Ingress Non-IPv4 Access Control Entries*: QoS Egress IPv4 Access Control Entries*: QoS Egress Non-IPv4 Access Control Entries*: Netflow Input Access Control Entries*: Netflow Output Access Control Entries*: Flow SPAN Input Access Control Entries*: Flow SPAN Output Access Control Entries*:

6656	(current) -	9728	(proposed)
5632	(current) -	3584	(proposed)
6656	(current) -	10752	(proposed)
8704	(current) -	3584	(proposed)
4608	(current) -	4608	(proposed)
3584	(current) -	3584	(proposed)
4608	(current) -	4608	(proposed)
3584	(current) -	3584	(proposed)
1024	(current) -	1024	(proposed)
1024	(current) -	1024	(proposed)
512	(current) -	512	(proposed)
512	(current) -	512	(proposed)

* - Only on Cisco 9500 High Performance SKU's

Cisco Catalyst 9500 Series SDM Customizable template - CLI

Command to modify ACL TCAM Allocation

C9500-32C-2(config)#sdm prefer template-modification?

defaultDefault prefered templatefspanFilter SpannflNFL ACLsqosQOSsecurity-aclSecurity ACLs

C9500-32C-2(config)# sdm prefer template-modification security-acl input allowed-range Total_size : 27648 Suggested split percentage for input : 29 33 37 40 48 49 52 60 63 67 71

C9500-32C-2(config)#sdm prefer template-modification security-acl input 25 input-ipv4 75 output-ipv4 75 Allocated Security Acl Input (IPv4:4608, Non-IPv4:3584) entries, Output (IPv4:13824, Non-IPv4:5632) entries input=29.63 input_ipv4=56.25, output_ipv4=71.05

Modifications to preferred template have been stored, but cannot effect until the next reload. Allocations will be an approximation of user specified percentages. Use 'show sdm prefer' to see proposed values.

#CLUS

Cisco Catalyst 9500 Series SDM Customizable template - CLI

Command to modify ACL TCAM Allocation

C9500-32C-2(config)#sdm prefer template-modification security-acl input 25 input-ipv4 75 output-ipv4 75 Allocated Security Acl Input (IPv4:4608, Non-IPv4:3584) entries, Output (IPv4:13824, Non-IPv4:5632) entries input=29.63 input_ipv4=56.25, output_ipv4=71.05

Modifications to preferred template have been stored, but cannot effect until the next reload. Allocations will be an approximation of user specified percentages. Use 'show sdm prefer' to see proposed values.

Cisco Catalyst 9500 Series SDM templates and scale numbers

Feature		Distribution template (default)	Core template	SDA template	NAT template
Indirect/LPM Routes	(IPv4/IPv6)	64K / 32K	64K / 32K	64K / 32K	64K / 32K
Direct/Host Routes (IPv4/IPv6)	48K / 24K	32K / 16K	80K / 40K	48K / 24K
Multicast routes (IPv	4/IPv6)	16K / 8K	16K / 8K	16K / 8K	16K / 8K
MAC address table		65K	16K	16K	16K
Flexible netflow		128K/ASIC	128K/ASIC	128K/ASIC	128K/ASIC
SGT label		8K	8K	8K	8K
Security ACI	Ingress		101		
Security ACL	Egress		186		
	Ingress		24		
QUSACL	Egress		3N		
	Ingress		1K		
Nethow ACL	Egress		2К		
SDAN	Ingress	11/			11/
SPAN	Egress		TK		
PBR/NAT		2К			16K
СРР		1К		1K	
Tunnel termination a	nd MACSEC	1К			1K
LISP		1К		1K	

Cisco

Cisco Application Visibility and Control(AVC)

Network Based Application Recognition 2 (NBAR2)

- Optimize the Application experience in the network
- Hitless Protocol Pack update allows adding more applications.
- 1500+ Apps recognition & ~140 Encrypted
- Supported devices from 16.6(3): Catalyst
 9500
- Not supported on Catalyst 9500 High Performance SKU's

Cisco Smart Software Licensing

Smart Licensing Deployment Options

Direct Direct cloud access with <u>Cisco</u> <u>Smart Software</u> <u>Manager (CSSM)</u>.

On-Premises On-premises access with <u>Cisco</u> <u>Smart Software</u> <u>Manager satellite</u>.

#CLUS

Offline Offline access through License Reservation.

Cisco Catalyst 9500 Security and Identity Overview

You make security possible

Cisco Catalyst 9500 Series – Default configuration

Feature	Default state
Spanning Tree mode	RPVST+
VTP	Mode transparent
Error disable recovery	Auto
Port-channel load balance	Src-Dst-IP
SSH	Version 2
Interfaces	Layer 2, Shutdown */ Layer 3,no shutdown **
Routing	Enabled
QoS	2 queues per port, default trust (DSCP), Auto-QOS policy defined
CoPP	Enabled always
Cisco [®] Plug and Play	Enabled
Cisco Discovery Protocol	Enabled

* C9500

** C9500 High Performance

Cisco

Cisco Catalyst 9000 Platform Trustworthy Systems

Cisco[®] trustworthy systems use industry best practices to help ensure full development lifecycle integrity and end-to-end security

#CLUS
MACsec Hop-by-hop encryption via 802.1AE

- Packets are encrypted on egress, decrypted on ingress
- Offers line-rate encryption all Ports/Speeds (1G, 10G, 25G, 40G, and 100G)
- Transparent to all upper-layer protocols
- Supports switch-to-switch & switch-to-host MACsec(128/256bit)
- 256-bit MACsec capable between Switch-to-Switch
- Manual or 802.1X modes supported
- XPN Cipher suite for 40G & 100G Links to avoid to frequent Rekeys

Benefits

Complete Access Security

Complete cross platform alignment with Uplink/Downlink support

Protection against "Inside threats"

Securing campus infra

Hop by Hop Ethernet Encryption

Line Rate Performance on all ports

256bit MACsec – Network Advantage

128bit MACsec – Network Essentials

Secure Cisco Discovery Protocol

- Cisco[®] Discovery Protocol doesn't possess inherent security
- Secure Cisco Discovery Protocol provides security with TLV fields
- Global or interface specific TLV configurable
- TLV will be blocked on sending side and has no effect on receiving side

Secure Cisco Discovery Protocol will be given minimal information depending on TLV list.

Quality of service

You make customer experience **possible**

Cisco Catalyst 9500 Series - Quality of Service

- QoS is enabled by default
- All ports are trusted at Layer 2 and Layer 3 by default

Cisco Catalyst 9500 Series QoS forwarding (ingress and egress)

#CLUS

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 77

Cisco Catalyst 9500 Series Hardware queues

Meaning	DSCP			2P6Q3T
(CS7)	56		EF CS4 CS5	Q0 - PQ Level 1
CS6	48		CS3 & CS2	
EF	46	┝─┼─┚╠═══┋	CS7 & CS6	Q1 - PQ Level 2
CS5	40		AF	Q6
AF4	34,36,38		3	(BWR)
CS4	32	┝┼╌┟──▶	CS1	Q5 (BWR + WTD)
AF3	26,28,30		AE	Q4
CS3	24		1	(BWR + DSCP-based WTD)
AF2	18,20,22		AF	Q3 (BWR + DSCP-based WTD)
CS2	16		1	
AF1	10, 12, 14	┝╘╍┥╼╸	AF	Q2 (BWR + DSCP-based WTD)
CS1	8		+	
DF	0		D F	Q7 (BWR)

Ciscolive;

Cisco Catalyst 9500 Series – congestion avoidance Weighted Random Early Detection (WRED) – 3T WTD

#CLUS

max-threshold[mark-probability-denominator]

Cisco Catalyst 9500 Series 2P6Q3T+WTD wired port egress queuing configuration

#CLUS

class-map match-any VOICE-PQ1 match dscp ef class-map match-any VIDEO-PQ2 match dscp cs4 match dscp cs5 class-map match-any CONTROL-MGMT-QUEUE match dscp cs7 cs6 cs3 cs2 class-map match-any MULTIMEDIA-CONFERENCING-QUEUE match dscp af41 af42 af43 class-map match-any MULTIMEDIA-STREAMING-QUEUE match dscp af31 af32 af33 class-map match-any TRANSACTIONAL-DATA-QUEUE match dscp af21 af22 af23 class-map match-any SCAVENGER-BULK-DATA-QUEUE match dscp cs1 af11 af12 af13

Cisco Catalyst 9500 Series 2P6Q3T+WTD wired port egress queuing configuration

interface range Hu1/0/1 service-policy output 2P6Q3T

Cisco Catalyst 9500 Series – unified packet buffer complex

- 36-MB unified packet buffer is shared by ingress and egress data paths and between both cores
- Resources consuming packet buffer
 - Ingress buffers (IQS)
 - Egress stack buffers (SQS)
 - Egress port buffers (AQM)
 - Temporary buffers
 - Common buffers

Dynamic Threshold Scalability (DTS)

Fixed buffer per queue

- Reserved buffers are statically allocated for each queue
- Regardless of whether this queue is active or not, these buffers are held up by this queue
- For more queues, the portion of the reserved buffers allocated for each queue can become smaller and smaller

Dynamic Threshold Scalability (DTS)

Dynamic shared buffer pool is memory space that all of the ports on the switch share dynamically as they need buffers

- Dedicated buffer is good for predicated performance for each port
- Shared buffer is good for burst absorption
- DTS provides fair and efficient allocation of buffers: dedicated plus shared
- Configurable dedicated threshold per port or queue
- · Configurable global maximum shared threshold
- Automatically adjusted depending on the available shared pool

Default buffer allocation per port speed

Platform	Port speed	100 Mbps,	1, 2.5, 5 Gbps	10 0	Gbps	25 (abps	40 (Gbps	100	Gbps
	Queue	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max	Hard max	Soft max
Cisco® Catalyst® 9300 Series	Q0	100	400	600	2400	_	_	2400	9600	_	_
Cisco Catalyst 9400 Series	Q0	176	700	176	700	_	_	176	700	_	_
Cisco Catalyst 9500 Series	Q0	200	800	1200	4800	-	-	4800	19,200	-	-
Cisco Catalyst 9500 High End	Q0	112	448	240	960	480	1920	720	2880	1920	7680
		Soft min	Soft max	Soft min	Soft max	Soft min	Soft max	Soft min	Soft max	Soft min	Soft max
Cisco Catalyst 9300 Series	Q1	150	600	300	1200	_	_	3600	14,400	_	_
Cisco Catalyst 9400 Series	Q1	225	3600	264	1056	_	_	337	10,800	_	_
Cisco Catalyst 9500 Series	Q1	800	3600	1800	7200	-	_	7200	28,800		-
Cisco Catalyst 9500 High End	Q1	168	672	360	1440	720	2880	1080	4320	2880	11,520

Notes:

All allocation in units (each unit is 256-byte storage)

Q0: Soft max = 4x hard max

Q1: Soft max = 4x soft min

Hard max (hard buffer allocation): Do not participate in DTS/priority queue only

Port speed	Buffer (KB)	Number of buffers
100G	1200	4800
40G	450	1800
25G	300	1200
10G	150	600
1GE	70	280

Cisco Catalyst 9500 Series - device trust

- Cisco[®] Catalyst[®] 9500 Series trusts all ports by default (DSCP, CoS, IP precedence based)
- Default trust mode for a port is DSCP based
- Trust mode falls back to CoS for pure Layer 2 packet
- Keep uplink interfaces as trusted

Trust behavior

Incoming packet	Outgoing packet	Trust behavior	Queuing behavior
Layer 3	Layer 3	Preserve DSCP/precedence	Based on DSCP
Layer 2	Layer 2	Not applicable	Based on CoS
Tagged	Tagged	Preserve DSCP and CoS	Based on DSCP (trust DSCP takes precedence)
Layer 3	Tagged	Preserve DSCP, CoS is set to 0	Based on DSCP
MPLS	Layer 3	Preserve EXP	Based on DSCP
MPLS	MPLS	Preserve EXP	Based on EXP

Cisco Catalyst 9500 Series - TCAM resources

QoS TCAM resources	Cisco [®] Catalyst [®] 9500 Series	
IPv4 entries	16,000* (256-bit) entries	
IPv6 entries	Half the IPv4 (512 bits)	
Class maps (ingress)	255	
Class maps (egress)	255	
Policy maps	1599	
Table maps (ingress)	16	
Table maps (egress)	16	
Aggregate policers	16,000 total, 63 policers per port per direction	
Default queue per port	2 queues (1 priority, 1 standard)	
Wired queues/port configurable	8 queues (2 can be priority)	

* With default SDM template

Cisco

Cisco Catalyst 9500 Series – TCAM resources Resource consumption per match field

Field	TCAM resources consumed (IPv4)	TCAM resources consumed (non-IPv4)
Match DSCP	1	2
Match IP precedence	1	2
Match CoS	1	2
Match QoS group	1	2
Match discard class	Not supported	Not supported
Match VLAN	1	2
Match access group	1	2

#CLUS

Cisco Catalyst 9500 Series – TCAM Resources Etherchannel QoS

- EtherChannel comprise logical (port-channel) interfaces and physical (port-member) interfaces
- Ingress and egress QoS policies are applied only to the physical port-member interfaces
- Auto-QoS is NOT supported on physical port-member interfaces
- All port-member interfaces must have the same ingress or egress QoS policy to achieve required results

Cisco Catalyst 9500 Series - Traffic policing

PIR – Peak Information Rate

PBS- Peak Burst Size CBS - Committed Burst Size

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 90

Cisco Catalyst 9500 Series – Hierarchical QoS

HQoS (two-level hierarchy) allows you to perform the following functions:

- Classification
- Policing
- Shaping

#CLUS

class-map c1 match dscp 30 Exit class-map c2 match precedence 4 Exit class-map c3 Exit policy-map CHILD class c1 priority level 1 police rate percent 20 conform-action transmit exceed action drop exit class c2 bandwidth 20000 exit class class-default bandwidth 20000 exit Exit policy-map PARENT class class-default shape average 1000000

Interface Fo1/0/1 service-policy output PARENT

Cisco Catalyst 9500 Series Hierarchical QoS restrictions

- No more than two levels are supported in a QoS hierarchy
- · Policing in both the parent and child is not supported in a QoS hierarchy
- · Marking in both the parent and child is not supported in a QoS hierarchy
- If parent configured with policing action, child can have only marking action
- Same queuing (priority, BW, or shaping) action can't be applied on a child class if parent class has a policing action

- · Same action can't be applied to both parent and child policies except for port shaper
 - Only class default is allowed for shaping on parent policy
 - No other action is allowed in a parent policy
- · Applies to physical ports with conversation to a single-level policy in hardware

Access Control Lists

You make security **possible**

Cisco Catalyst 9500 Series access control lists Four forms of security ACLs

The Cisco Catalyst 9500 Series supports four forms of security ACL: SG ACL, RACL, VACL, and PACL

Router ACL (RACL)	VLAN ACL (VACL)	Port ACL (PACL)	Security group ACL (SG ACL)
Used to permit or deny the movement of traffic between Layer 3 subnets	Used to permit or deny the movement of traffic between Layer 3 subnets and VLANs or within a VLAN	Used to permit or deny the movement of traffic between Layer 3 subnets and VLANs or within a VLAN	Used to permit or deny the movement of traffic based on the SGTs that are assigned
Applied as an input or output policy to a Layer 3 interface , SVI, or Layer 3 EtherChannel interface	Applied as a policy to a VLAN; is inherently applied to both inbound and outbound traffic	Applied as a policy to a Layer 2 switch port interface or EtherChannel interface; is applied to inbound & outbound traffic	Applied as a policy to a Layer 2 switch port interface; is applied to inbound traffic only
Standard/extended ACLs	Standard/extended ACLs	Standard/extended/ MAC ACLs	Standard/extended/ MAC ACLs

#CLUS

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public

94

Ciscol(VC)

Cisco Catalyst 9500 Series access control lists

Router ACL (RACL)

access-list 2 permit 36.48.0.3 access-list 2 deny 36.48.0.0 0.0.255.255 access-list 2 permit 36.0.0.0 0.255.255.255

interface gigabitethernet2/0/1 ip access-group 2 in

Port ACL (PACL)

access-list 2 permit 36.48.0.3 access-list 2 deny 36.48.0.0 0.0.255.255 access-list 2 permit 36.0.0.0 0.255.255.255

interface gigabitethernet2/0/1 switchport ip access-group 2 in

VLAN ACL (VACL)

VLAN ACLs

ip access-list extended SERVER1_ACL permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100 permit ip host 10.1.1.4 host 10.1.1.100 permit ip host 10.1.1.8 host 10.1.1.100 exit

Define a VLAN map that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

vlan access-map SERVER1_MAP match ip address SERVER1_ACL action drop vlan access-map SERVER1_MAP 20 action forward exit

Apply the VLAN map to VLAN 10. vlan filter SERVER1_MAP vlan-list 10

Cisco Catalyst 9500 Series access control lists Order of processing

#CLUS

scolive

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 96

Cisco Catalyst 9500 Series - access control lists Hardware support

Value Mask Result (VMR)

The TCAM entry contains a VMR, also known as Value, Mask, Result

Access Control List Terminologies

Cisco Catalyst 9500 Series ACL resource utilization examples

Example 1

access-list	101	permit	ip	any	10.1.1.0	0.0.0.255
access-list	101	permit	ip	any	10.1.2.0	0.0.0.255
access-list	101	permit	ip	any	10.1.4.0	0.0.0.255
access-list	101	permit	ip	any	10.1.5.0	0.0.0.255
access-list	101	permit	ip	any	10.1.8.0	0.0.0.255

Example 2

Ip access-list extended MYACL Permit tcp 192.168.1.0 0.0.0.255 any ne 3465 Permit tcp 10.0.0.0 0.255.255.255 any range 3000 3100 Permit tcp 172.16.0.0 0.0.255.255 any range 4000 8000 Permit tcp 191.1.1.0 0.0.0.255 gt 10000 any eq 20000

Example 3

ipv6 access-list iacl deny ipv6 any 2001:0DB8:C18::/48 fragments deny ipv6 2001:0DB8::/32 any permit tcp host 2001:0DB8:C19:2:1::F host 2001:0DB8:C18:2:1::1 eq bgp permit tcp host 2001:0DB8:C19:2:1::F eq bgp host 2001:0DB8:C18:2:1::1

	TCAM entries	L4OPs/VCU
Consumption	6	0

	TCAM entries	L4OPs/VCU
Consumption	12	6

	TCAM Entries	L4OPs/VCU
Consumption	14	0

Time-based ACLs

- Time-based ACL permits or denies traffic based on a configurable time
- Time period is based upon switch's clock
- CPU resources due to merge into hardware memory

```
Device(config)# time-range no-http
Device(config)# periodic weekdays 8:00 to 18:00
!
Device(config)# time-range udp-yes
Device(config)# periodic weekend 12:00 to 20:00
!
Device(config)# ip access-list extended strict
Device(config-ext-nacl)# deny tcp any any eq www time-range no-http
Device(config-ext-nacl)# permit udp any any time-range udp-yes
!
Device(config-ext-nacl)# exit
Device(config-ext-nacl)# exit
Device(config)# interface gigabitethernet2/0/1
Device(config-if)# ip access-group strict in
```


Starting 16.8.1

Catalyst 9500- Hitless TCAM update

- Allows updates to an ACL without interrupting traffic
- Multiple features updated at once
 - IPv4, IPv6, MAC
 - PACL, RACL, VACL, and SG ACL
- Hitless update is enabled by default; can't be disabled
- Hitless update feature requires free ACL TCAM space for reprogramming but does consume any additional TCAM resources
- If not enough space in TCAM, falls back to old ACL method

Cisco Catalyst 9500 Series - Hitless TCAM update

#CLUS

Ciscolive!

Multicast

You make the power of data **possible**

Cisco Catalyst 9500 Series Unicast forwarding within ASIC (ingress and egress)

BRKARC-2007

Cisco Catalyst 9500 Series – IPv4 and IPv6 multicast

Ciscolive!

* Only on C9500 High performance SKU's

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 107

High Availability

You make networking possible

TODAY OUR NETWORKS ARE MOST RESILIENT

109

Stackwise Virtual Topology Comparisons

Benefits of Stackwise Virtual

Simplify Operations by Eliminating STP, FHRP and Multiple Touch-Points

Double Bandwidth & Reduce Latency with Active-Active Multi-chassis EtherChannel (MEC

Minimizes Convergence with Sub-second Stateful and Graceful Recovery (SSO/NSF)

SVL Platform Support and Limitations

Platform / Model	SVL Ports	DAD Ports		
9500-16X/40X	Any ports (downlink:10G; uplink:10G/40G) No breakout/QSA Support	Any ports (downlink:1G/10G; uplink:1G/10G/40G) No breakout/QSA Support		
9500-12/24Q	Any ports (40G) No breakout/QSA Support	Any ports (40G) No breakout/QSA Support		
C9500-24Y4C, C9500-48Y4C	Any port (downlink: 10G/25G; uplink: 10G*/40G/100G)	Any port (downlink: any speed; uplink:1G*/10G*/40G/100G)		
C9500-32QC	Any port in default mode (10G*/40G/100G)	Any port in default mode (1G*/10G*/40G/100G)		
C9500-32C Port 1-16 (10G*/40G/100G) No breakout support		Port 1-16 (1G*/10G*/40G/100G) No breakout support		

#CLUS

Cisco

* With QSA adapter

Stackwise Virtual ISSU Upgrade Steps

3 Step Process

- Install add file <tftp/ftp/flash/disk:*.bin>
- Install activate ISSU
- Install commit

1 Step Process

• Install add file <tftp/ftp/flash/disk:*.bin>activate ISSU commit

Single Command to perform complete ISSU

Granular Control on the

upgrade process with

ability to rollback

Software Maintenance Updates (SMUs)

SMU is an emergency point fix positioned for expedited delivery to a customer in case of a network down or revenue affecting scenario. Cold Patching: Install of a SMU will require a system reload. Hot Patching**: Install of a SMU will not require a system reload

- Quick (able to deliver point fixes much faster than possible in IOS)
- Effective (does not require a monolithic code upgrade)
- Focused (target the specific area of code which has the issue)

#CLUS

9200 does not support Hot Patching

Graceful Insertion and Removal(GIR)

Overview

- Graceful removal of the node from network.
- Performing maintenance on the device.
- Graceful insertion into the network

Optics

You make networking **possible**

Cisco Catalyst 9500 Series optics Optical tools for increasing the data rates

#CLUS

Increase Baud Rate Eg: 10G → 25G

Optics: SR, LR...

Increase number of Fibers (Parallel links)

Eg: $10G \rightarrow 40G$ or $40G \rightarrow 100G$ Optics: SR4, FET, CSR4, PSM4

Increase number of Wavelengths

Optics: LR4, ER4, BiDi, CWDM4

Modulation Formats

Eg: NRZ to PAM4 Optics: 40/100-SRBD

Enhanced Bit Error Rate with

Forward Error Correction (FEC) Eg: All Optics which supports FEC

Eye Diagram NRZ Each time slot can take on one of two values (0,1)

Eye Diagram PAM4 Each time slot can take on one of 4 Discrete values (00.01, 10, 11)

Cisco Catalyst 9500 Series Switches

Cisco Catalyst 9500 Series – 100G optics Support for 100G optics (QSFP28)

Ciscolive;

Cisco Catalyst 9500 Series – 40G optics Support for 40G optics

Ciscolivi

Ciscolive,

BRKARC-2007 © 2019 Cisco and/or its affiliates. All rights reserved. Cisco Public 122

Cisco Catalyst 9500 Series – 25G optics Support for 25G optics

Cisco Catalyst 9500 High Performance Series PHY capabilities (QSFP28)

Ciscolive!

Cisco Catalyst 9500-32C Port mode - insertion

- Ports speeds supported: 100G, 40G, 10G, 1G
- Default speed 100G
- 100G QSFP supported on all ports
- Line rate on every port above 187-bit** packet size
- · Interface port speeds updated based on transceivers inserted
- Mix and match of 10G/40G and 100G speeds allowed on all ports

100G

Cisco Catalyst 9500-32QC Mode conversation - CLI based

- Port speeds supported: 10G, 40G, 100G
- Default port speed 40G (ports 1 to 24) and 100G (ports 28 to 32)
- Line rate on every port above 187-bit packet size
- 100G QSFP supported only on upper 16 ports (ports 1 to 16)
- 100G ports are enabled using an interface CLI command disabling lower 40G ports
- Mix and match of 10G/40G and 100G ports speeds allowed

C9510-32QC(config)#int Hu1/0/34 C9510-32QC(config-if)#enable C9510-32QC(config-if)#

Cisco Catalyst 9500-48Y4C Mode conversation – insertion based

- Ports speeds supported: 1G, 10G, 25G, 40G,* 100G*
- Default downlink port speed: 25G
- Default uplink port speed: 100G
- 100G QSFP supported on uplink ports only
- Line rate on every port above 187-bit* packet size
- Interface port speeds updated based on transceivers inserted
- Mix and match of 1G, 10G, and 25G on downlink ports and 40G and 100G on uplink supported

#CLUS

* Uplink only

Cisco Catalyst 9500 Series Breakout cable support

C9500-24Q**					
C9500-12Q*					

C9500-NM-2Q

* Starting **16.9.1** all ports ** Starting **16.10.1** all ports

Breakout cable supported

cisco

25GE and 100GE – Enabling Higher Speeds in Enterprise with Investment Protection

Summary

Enterprise campus networks are facing an imminent need to support ever-increasing bandwidth demand. They need to support the rapid growth of powerful endpoints that can deliver richer content such as HD video and wireless access points that deliver advanced wireless connectivity technologies such as 802.11ax. To support the increase in connected devices and high data volumes moving toward the cloud, enterprises are looking for ways to minimize infrastructure upgrades that require substantial installation costs, time, and disruption to the physical infrastructure. Until recently, campus migrations have been from 1G to 10G to 40G. While 1G and 10G still represent a significant share of the enterprise market's Ethernet ports, a transition to 25G, and to 100G for large and high-end enterprises, is expected to happen more quickly than the previous transition to 10G. Furthermore, support for 25G adapters that can also run at 10G with existing fiber cabling can help accelerate that migration, providing opportunities to migrate to a 100G switch infrastructure while supporting significant investment protection.

Cisco has been pioneering several initiatives to bring new Ethernet technologies to market. These include Cisco[®] 25GBASE Small Form-Factor Pluggable SFP28, Cisco 100GBASE Quad Small Form-Factor Pluggable QSFP28, and more importantly, dual-rate optics along with the latest Cisco Catalyst[®] 9000 switching family to facilitate such network speeds and architecture transformations. These innovations enable flexible options and backward compatibility to drive network speeds beyond the current 10G and 40G capabilities while minimizing cost and real estate changes. With a prevalidated architecture, Cisco's Enterprise Networks portfolio can help forward-thinking enterprises that wish to build a network infrastructure that offers flexibility and scale. This white paper highlights some of the key aspects of these new Ethernet standards, and the benefits of 25G and 100C in campus networks. It also documents use cases involving high-speed network transitions that are extending link lengths for 25G to 300m over duplex Multi Mode Fiber (MMF) optical Mode 3(OM3) (400m over OM4) as well as provides details of supported Cisco's platforms.

© 2019 Cisco and/or its affiliates. All rights reserved.

https://www.cisco.com/c/dam/en/us/products/collateral/swit ches/catalyst-9000/nb-09-25ge-100ge-wp-cte-en.pdf

White paper **Cisco public**

#CLUS

Cisco Catalyst 9500 Architecture

https://www.cisco.com/c/dam/en/us/products/collateral/switches/ catalyst-9500-series-switches/white-paper-c11-741484.pdf

Summary

Offering a comprehensive high-density portfolio on campus with 100G, 40G, 25G, 10G

Cisco Catalyst 9500 Series switch scale comparison

Model	9500-16X	C9500-40X	C9500-12Q	C9500-24Q	C9500-32C	C9500-32QC	C9500-48Y4C/ C9500-24Y4C
Switching capacity	240G	480G	480G	960G	3.2T	1.6T	1.6T
Forwarding rate	320 Mpps	720 Mpps	720 Mpps	1440 Mpps	2 Bpps	1 Bpps	1 Bpps
MAC addresses	64,000*	64,000*	64,000*	64,000*	82,000*	82,000*	82,000*
LPM/host routes (IPv4/v6 routes)	64,000/32,000* 32,000/16,000	64,000/32,000* 32,000/16,000	64,000/32,000* 32,000/16,000	64,000/32,000* 32,000/16,000	212,000/ 212,000*	212,000/ 212,000*	212,000/ 212,000*
Multicast routes	48,000*	48,000*	48,000*	48,000*	32,000*	32,000*	32,000*
Security ACLs	18,000*	18,000*	18,000*	18,000*	27,000*	27,000*	27,000*
QOS ACLs	18,000*	18,000*	18,000*	18,000*	16,000*	16,000*	16,000*
Flexible NetFlow	128,000 per ASIC	128,000 per ASIC	128,000 per ASIC	128,000 per ASIC	96,000*	96,000*	96,000*
Spanning Tree instances**	256	256	256	256	256	256	256

#CLUS

* Depends on SDM template

** For 16.8,1 release

Complete your online session evaluation

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live water bottle.
- All surveys can be taken in the Cisco Live Mobile App or by logging in to the Session Catalog on <u>ciscolive.cisco.com/us</u>.

Cisco Live sessions will be available for viewing on demand after the event at <u>ciscolive.cisco.com</u>.

Continue your education

NDA Roadmap Sessions at Cisco Live Customer Connection Member Exclusive

Join Cisco's online user group to ...

Connect online with 29,000 peer and Cisco experts in private community forums

Learn from experts and stay informed about product roadmaps

- Roadmap sessions at Cisco Live
- Monthly NDA briefings

Give feedback to Cisco product teams

- Product enhancement ideas
- Early adopter trials
- User experience insights

Join online: www.cisco.com/go/ccp

Ciscolive,

NETWORKING ROADMAPS	SESSION ID	DAY / TIME
Roadmap: SD-WAN and Routing	CCP-1200	Mon 8:30 - 10:00
Roadmap: Machine Learning and Artificial Intelligence	CCP-1201	Tues 3:30 - 5:00
Roadmap: Wireless and Mobility	CCP-1202	Thurs 10:30 - 12:00

Join at the Customer Connection Booth (in the Cisco Showcase)

Member Perks at Cisco Live

- Attend NDA Roadmap Sessions
- Customer Connection Jacket
- Member Lounge

Thank you

You make possible